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Abstra
t. We study Pareto optimal mat
hings in the 
ontext of house

allo
ation problems. We present an O(

p

nm) algorithm, based on Gale's

Top Trading Cy
les Method, for �nding a maximum 
ardinality Pareto

optimal mat
hing, where n is the number of agents and m is the total

length of the preferen
e lists. By 
ontrast, we show that the problem

of �nding a minimum 
ardinality Pareto optimal mat
hing is NP-hard,

though approximable within a fa
tor of 2. We then show that there exist

Pareto optimal mat
hings of all sizes between a minimum and maximum


ardinality Pareto optimal mat
hing. Finally, we introdu
e the 
on
ept

of a signature, whi
h allows us to give a 
hara
terization, 
he
kable in

linear time, of instan
es that admit a unique Pareto optimal mat
hing.

1 Introdu
tion

We study the problem of allo
ating a set H of heterogeneous indivisible goods

among a set A of agents [14, 8, 3, 4℄. We assume that ea
h agent a 2 A ranks in

order of preferen
e a subset of H (the a

eptable goods for a) and that monetary


ompensations are not possible. In the literature the situation in whi
h ea
h

agent initially owns one good is known as a housing market [14, 12, 11℄. When

there are no initial property rights, we obtain the house allo
ation problem [8,

16, 1℄. A mixed model, in whi
h a subset of agents initially owns a good has also

been studied [2℄. Yuan [15℄ des
ribes a large-s
ale appli
ation of these problems

in the allo
ation of families to government-subsidized housing in China.

Following 
onvention we refer to the elements of H as houses, though the


lass of problems under 
onsideration 
ould equally be formulated in terms of

allo
ating graduates to trainee positions, professors to oÆ
es, 
lients to servers,

et
. For ease of exposition we begin by assuming that there are no initial property

rights, though we later show how to take a

ount of su
h a situation.
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Given su
h a problem instan
e, the task is to 
onstru
t a mat
hing, i.e. a

subset M of A�H su
h that (a; h) 2M implies that a �nds h a

eptable, ea
h

agent is assigned to at most one house and vi
e versa. Furthermore one seeks

a mat
hing that is optimal in a pre
ise sense, taking into a

ount the agents'

preferen
es. Various notions of optimality have been 
onsidered in the literature,

but a 
riterion that has re
eived mu
h attention, parti
ularly from e
onomists, is

Pareto optimality. A mat
hingM is Pareto optimal if there is no other mat
hing

M

0

su
h that no agent is worse o� in M

0

than in M , whilst some agent is better

o� in M

0

than in M . For example, a mat
hing M is not Pareto optimal if two

agents 
ould improve by swapping the houses that they are assigned to in M .

There is a straightforward greedy algorithm, whi
h we denote by Greedy-

POM, for �nding a Pareto optimal mat
hing [1℄: 
onsider ea
h agent a in turn,

giving a his/her most-preferred va
ant house (assuming su
h a house exists).

This algorithm is also known as a serial di
tatorship me
hanism [1℄. Roth and

Sotomayor [13, Example 4.3℄ remark that a similar me
hanism is used by the

United States Naval A
ademy in order to mat
h graduating students to their

�rst posts as Naval OÆ
ers (in this 
ontext however, the algorithm 
onsiders

ea
h student in non-de
reasing order of graduation results). However one may


onstru
t an example instan
e (see Se
tion 2 for further details) in whi
h Pareto

optimal mat
hings may have di�erent 
ardinalities and Greedy-POM 
ould fail

to produ
e a Pareto optimal mat
hing of maximum size. Yet in many appli
a-

tions, one wishes to mat
h as many agents as possible.

Stronger notions of optimality have been 
onsidered in the literature. For

example a mat
hing M is rank-maximal [10℄ if, in M , the maximum number of

agents are mat
hed to their �rst-
hoi
e house, and subje
t to this 
ondition, the

maximum number of agents are mat
hed to their se
ond-
hoi
e house, and so on.

Irving et al. [10℄ des
ribe two algorithms for �nding a rank-maximal mat
hing,

with 
omplexities O(minfn + C;C

p

ngm) and O(Cnm), where n = jAj + jH j,

m is the total length of the preferen
e lists and C is the maximum k su
h that

some agent is assigned to his/her kth-
hoi
e house in the 
onstru
ted mat
hing.

Clearly a rank-maximal mat
hing is Pareto optimal, however a rank-maximal

mat
hing need not be a maximum 
ardinality Pareto optimal mat
hing (hen
e-

forth a maximum Pareto optimal mat
hing). Alternatively, one may 
onsider

a maximum 
ardinality maximum utility mat
hing M , in whi
h we maximise

P

(a;h)2M

u

a;h

over all maximum 
ardinality mat
hings, where u

a;h

indi
ates the

utility of house h being allo
ated to agent a. If one de�nes u

a;h

= l � rank

a;h

,

where rank

a;h

is the rank of house h in agent a's preferen
e list and l is the

maximum length of an agent's list, then a maximum 
ardinality maximum util-

ity mat
hing is in turn a maximum Pareto optimal mat
hing. Sin
e all utilities

are integral, a maximum 
ardinality maximum utility mat
hing may be found

in O(

p

nm logn) time [5℄. However if one only requires to �nd a maximum 
ar-

dinality mat
hing that satis�es the weaker 
ondition of being Pareto optimal, it

is of interest to 
onsider whether faster algorithms exist.

The next two se
tions of this paper work towards answering this question.

In Se
tion 2 we give a formal de�nition of the problem model, and present ne
-

essary and suÆ
ient 
onditions for a mat
hing to be Pareto optimal. In Se
tion



3 we use these 
onditions as the basis for an O(

p

nm) algorithm for �nding a

maximum Pareto optimal mat
hing. This algorithm extends the Top Trading

Cy
les Method due to Gale [14℄, whi
h has been the fo
us of mu
h attention,

parti
ularly in the game theory and e
onomi
s literature [14, 12, 11, 15, 2℄. We

then show that any improvement to the 
omplexity of our algorithm would imply

an improved algorithm for �nding a maximum mat
hing in a bipartite graph.

We also demonstrate how to modify our algorithm in order to take a

ount of

initial property rights, guaranteeing that those who own a good initially will end

up with a good that is either the same or better.

In the remainder of the paper, we prove several related results. In Se
tion 4

we 
onsider the problem of �nding a minimum Pareto optimal mat
hing, show-

ing that this problem is NP-hard, though approximable within a fa
tor of 2. In

Se
tion 5 we prove an interpolation result, showing that there exist Pareto op-

timal mat
hings of all sizes between a minimum and maximum Pareto optimal

mat
hing. Finally, in Se
tion 6 we give a 
hara
terization, 
he
kable in linear

time, of instan
es that admit a unique Pareto optimal mat
hing.

2 Preliminaries

We begin with a formal de�nition of the problem model under 
onsideration.

An instan
e I of the pareto optimal mat
hing problem (POM) 
omprises a

bipartite graph G = (A;H;E), where A = fa

1

; a

2

; : : : ; a

r

g is the set of agents

and H = fh

1

; h

2

; : : : ; h

s

g is the set of houses. For ea
h a

i

2 A, we denote by

A

i

� H the verti
es adja
ent to a

i

{ these are referred to as the a

eptable houses

for a

i

. Moreover a

i

has a linear order over A

i

. We let n = r + s and m = jEj.

Hen
eforth we assume that G 
ontains no isolated verti
es.

An assignment M is a subset of A�H su
h that (a

i

; h

j

) 2M only if a

i

�nds

h

j

a

eptable (i.e. h

j

2 A

i

). If (a

i

; h

j

) 2 M , we say that a

i

and h

j

are assigned

to one another. For ea
h q 2 A [ H , let M(q) denote the assignees of q in M .

A mat
hing is an assignment M su
h that jM(q)j � 1 for ea
h q 2 A [ H . If

M(q) = ;, we say that q is unmat
hed in M , otherwise q is mat
hed in M .

Let M be a mat
hing in I . M is maximal if there is no (agent,house)

pair (a

i

; h

j

) su
h that a

i

and h

j

are both unmat
hed in M and h

j

2 A

i

.

Also M is trade-in-free if there is no (agent,house) pair (a

i

; h

j

) su
h that a

i

is mat
hed in M , h

j

is unmat
hed in M , and a

i

prefers h

j

to M(a

i

). Finally M

is 
oalition-free if M admits no 
oalition, whi
h is a sequen
e of mat
hed agents

C = ha

0

; a

1

; : : : ; a

k�1

i, for some k � 2, su
h that a

i

prefers M(a

i+1

) to M(a

i

)

(0 � i � k�1) (here, and in the remainder of this paper, all subs
ripts are taken

modulo k when reasoning about 
oalitions). The mat
hing

M

0

= (Mnf(a

i

;M(a

i

)) : 0 � i � k � 1g) [ f(a

i

;M(a

i+1

)) : 0 � i � k � 1g

is de�ned to be the mat
hing obtained from M by satisfying C.

The preferen
es of an agent extend to mat
hings as follows. Given two mat
h-

ingsM andM

0

, we say that an agent a

i

prefersM

0

toM if either (i) a

i

is mat
hed

in M

0

and unmat
hed in M , or (ii) a

i

is mat
hed in both M and M

0

and prefers



M

0

(a

i

) to M(a

i

). Given this de�nition, we may de�ne a relation � on the set of

all mat
hings as follows: M

0

�M if and only if no agent prefers M to M

0

, and

some agent prefers M

0

to M . It is straightforward to then prove the following.

Proposition 1. Given an instan
e I of POM, the relation � forms a stri
t

partial order over the set of mat
hings in I.

A mat
hing is de�ned to be Pareto optimal if and only if it is �-minimal. In-

tuitively a mat
hing is Pareto optimal if no agent a

i


an be better o� without

requiring another agent a

j

to be worse o�. The following proposition gives ne
-

essary and suÆ
ient 
onditions for a mat
hing to be Pareto optimal.

Proposition 2. Let M be a mat
hing in a given instan
e of POM. Then M is

Pareto optimal if and only if M is maximal, trade-in-free and 
oalition-free.

Proof. Let M be a Pareto optimal mat
hing. If M is not maximal, then there

exists an agent a

i

and a house h

j

, both unmat
hed in M , su
h that h

j

2 A

i

.

Let M

0

= M [ f(a

i

; h

j

)g. If M is not trade-in-free, then there exist an agent

a

i

and a house h

j

, su
h that a

i

is mat
hed in M , h

j

is unmat
hed in M , and

a

i

prefers h

j

to M(a

i

). Let M

0

= (Mnf(a

i

;M(a

i

))g) [ f(a

i

; h

j

)g. Finally if M

admits some 
oalition C, let M

0

be the mat
hing obtained by satisfying C. In

all three 
ases, M

0

�M , a 
ontradi
tion.

Conversely let M be a mat
hing that is maximal, trade-in-free and 
oalition-

free, and suppose for a 
ontradi
tion that M is not Pareto optimal. Then there

exists some mat
hingM

0

su
h that M

0

�M . Let a

0

be any agent mat
hed inM

who prefers M

0

to M . Note that su
h an agent must exist, sin
e M is maximal

and at least one agent prefers M

0

to M .

It follows that M

0

(a

0

) is mat
hed in M , say to a

1

, for otherwise M is not

trade-in-free. Therefore, M

0

(a

1

) 6= M(a

1

), and so a

1

must also prefer M

0

to

M . Using this same argument, M

0

(a

1

) is mat
hed in M , say to a

2

. We 
an


ontinue in this manner �nding a sequen
e of agents ha

0

; a

1

; a

2

; : : :i, where a

i

prefers M(a

i+1

) to M(a

i

). Sin
e the number of agents is �nite, this sequen
e

must 
y
le, thereby 
ontradi
ting the assumption that M is 
oalition-free. ut

Hen
eforth we will establish the Pareto optimality of a given mat
hing by show-

ing that the 
onditions of the above proposition are satis�ed. For a given mat
h-

ing M , we 
an trivially 
he
k whether M satis�es the maximality and trade-in-

free properties in O(m) time. To 
he
k for the absen
e of 
oalitions, we 
onstru
t

the envy graph of M . This is a dire
ted graph, denoted by G(M), 
onsisting of

one vertex for ea
h agent, with an edge from a

i

to a

j

whenever a

j

is mat
hed in

M and either (i) a

i

is unmat
hed in M and �nds M(a

j

) a

eptable, or (ii) a

i

is

mat
hed in M and prefers M(a

j

) to M(a

i

). It is 
lear that M is 
oalition-free if

and only if G(M) is a
y
li
. So we 
an perform this last 
he
k in O(m) time by

using a 
y
le-dete
tion algorithm on G(M). Putting these observations together,

we have the following result.

Proposition 3. Let M be a mat
hing in a given instan
e of POM. Then we

may 
he
k whether M is Pareto optimal in O(m) time.



It is easy to 
onstru
t an instan
e of POM in whi
h the Pareto optimal

mat
hings are of di�erent sizes. For example let A = fa

1

; a

2

g and let H =

fh

1

; h

2

g. Suppose that a

1

prefers h

1

to h

2

, whilst a

2

�nds only h

1

a

eptable.

Then both M

1

= f(a

1

; h

1

)g and M

2

= f(a

1

; h

2

); (a

2

; h

1

)g are Pareto optimal.

Given this observation it is natural to 
onsider the 
omplexity of ea
h of the

problems of �nding a maximum and minimum Pareto optimal mat
hing. (Note

that Greedy-POM produ
es M

1

given the agent ordering ha

1

; a

2

i, and produ
es

M

2

given the agent ordering ha

2

; a

1

i.)

3 Maximum Pareto optimal mat
hings

In this se
tion, we des
ribe a three-phase algorithm for �nding a maximum

Pareto optimal mat
hing, mirroring the three ne
essary and suÆ
ient 
onditions

in Proposition 2. We let I be an instan
e of POM, and we assume the notation

and terminology introdu
ed in Se
tion 2. Phase 1 involves using the Hop
roft-

Karp algorithm [7℄ to 
ompute a maximum mat
hingM in G. This phase, whi
h

guarantees that M is maximal, takes O(

p

nm) time and dominates the runtime.

The �nal two phases transformM into a trade-in-free and 
oalition-free mat
hing

respe
tively. We des
ribe these phases in more detail below.

3.1 Phase 2 of the algorithm

In this phase, we transform M into a trade-in-free mat
hing by repeatedly iden-

tifying and promoting agents that prefer an unmat
hed house to their existing

assignment. Ea
h promotion breaks the existing assignment, thereby freeing a

house, whi
h itself may be a preferred assignment for a di�erent agent. With the

aid of suitable data stru
tures, we 
an ensure that the next agent and house 
an

be identi�ed eÆ
iently.

For ea
h house h, we maintain a linked list L

h

of pairs (a; r), where a is a

mat
hed agent who �nds h a

eptable, and r is the rank of h in a's preferen
e

list. Initially the pairs in L

h

involve only those mat
hed agents a who prefer h

to M(a), though subsequently the pairs in L

h

may 
ontain agents a who prefer

M(a) to h. The initialization of these lists 
an be 
arried out using one traversal

of the agent preferen
e lists, whi
h we assume are represented as doubly linked

lists or arrays, in O(m) time.

For ea
h mat
hed agent a, we also use this traversal to initialize a variable,

denoted by 
urr

a

, whi
h stores the rank of M(a) in a's preferen
e list. This

variable is maintained during the exe
ution of the algorithm. We also assume

that, for ea
h mat
hed agent a we store M(a). One �nal initialization remains:


onstru
t a sta
k S of all unmat
hed houses h where L

h

is non-empty. We now

enter the loop des
ribed in Figure 1.

During ea
h loop iteration we pop an unmat
hed house h from S and remove

the �rst pair (a; r) from the list L

h

(whi
h must be non-empty). If a prefers h

to M(a) (i.e. r < 
urr

a

) then a is promoted from h

0

= M(a) to h, also M and


urr

a

are updated, and �nally h

0

, whi
h is now unmat
hed, is pushed onto S if

L

h

0

is non-empty. Otherwise h is pushed ba
k onto S if L

h

is non-empty.



while S 6= ;

h := S:pop();

(a; r) := L

h

.removeHead();

if r < 
urr

a

// h is unmat
hed in M , a is mat
hed in M and prefers h to M(a)

h

0

:=M(a);

M := (Mnf(a; h

0

)g) [ f(a; h)g;


urr

a

:= r;

h := h

0

;

if L

h

6= ;

S:push(h);

Fig. 1. Phase 2 loop

Ea
h iteration of the loop removes a pair from a list L

h

. Sin
e agent preferen
e

lists are �nite and no new pair is added to a list L

h

during a loop iteration, the

while loop must eventually terminate with S empty. At this point no mat
hed

agent a would trade M(a) for an unmat
hed house, and so M is trade-in-free.

Additionally, M remains a maximum mat
hing, sin
e any agent mat
hed at the

end of Phase 1 is also mat
hed at the end of Phase 2. Finally, it is 
lear that

this phase runs in O(m) time given the data stru
tures des
ribed above.

3.2 Phase 3 of the algorithm

In this phase, we transform M into a 
oalition-free mat
hing. Re
all that 
oali-

tions inM 
orrespond to 
y
les in the envy graph G(M). So a natural algorithm

involves repeatedly �nding and satisfying 
oalitions in G(M) until no more 
oali-

tions remain. This algorithm has a runtime of O(m

2

), sin
e there are O(m)


oalitions, and 
y
le-dete
tion takes O(m) time.

A better starting point for an eÆ
ient algorithm is Gale's Top Trading Cy-


les Method [14℄. This method is also based on repeatedly �nding and satisfying


oalitions, however the number of iterations is redu
ed by the following observa-

tion: no agent assigned to his/her �rst 
hoi
e 
an be in a 
oalition. We remove

su
h agents from 
onsideration, and sin
e the houses assigned to them are no

longer ex
hangeable, they 
an be deleted from the preferen
e lists of the re-

maining agents. This observation 
an now be re
ursively applied to the redu
ed

preferen
e lists. At some point, either no agents remain, in whi
h 
ase the mat
h-

ing is 
oalition-free, or no agent is assigned to his/her redu
ed �rst 
hoi
e (i.e.

the �rst 
hoi
e on his/her redu
ed preferen
e list).

In this last 
ase, it turns out that there must be a 
oalition C in M , whi
h


an be found in O(r) time by sear
hing the envy graph restri
ted to redu
ed

�rst-
hoi
e edges. After satisfying C, ea
h agent in C is assigned to his/her

redu
ed �rst 
hoi
e. Therefore, no agent is in more than one 
oalition, giving

O(r) 
oalitions overall. The runtime of this preliminary implementation then is


(m+ r

2

). We now present a linear-time extension of Yuan's des
ription of the

Top Trading Cy
les Method [15℄.

In our implementation, deletions of houses from agents' preferen
e lists are

not expli
itly 
arried out. Instead, a house that is no longer ex
hangeable is



for ea
h mat
hed agent a su
h that p(a) 6=M(a)

P := fag; // P is a sta
k of agents


(a) := 1; // 
ounters re
ord the number of times an agent is in P

while P 6= ;

a

0

:= P:pop();

p(a

0

) := most-preferred unlabelled house on preferen
e list of a

0

;

if 
(a

0

) = 2

C := 
oalition in P 
ontaining a

0

;

satisfy C;

for ea
h a

00

2 C

label M(a

00

);


(a

00

) := 0;

P:pop();

else if p(a

0

) =M(a

0

)

label M(a

0

);


(a

0

) := 0;

else

P:push(a

0

);

a

00

:=M(p(a

0

));


(a

00

) := 
(a

00

) + 1;

P:push(a

00

);

Fig. 2. Phase 3 loop

labelled (all houses are initially unlabelled). For ea
h agent a we maintain a

pointer p(a) to the �rst unlabelled house on a's preferen
e list { this is equivalent

to the �rst house on a's redu
ed preferen
e list. Initially p(a) points to the �rst

house on a's preferen
e list, and subsequently p(a) traverses left to right. Also,

in order to identify 
oalitions, we initialize a 
ounter 
(a) to 0 for ea
h agent a.

Then, we enter the main body of the algorithm, as given in Figure 2.

This algorithm repeatedly sear
hes for 
oalitions, building a path P of agents

(represented by a sta
k) in the (simulated) envy graph restri
ted to redu
ed �rst-


hoi
e edges. At ea
h iteration of the while loop, we pop an agent a

0

from the

sta
k and move up p(a

0

) if ne
essary. If P 
y
les (i.e. we �nd that 
(a

0

) = 2),

there is a 
oalition C { the agents involved in C are removed from 
onsideration

and the houses assigned to these agents are labelled (in pra
ti
e the agents in C


an be identi�ed and C 
an be satis�ed during the sta
k popping operations).

Alternatively, if P rea
hes a dead-end (a

0

is already assigned to his/her �rst


hoi
e), this agent is removed from 
onsideration and his/her assigned house is

labelled. Otherwise, we keep extending the path by following the redu
ed �rst-


hoi
e edges.

At the termination of this phase we note that M is 
oalition-free by the


orre
tness of the Top Trading Cy
les Method [14℄. AlsoM remains a maximum

trade-in-free mat
hing, sin
e ea
h agent and house mat
hed at the end of Phase 2

is also mat
hed at the end of Phase 3. Finally, it is 
lear this phase runs in O(m)

time given the data stru
tures des
ribed above. We summarize the pre
eding

dis
ussion in the following theorem.



Theorem 1. A maximum Pareto optimal mat
hing 
an be found in O(

p

nm)

time. Su
h a mat
hing is also a maximum mat
hing of agents to houses.

We now show that any improvement to the 
omplexity of the above algo-

rithm would imply an improved algorithm for �nding a maximum mat
hing in

a bipartite graph. Without loss of generality, let G = (A;H;E) be an arbitrary

bipartite graph with no isolated verti
es. Constru
t an instan
e I of POM with

bipartite graph G, where ea
h agent a's preferen
e list in I is an arbitrary per-

mutation over a's neighbours in G. By Theorem 1, any maximum Pareto optimal

mat
hing in I is also a maximum mat
hing in G. Sin
e I may be 
onstru
ted

from G in O(m) time, the 
omplexity of �nding a maximum mat
hing in a bi-

partite graph is bounded above by the 
omplexity of �nding a maximum Pareto

optimal mat
hing.

3.3 Initial property rights

Suppose that a subset A

0

of the agents already own a house. We now des
ribe

an individually rational modi�
ation of our algorithm, whi
h ensures that every

agent in A

0

ends up with the same house or better.

We begin with a mat
hing M that pre-assigns every agent a 2 A

0

to his/her

existing house h. We then trun
ate the preferen
e list of ea
h su
h a by removing

all houses less preferable than M(a). Now, we enter Phase 1, where we use the

Hop
roft-Karp algorithm to exhaustively augment M into some mat
hing M

0

.

Members of A

0

must still be mat
hed in M

0

, and sin
e their preferen
e lists were

trun
ated, their new assignments must be at least as preferable as those in M .

Note that M

0

may not be a maximum mat
hing of A to H , however M

0

does

have maximum 
ardinality among all mat
hings that respe
t the initial property

rights. The remaining two phases do not move any agent from being mat
hed to

unmat
hed, and so the result follows immediately.

In the spe
ial 
ase that all agents own a house initially (i.e. I is an instan
e

of a housing market), it is 
lear that Phases 1 and 2 of the algorithm are not

required. Moreover it is known that Phase 3 produ
es the unique mat
hing that

belongs to the 
ore of the market [12℄, a stronger notion than Pareto optimality.

4 Minimum Pareto optimal mat
hings

In this se
tion, we 
onsider the problem of �nding a minimum Pareto optimal

mat
hing. Let MIN-POM denote the problem de
iding, given an instan
e I of

POM and an integer K, whether I admits a Pareto optimal mat
hing of size at

most K. We �rstly prove that MIN-POM is NP-
omplete via a redu
tion from

MMM, whi
h is the problem of de
iding, given a graph G and an integer K,

whether G admits a maximal mat
hing of size at most K.

Theorem 2. MIN-POM is NP-
omplete.

Proof. By Proposition 3, MIN-POM belongs to NP. To show NP-hardness, we

give a redu
tion from the NP-
omplete restri
tion of MMM to subdivision graphs



[6℄ (given a graph G, the subdivision graph of G is obtained by subdividing

ea
h edge e = fu;wg into two edges fu; v

e

g; fv

e

; wg, where v

e

is a new vertex


orresponding to e).

Let G = (V;E) (a subdivision graph) and K (a positive integer) be given

as an instan
e of MMM. Then V is a disjoint union of two sets U and W ,

where ea
h edge e 2 E joins a vertex in U to a vertex in W . Assume that

U = fu

1

; u

2

; : : : ; u

r

g and W = fw

1

; w

2

; : : : ; w

s

g. Without loss of generality

assume that ea
h vertex u

i

2 U has degree 2, and moreover assume that p

i

and

q

i

are two sequen
es su
h that p

i

< q

i

, fu

i

; w

p

i

g 2 E and fu

i

; w

q

i

g 2 E.

We 
reate an instan
e I of MIN-POM as follows. Let A be the set of agents

and let H be the set of houses, where A = A

1

[ A

2

, A

t

= fa

t

1

; a

t

2

; : : : ; a

t

r

g

(t = 1; 2), H = W [ X and X = fx

1

; x

2

; : : : ; x

r

g. For ea
h i (1 � i � r), we


reate preferen
e lists for agents a

1

i

and a

2

i

as follows:

a

1

i

: x

i

w

p

i

w

q

i

a

2

i

: x

i

w

q

i

w

p

i

We 
laim that G has a maximal mat
hing of size at most K if and only if I has

a Pareto optimal mat
hing of size at most K + r.

For, suppose that M is a maximal mat
hing in G of size at most K. We


onstru
t a set M

0

as follows. For any u

i

2 U that is unmat
hed in M , add the

pair (a

1

i

; x

i

) to M

0

. Now suppose that (u

i

; w

j

) 2 M . If j = p

i

, add the pairs

(a

1

i

; w

j

) and (a

2

i

; x

i

) to M

0

. If j = q

i

, add the pairs (a

1

i

; x

i

) and (a

2

i

; w

j

) to M

0

.

ClearlyM

0

is a mat
hing in I , and jM

0

j = jM j+r � K+r. It is straightforward

to verify that, by the maximality of M in G, M

0

is Pareto optimal in I .

Conversely suppose thatM

0

is a Pareto optimal mat
hing in I of size at most

K+r. For ea
h i (1 � i � r), either (a

1

i

; x

i

) 2M

0

or (a

2

i

; x

i

) 2M

0

, for otherwise

M

0

is not trade-in-free. Hen
e we may 
onstru
t a mat
hing M in G as follows.

For ea
h i (1 � i � r), if (a

t

i

; w

j

) 2 M

0

for some t (1 � t � 2), add (u

i

; w

j

) to

M . Then jM j = jM

0

j � r � K. The maximality of M

0


learly implies that M is

maximal in G. ut

For a given instan
e I of POM with bipartite graph G, we denote by p

�

(I)

and p

+

(I) the sizes of a minimum and maximum Pareto optimal mat
hing in

I respe
tively. Similarly, we denote by �

�

1

(G) and �

1

(G) the sizes of a mini-

mum maximal and a maximum mat
hing in G respe
tively. It is known that

�

�

1

(G) � �

1

(G)=2 [9℄. By Proposition 2, Pareto optimal mat
hings in I are

maximal mat
hings in G. Hen
e, by Theorem 1, we have that �

�

1

(G) � p

�

(I) �

p

+

(I) = �

1

(G). It is therefore immediate that, for a given instan
e I of POM,

the problem of �nding a minimum Pareto optimal mat
hing is approximable

within a fa
tor of 2.

5 Interpolation of Pareto optimal mat
hings

In this se
tion, we prove that, for a given instan
e I of POM, there are Pareto

optimal mat
hings of all sizes between p

�

(I) and p

+

(I).

Given a mat
hing M , an augmenting path P for M is an alternating se-

quen
e of distin
t agents and houses ha

1

; h

1

; a

2

; : : : ; a

k

; h

k

i, where a

1

and h

k

are



unmat
hed in M , h

i

2 A

i

, and M(a

i+1

) = h

i

(1 � i � k � 1). We asso
iate

with ea
h su
h augmenting path a ve
tor rank

P

, whose ith 
omponent 
ontains

the rank of a

i

for h

i

. Given two augmenting paths P and Q for M , we say that

P / Q if (i) both P and Q begin from the same agent, and (ii) rank

P

is lexi
o-

graphi
ally less than rank

Q

. Also for paths P and Q, we de�ne three operations:

Pre�x

P

(v) is the substring of P from a

1

to v 2 P , SuÆx

P

(v) is the substring of

P from v 2 P to h

k

, and P �Q denotes the 
on
atenation of P and Q.

Theorem 3. For a given instan
e I of POM, there exist Pareto optimal mat
h-

ings of size k, for ea
h k su
h that p

�

(I) � k � p

+

(I).

Proof. Let M be any Pareto optimal mat
hing su
h that jM j < p

+

(I), and let

M

0

be the mat
hing that results from augmenting M along some /-minimal

augmenting path P . We will show in turn that M

0

is maximal, trade-in-free and


oalition-free; the result then follows by indu
tion.

If M

0

is not maximal, then 
learly we 
ontradi
t the maximality of M . Now

suppose that M

0

is not trade-in-free. Then there exists an agent a and house

h, where a is mat
hed in M

0

, h is unmat
hed in M

0

, and a prefers h to M

0

(a).

Sin
e h is also unmat
hed in M , a must be in P , for otherwise M(a) = M

0

(a),

andM is not trade-in-free. But then P

0

= Pre�x

P

(a) �hhi is an augmenting path

for M , 
ontradi
ting the /-minimality of P .

Finally suppose for a 
ontradi
tion that M

0

is not 
oalition-free. Then there

exists a 
oalition C = ha

0

; a

1

; : : : ; a

k�1

i with respe
t toM

0

. At least one agent in

P must also be in C, for otherwiseM is not 
oalition-free. Let a

i

be the �rst su
h

agent in P . We establish some properties of M

0

(a

i+1

). Firstly, M

0

(a

i+1

) must

be mat
hed in M , for otherwise M admits the augmenting path Pre�x

P

(a

i

) �

hM

0

(a

i+1

)i, 
ontradi
ting the /-minimality of P . Also, M

0

(a

i+1

) 
annot appear

before a

i

in P , for otherwise a

i

is not the �rst agent in P to be in C. Lastly,

M

0

(a

i+1

) 
annot appear after a

i

in P , for otherwise M admits the augmenting

path Pre�x

P

(a

i

)� SuÆx

P

(M

0

(a

i+1

)), 
ontradi
ting the /-minimality of P . So, it

must be the 
ase that M

0

(a

i+1

) is mat
hed in M and does not appear in P . Let

a

i+j

be the �rst agent in C after a

i

, su
h that a

i+j

is in P . Note that a

i+j

6= a

i+1

by the above properties ofM

0

(a

i+1

), but sin
e C is a 
y
le, a

i+j

= a

i

is possible.

It follows that the subsequen
e S = hM

0

(a

i+1

); a

i+1

; : : : ;M

0

(a

i+j�1

); a

i+j�1

i of

C is disjoint from P , and so P

0

= Pre�x

P

(a

i

) � S� SuÆx

P

(M

0

(a

i+j

)) is a valid

augmenting path of M . But then P

0


ontradi
ts the /-minimality of P , sin
e a

i

prefers M

0

(a

i+1

) to M

0

(a

i

). ut

Corollary 1. Given an instan
e I of POM and a Pareto optimal mat
hing M

in I of size k, we 
an 
onstru
t a Pareto optimal mat
hing M

0

of size k + 1, or

determine that no su
h mat
hing exists, in O(m) time.

Proof. Let G be the bipartite graph in I , with edges in M dire
ted from H

to A, and edges not in M dire
ted from A to H . Also asso
iate with ea
h

non-mat
hing edge (a

i

; h

j

) the rank of a

i

for h

j

. We sear
h for a /-minimal

augmenting path by performing an ordered depth �rst sear
h of G starting from

the set of unmat
hed agents, where for ea
h agent a in the sear
h, we explore



outgoing edges from a in in
reasing order of rank. In general, ordered depth-�rst

sear
h is asymptoti
ally slower than depth-�rst sear
h. However, the O(m) result

holds, sin
e ea
h preferen
e list is already given in in
reasing order of rank. ut

We remark that the results of this se
tion extend to the 
ase where a subset

of the agents have initial property rights.

6 Uniqueness of Pareto optimal mat
hings

In this se
tion, we give a 
hara
terization of instan
es with no initial property

rights that admit a unique Pareto optimal mat
hing. This is based on the 
on
ept

of a signature of a Pareto optimal mat
hing.

If a mat
hing M is Pareto optimal, the envy graph G(M) 
ontains no 
y
les,

and therefore admits a topologi
al ordering. We say that a reversed topologi
al

ordering of G(M), denoted by �(M), is a signature of M . The next lemma will

help us establish that the signature of a mat
hing is unique for that mat
hing.

This lemma is similar to [1, Lemma 1℄, though the proof here, whi
h uses the


on
ept of a signature, is mu
h simpler.

Lemma 1. Given an instan
e I of POM, the algorithm Greedy-POM 
an gen-

erate any Pareto optimal mat
hing in I.

Proof. Let M be an arbitrary Pareto optimal mat
hing in I . We 
laim that by

pro
essing the agents in order of �(M), the greedy algorithm returns M .

Suppose for a 
ontradi
tion that Greedy-POM returns a mat
hing M

0

6=M .

It follows that sin
e M

0

is Pareto optimal, some agent must preferM

0

to M . Let

a be the �rst su
h agent in �(M).

Now,M

0

(a) must be mat
hed inM , say to a

0

, for otherwiseM is not maximal

(if a is unmat
hed inM), orM is not trade-in-free (if a is mat
hed inM). G(M)

must therefore 
ontain an edge from a to a

0

, meaning that a

0

pre
edes a in �(M).

At the time a

0

is pro
essed by Greedy-POM, M

0

(a) is unmat
hed (sin
e it is

assigned later to a). So, a

0

must prefer M

0

(a

0

) to M(a

0

) =M

0

(a), 
ontradi
ting

the assumption that a was the �rst su
h agent in �(M). ut

Corollary 2. Given an instan
e I of POM, every agent permutation is a sig-

nature of exa
tly one Pareto optimal mat
hing in I.

We 
an now present a ne
essary and suÆ
ient 
ondition, 
he
kable in linear

time, for a POM instan
e to admit a unique Pareto optimal mat
hing.

Theorem 4. An instan
e I of POM admits a unique Pareto optimal mat
hing

M if and only if every agent is mat
hed in M with his/her �rst 
hoi
e.

Proof. Let M be the unique Pareto optimal mat
hing in I . Sin
e every agent

permutation is a signature of M , G(M) 
ontains no edges. Then every agent

must be mat
hed to his/her �rst 
hoi
e.

Conversely, let M be a mat
hing in I in whi
h every agent is mat
hed with

his/her �rst 
hoi
e. Then if M

0

is any mat
hing in I su
h that M

0

6= M , it

follows that M �M

0

. Hen
e M is the unique Pareto optimal mat
hing in I . ut



7 Con
luding remarks

We 
on
lude with an open problem. The basi
 POM de�nition given in Se
tion

2 
an be generalized by permitting agents to 
ontain ties in their preferen
e

lists (i.e. to rank equally two or more houses). In this 
ontext the de�nition of

the relation � is the same as that given in Se
tion 2, and hen
e the de�nition

of Pareto optimality remains un
hanged. A maximum Pareto optimal mat
hing


an be found in O(

p

nm logn) time using a similar redu
tion to the Assignment

problem as des
ribed in Se
tion 1 (in this 
ase rank

a;h

is the number of houses

that a prefers to h). However is the problem of �nding a maximum Pareto

optimal mat
hing solvable in O(

p

nm) time?
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