Exercise 4: Extreme Democracy

Task 1: Everyone Gets exactly one Vote...(3+3+3+2)

The goal of this exercise is to prove correct the asynchronous safe broadcast algorithm
by Bracha. It tolerates f < n/3 Byzantine faults, so we will assume that this condition
holds.

Algorithm 1 Code of the safe broadcast algorithm at node v. The input message M
is given to the designated source node s; every node knows s. Any applied thresholds
require messages from different nodes; duplicate messages from the same sender are
dropped.
1: if v = s then
2:  send init(M) to all nodes (including self)
3: end if
4: Stage 1: wait until received
e one init(M’) message from s,
e n — f echo(M’) messages, or
o n — 2f ready(M’) messages
for some M’
5: send echo(M’) to all nodes (including self)
6: Stage 2: wait until received
e n — f echo(M’) messages, or
o n — 2f ready(M’') messages
for some M’ (including those from stage 1)
7: send ready(M’) to all nodes (including self)
8: Stage 3: wait until received
e n — f ready(M’) messages
for some M’ (including those from earlier stages)
9: output M’

a) Show that if s is correct, eventually all correct nodes output M!

Hint: Argue that faulty nodes cannot make correct nodes send a “non-M” message.
Conclude that all nodes pass all stages for M.

b) Show that if a correct node broadcasts a ready(M’) message, no correct node broad-
casts a ready(M") message for M" # M’

Hint: Use that correct nodes broadcast only one echo(-) message, but the first nodes
broadcasting ready(-) messages must do so because of receiving many echoes!

c) Show that if a correct node outputs a message M’', eventually all correct nodes
output M’!

Hint: Use b) to show that no correct node can pass stage 2 for M"” # M’. Then
argue that eventually nodes get “pulled” through the first two stages because they
receive sufficiently many ready(M’) messages.

d) Conclude that the algorithm correctly implements safe broadcast!



Task 2: ...and then a Random Decision is Taken! (3+3+3+2+2)

Consider the following shared coin.

Algorithm 2 Simple weak shared coin (code at node v).

flip an unbiased coin

send the result to everyone (also self)

wait until received bits from n — f different senders
output the majority value (0 in case of a draw)

The goal of this exercise is to demonstrate how straight-forward it is to translate
strong guarantees about f into strong defiance.

a) Show that if f < n/3, this algorithm implements a weak shared coin with defiance
27",
b) Show that if f € O(y/n), this algorithm implements a weak shared coin with constant

defiance.

Hint: By the central limit theorem, the binomial distribution converges to a normal
distribution for n — oo, in the sense that the relative error of approximating it by
the normal distribution goes to 0. Check the standard deviation of the binomial
distribution and make use of this connection.

¢) Show that if f = ay/n for @ € [1,4/n/3], then this algorithm implements a weak
shared coin with defiance 2-0(").

Hint: Check out the section on tail bounds of the binomial distribution on Wiki-
pedia.

d) Use this to show that for every f < n/4, there is an asynchronous consensus algorithm
tolerating up to f faults that terminates in expected time 20(1f2/m1)

e) Can this approach be used to create an algorithm that tolerates any number of
f < n/4 faults, but terminates faster if the actual number of faults is small? (An
educated guess suffices, you don’t need to prove your answer correct here.)

Task 3*: Lecturing the Lecturer (1+ 1+ 1)

a) Find out why Byzantine failures are called Byzantine!

b) Conclude that the lecturer is biased towards always pointing at the same person.
Which celebrities of distributed computing could/should be featured instead??

c) Tell the tale of how Byzantine faults have been named and the heroes that have
fought them throughout the decades in the exercise session!

1 And anyway, shouldn’t he stop asking vague questions?



