
Exercise 5: Size matters!

Task 1: As small as possible, please?

A forest decomposition of a graph G = (V,E) is a decomposition of G into directed
forests F1 = (V,E1), . . . , Ff = (V,Ef ), such that (i) each e ∈ E occurs in one and only
one Ei, and (ii) every v ∈ V knows, for every forest Fi, its parent node w.r.t. Fi if
applicable.

Consider the following minimum dominating set (MDS) approximation algorithm,
where P (v) is the set of parents of v. Let M be an MDS of G.

Algorithm 1 MDS approximation algorithm based on a forest decomposition.

1: H :=
(
V,
{
{v, w} ∈

(
V
2

)
| P (v) ∩ P (w) 6= ∅

})
2: compute an MIS I of H
3: D′ :=

⋃
v∈I P (v)

4: D := D′ ∪
{

all v ∈ V \D without a neighbor in D to D
}

5: return D

a) Show that Algorithm 1 can be implemented in the synchronous message passing
model with running time O(log n) w.h.p.!

b) Denote by VC ⊆ V the set of nodes that are in M or have a child in M . Show that
|VC | ≤ (f + 1)|M |!

c) Denote by VP ⊆ V the set of nodes that have some parent in M . Show that |I∩VP | ≤
|M |!

d) Prove that at most (f + 1)|M | nodes are not covered by D′.

e) Conclude that Algorithm 1 computes a dominating set that is at most by factor
O(f2) larger than the optimum!

Hint: V = VC ∪ VP .

f)* Show that even if we restrict message size to O(log n) bits, the algorithm can be
implemented with running time O(log n) w.h.p.

Task 2: Lots of Wood

Denote by A(G) the arboricity of G = (V,E), i.e., the minimum number of forests into
which E can be decomposed. Our goal in this exercise is to decompose G into f ∈ O(A)
forests.

Algorithm 2 Forest decomposition, initial A(G) is known.

1: Ainit := A(G)
2: while V 6= ∅ do
3: for all v ∈ V with δv ≤ 4Ainit in parallel do
4: assign neighbors as parents in forests F1, . . . , F4Ainit

; break ties by node id
5: delete v (and its incident edges) from G
6: end for
7: end while
8: return the computed forests (each node knows its parent in F1, . . . , F4Ainit

)



a) Show that in each iteration of the WHILE loop, at least half of the remaining nodes
are deleted!

Hint: Assume that this is false and bound the number of remaining edges from
below. Compare the result to the maximum number of edges in A(G) forests.

b) Conclude that the algorithm computes a decomposition of G into at most 4A(G)
directed forests in dlog ne+ 1 rounds!

c) Change the algorithm so that it does not require knowledge of A(G), but instead
relies only on n! You may use up to 8A(G) forests and increase the running time of
the algorithm by a factor of O(logA(G))1.

d) Conclude that in graphs of arboricity A, a factor-O(A2) approximation to MDS2 can
be found in O(log n logA) rounds w.h.p., even if n and A(G) are unknown, but an
upper bound N ≥ n is given, with N ∈ nO(1) on n!

e)* Can you do it in O(log n) rounds, only with N ≥ n, N ∈ nO(1) known?

Hint: Exploit the upper bound A(G) ≤ n− 1 and the fact that we use the LOCAL
model.

Task 3*: Exponential Enhancement

a) Why is Chernoff’s bound called Chernoff’s bound?

b) Show that for independent variables Xi, i ∈ I, E
[∏

i∈I Xi

]
=
∏

[E[Xi]].

c) Let Xi, i ∈ I, be random variables, and define X =
∑
i∈I Xi. Use Markov’s bound

to show that for arbitrary t, δ > 0,

P [X ≥ (1 + δ)E[X]] ≤
E
[∏

i∈I e
tXi
]

et(1+δ)E[X]
.

d) Use b) and c) to infer that if the Xi are independent Bernoulli variables, then

P [X ≥ (1 + δ)E[X]] ≤ e(e
t−1)E[X]

et(1+δ)E[X]
.

e) Plug in t := ln(1 + δ). You obtain the upper tail bound; choosing δ ∈ (0, 1) and
t = 1 − δ yields the lower tail bound.3 The bounds derived here are stronger than
those in the lecture, but more unwieldy. For most applications, the simpler versions
suffice.

f) Enlarge the knowledge of the exercise group by reporting your findings!

1Forest decompositions into f forests are particularly interesting if f ≥ A(G) is small, hence usually
logA(G) is very small!

2Read: “a dominating set at most factor O(A2) larger than an MDS.”
3Note that one has to introduce a minus sign in the exponents in b) to still be able to apply Markov’s

inequality.


