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Abstrat. We study Pareto optimal mathings in the ontext of house

alloation problems. We present an O(

p

nm) algorithm, based on Gale's

Top Trading Cyles Method, for �nding a maximum ardinality Pareto

optimal mathing, where n is the number of agents and m is the total

length of the preferene lists. By ontrast, we show that the problem

of �nding a minimum ardinality Pareto optimal mathing is NP-hard,

though approximable within a fator of 2. We then show that there exist

Pareto optimal mathings of all sizes between a minimum and maximum

ardinality Pareto optimal mathing. Finally, we introdue the onept

of a signature, whih allows us to give a haraterization, hekable in

linear time, of instanes that admit a unique Pareto optimal mathing.

1 Introdution

We study the problem of alloating a set H of heterogeneous indivisible goods

among a set A of agents [14, 8, 3, 4℄. We assume that eah agent a 2 A ranks in

order of preferene a subset of H (the aeptable goods for a) and that monetary

ompensations are not possible. In the literature the situation in whih eah

agent initially owns one good is known as a housing market [14, 12, 11℄. When

there are no initial property rights, we obtain the house alloation problem [8,

16, 1℄. A mixed model, in whih a subset of agents initially owns a good has also

been studied [2℄. Yuan [15℄ desribes a large-sale appliation of these problems

in the alloation of families to government-subsidized housing in China.

Following onvention we refer to the elements of H as houses, though the

lass of problems under onsideration ould equally be formulated in terms of

alloating graduates to trainee positions, professors to oÆes, lients to servers,

et. For ease of exposition we begin by assuming that there are no initial property

rights, though we later show how to take aount of suh a situation.
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Given suh a problem instane, the task is to onstrut a mathing, i.e. a

subset M of A�H suh that (a; h) 2M implies that a �nds h aeptable, eah

agent is assigned to at most one house and vie versa. Furthermore one seeks

a mathing that is optimal in a preise sense, taking into aount the agents'

preferenes. Various notions of optimality have been onsidered in the literature,

but a riterion that has reeived muh attention, partiularly from eonomists, is

Pareto optimality. A mathingM is Pareto optimal if there is no other mathing

M

0

suh that no agent is worse o� in M

0

than in M , whilst some agent is better

o� in M

0

than in M . For example, a mathing M is not Pareto optimal if two

agents ould improve by swapping the houses that they are assigned to in M .

There is a straightforward greedy algorithm, whih we denote by Greedy-

POM, for �nding a Pareto optimal mathing [1℄: onsider eah agent a in turn,

giving a his/her most-preferred vaant house (assuming suh a house exists).

This algorithm is also known as a serial ditatorship mehanism [1℄. Roth and

Sotomayor [13, Example 4.3℄ remark that a similar mehanism is used by the

United States Naval Aademy in order to math graduating students to their

�rst posts as Naval OÆers (in this ontext however, the algorithm onsiders

eah student in non-dereasing order of graduation results). However one may

onstrut an example instane (see Setion 2 for further details) in whih Pareto

optimal mathings may have di�erent ardinalities and Greedy-POM ould fail

to produe a Pareto optimal mathing of maximum size. Yet in many applia-

tions, one wishes to math as many agents as possible.

Stronger notions of optimality have been onsidered in the literature. For

example a mathing M is rank-maximal [10℄ if, in M , the maximum number of

agents are mathed to their �rst-hoie house, and subjet to this ondition, the

maximum number of agents are mathed to their seond-hoie house, and so on.

Irving et al. [10℄ desribe two algorithms for �nding a rank-maximal mathing,

with omplexities O(minfn + C;C

p

ngm) and O(Cnm), where n = jAj + jH j,

m is the total length of the preferene lists and C is the maximum k suh that

some agent is assigned to his/her kth-hoie house in the onstruted mathing.

Clearly a rank-maximal mathing is Pareto optimal, however a rank-maximal

mathing need not be a maximum ardinality Pareto optimal mathing (hene-

forth a maximum Pareto optimal mathing). Alternatively, one may onsider

a maximum ardinality maximum utility mathing M , in whih we maximise

P

(a;h)2M

u

a;h

over all maximum ardinality mathings, where u

a;h

indiates the

utility of house h being alloated to agent a. If one de�nes u

a;h

= l � rank

a;h

,

where rank

a;h

is the rank of house h in agent a's preferene list and l is the

maximum length of an agent's list, then a maximum ardinality maximum util-

ity mathing is in turn a maximum Pareto optimal mathing. Sine all utilities

are integral, a maximum ardinality maximum utility mathing may be found

in O(

p

nm logn) time [5℄. However if one only requires to �nd a maximum ar-

dinality mathing that satis�es the weaker ondition of being Pareto optimal, it

is of interest to onsider whether faster algorithms exist.

The next two setions of this paper work towards answering this question.

In Setion 2 we give a formal de�nition of the problem model, and present ne-

essary and suÆient onditions for a mathing to be Pareto optimal. In Setion



3 we use these onditions as the basis for an O(

p

nm) algorithm for �nding a

maximum Pareto optimal mathing. This algorithm extends the Top Trading

Cyles Method due to Gale [14℄, whih has been the fous of muh attention,

partiularly in the game theory and eonomis literature [14, 12, 11, 15, 2℄. We

then show that any improvement to the omplexity of our algorithm would imply

an improved algorithm for �nding a maximum mathing in a bipartite graph.

We also demonstrate how to modify our algorithm in order to take aount of

initial property rights, guaranteeing that those who own a good initially will end

up with a good that is either the same or better.

In the remainder of the paper, we prove several related results. In Setion 4

we onsider the problem of �nding a minimum Pareto optimal mathing, show-

ing that this problem is NP-hard, though approximable within a fator of 2. In

Setion 5 we prove an interpolation result, showing that there exist Pareto op-

timal mathings of all sizes between a minimum and maximum Pareto optimal

mathing. Finally, in Setion 6 we give a haraterization, hekable in linear

time, of instanes that admit a unique Pareto optimal mathing.

2 Preliminaries

We begin with a formal de�nition of the problem model under onsideration.

An instane I of the pareto optimal mathing problem (POM) omprises a

bipartite graph G = (A;H;E), where A = fa

1

; a

2

; : : : ; a

r

g is the set of agents

and H = fh

1

; h

2

; : : : ; h

s

g is the set of houses. For eah a

i

2 A, we denote by

A

i

� H the verties adjaent to a

i

{ these are referred to as the aeptable houses

for a

i

. Moreover a

i

has a linear order over A

i

. We let n = r + s and m = jEj.

Heneforth we assume that G ontains no isolated verties.

An assignment M is a subset of A�H suh that (a

i

; h

j

) 2M only if a

i

�nds

h

j

aeptable (i.e. h

j

2 A

i

). If (a

i

; h

j

) 2 M , we say that a

i

and h

j

are assigned

to one another. For eah q 2 A [ H , let M(q) denote the assignees of q in M .

A mathing is an assignment M suh that jM(q)j � 1 for eah q 2 A [ H . If

M(q) = ;, we say that q is unmathed in M , otherwise q is mathed in M .

Let M be a mathing in I . M is maximal if there is no (agent,house)

pair (a

i

; h

j

) suh that a

i

and h

j

are both unmathed in M and h

j

2 A

i

.

Also M is trade-in-free if there is no (agent,house) pair (a

i

; h

j

) suh that a

i

is mathed in M , h

j

is unmathed in M , and a

i

prefers h

j

to M(a

i

). Finally M

is oalition-free if M admits no oalition, whih is a sequene of mathed agents

C = ha

0

; a

1

; : : : ; a

k�1

i, for some k � 2, suh that a

i

prefers M(a

i+1

) to M(a

i

)

(0 � i � k�1) (here, and in the remainder of this paper, all subsripts are taken

modulo k when reasoning about oalitions). The mathing

M

0

= (Mnf(a

i

;M(a

i

)) : 0 � i � k � 1g) [ f(a

i

;M(a

i+1

)) : 0 � i � k � 1g

is de�ned to be the mathing obtained from M by satisfying C.

The preferenes of an agent extend to mathings as follows. Given two math-

ingsM andM

0

, we say that an agent a

i

prefersM

0

toM if either (i) a

i

is mathed

in M

0

and unmathed in M , or (ii) a

i

is mathed in both M and M

0

and prefers



M

0

(a

i

) to M(a

i

). Given this de�nition, we may de�ne a relation � on the set of

all mathings as follows: M

0

�M if and only if no agent prefers M to M

0

, and

some agent prefers M

0

to M . It is straightforward to then prove the following.

Proposition 1. Given an instane I of POM, the relation � forms a strit

partial order over the set of mathings in I.

A mathing is de�ned to be Pareto optimal if and only if it is �-minimal. In-

tuitively a mathing is Pareto optimal if no agent a

i

an be better o� without

requiring another agent a

j

to be worse o�. The following proposition gives ne-

essary and suÆient onditions for a mathing to be Pareto optimal.

Proposition 2. Let M be a mathing in a given instane of POM. Then M is

Pareto optimal if and only if M is maximal, trade-in-free and oalition-free.

Proof. Let M be a Pareto optimal mathing. If M is not maximal, then there

exists an agent a

i

and a house h

j

, both unmathed in M , suh that h

j

2 A

i

.

Let M

0

= M [ f(a

i

; h

j

)g. If M is not trade-in-free, then there exist an agent

a

i

and a house h

j

, suh that a

i

is mathed in M , h

j

is unmathed in M , and

a

i

prefers h

j

to M(a

i

). Let M

0

= (Mnf(a

i

;M(a

i

))g) [ f(a

i

; h

j

)g. Finally if M

admits some oalition C, let M

0

be the mathing obtained by satisfying C. In

all three ases, M

0

�M , a ontradition.

Conversely let M be a mathing that is maximal, trade-in-free and oalition-

free, and suppose for a ontradition that M is not Pareto optimal. Then there

exists some mathingM

0

suh that M

0

�M . Let a

0

be any agent mathed inM

who prefers M

0

to M . Note that suh an agent must exist, sine M is maximal

and at least one agent prefers M

0

to M .

It follows that M

0

(a

0

) is mathed in M , say to a

1

, for otherwise M is not

trade-in-free. Therefore, M

0

(a

1

) 6= M(a

1

), and so a

1

must also prefer M

0

to

M . Using this same argument, M

0

(a

1

) is mathed in M , say to a

2

. We an

ontinue in this manner �nding a sequene of agents ha

0

; a

1

; a

2

; : : :i, where a

i

prefers M(a

i+1

) to M(a

i

). Sine the number of agents is �nite, this sequene

must yle, thereby ontraditing the assumption that M is oalition-free. ut

Heneforth we will establish the Pareto optimality of a given mathing by show-

ing that the onditions of the above proposition are satis�ed. For a given math-

ing M , we an trivially hek whether M satis�es the maximality and trade-in-

free properties in O(m) time. To hek for the absene of oalitions, we onstrut

the envy graph of M . This is a direted graph, denoted by G(M), onsisting of

one vertex for eah agent, with an edge from a

i

to a

j

whenever a

j

is mathed in

M and either (i) a

i

is unmathed in M and �nds M(a

j

) aeptable, or (ii) a

i

is

mathed in M and prefers M(a

j

) to M(a

i

). It is lear that M is oalition-free if

and only if G(M) is ayli. So we an perform this last hek in O(m) time by

using a yle-detetion algorithm on G(M). Putting these observations together,

we have the following result.

Proposition 3. Let M be a mathing in a given instane of POM. Then we

may hek whether M is Pareto optimal in O(m) time.



It is easy to onstrut an instane of POM in whih the Pareto optimal

mathings are of di�erent sizes. For example let A = fa

1

; a

2

g and let H =

fh

1

; h

2

g. Suppose that a

1

prefers h

1

to h

2

, whilst a

2

�nds only h

1

aeptable.

Then both M

1

= f(a

1

; h

1

)g and M

2

= f(a

1

; h

2

); (a

2

; h

1

)g are Pareto optimal.

Given this observation it is natural to onsider the omplexity of eah of the

problems of �nding a maximum and minimum Pareto optimal mathing. (Note

that Greedy-POM produes M

1

given the agent ordering ha

1

; a

2

i, and produes

M

2

given the agent ordering ha

2

; a

1

i.)

3 Maximum Pareto optimal mathings

In this setion, we desribe a three-phase algorithm for �nding a maximum

Pareto optimal mathing, mirroring the three neessary and suÆient onditions

in Proposition 2. We let I be an instane of POM, and we assume the notation

and terminology introdued in Setion 2. Phase 1 involves using the Hoproft-

Karp algorithm [7℄ to ompute a maximum mathingM in G. This phase, whih

guarantees that M is maximal, takes O(

p

nm) time and dominates the runtime.

The �nal two phases transformM into a trade-in-free and oalition-free mathing

respetively. We desribe these phases in more detail below.

3.1 Phase 2 of the algorithm

In this phase, we transform M into a trade-in-free mathing by repeatedly iden-

tifying and promoting agents that prefer an unmathed house to their existing

assignment. Eah promotion breaks the existing assignment, thereby freeing a

house, whih itself may be a preferred assignment for a di�erent agent. With the

aid of suitable data strutures, we an ensure that the next agent and house an

be identi�ed eÆiently.

For eah house h, we maintain a linked list L

h

of pairs (a; r), where a is a

mathed agent who �nds h aeptable, and r is the rank of h in a's preferene

list. Initially the pairs in L

h

involve only those mathed agents a who prefer h

to M(a), though subsequently the pairs in L

h

may ontain agents a who prefer

M(a) to h. The initialization of these lists an be arried out using one traversal

of the agent preferene lists, whih we assume are represented as doubly linked

lists or arrays, in O(m) time.

For eah mathed agent a, we also use this traversal to initialize a variable,

denoted by urr

a

, whih stores the rank of M(a) in a's preferene list. This

variable is maintained during the exeution of the algorithm. We also assume

that, for eah mathed agent a we store M(a). One �nal initialization remains:

onstrut a stak S of all unmathed houses h where L

h

is non-empty. We now

enter the loop desribed in Figure 1.

During eah loop iteration we pop an unmathed house h from S and remove

the �rst pair (a; r) from the list L

h

(whih must be non-empty). If a prefers h

to M(a) (i.e. r < urr

a

) then a is promoted from h

0

= M(a) to h, also M and

urr

a

are updated, and �nally h

0

, whih is now unmathed, is pushed onto S if

L

h

0

is non-empty. Otherwise h is pushed bak onto S if L

h

is non-empty.



while S 6= ;

h := S:pop();

(a; r) := L

h

.removeHead();

if r < urr

a

// h is unmathed in M , a is mathed in M and prefers h to M(a)

h

0

:=M(a);

M := (Mnf(a; h

0

)g) [ f(a; h)g;

urr

a

:= r;

h := h

0

;

if L

h

6= ;

S:push(h);

Fig. 1. Phase 2 loop

Eah iteration of the loop removes a pair from a list L

h

. Sine agent preferene

lists are �nite and no new pair is added to a list L

h

during a loop iteration, the

while loop must eventually terminate with S empty. At this point no mathed

agent a would trade M(a) for an unmathed house, and so M is trade-in-free.

Additionally, M remains a maximum mathing, sine any agent mathed at the

end of Phase 1 is also mathed at the end of Phase 2. Finally, it is lear that

this phase runs in O(m) time given the data strutures desribed above.

3.2 Phase 3 of the algorithm

In this phase, we transform M into a oalition-free mathing. Reall that oali-

tions inM orrespond to yles in the envy graph G(M). So a natural algorithm

involves repeatedly �nding and satisfying oalitions in G(M) until no more oali-

tions remain. This algorithm has a runtime of O(m

2

), sine there are O(m)

oalitions, and yle-detetion takes O(m) time.

A better starting point for an eÆient algorithm is Gale's Top Trading Cy-

les Method [14℄. This method is also based on repeatedly �nding and satisfying

oalitions, however the number of iterations is redued by the following observa-

tion: no agent assigned to his/her �rst hoie an be in a oalition. We remove

suh agents from onsideration, and sine the houses assigned to them are no

longer exhangeable, they an be deleted from the preferene lists of the re-

maining agents. This observation an now be reursively applied to the redued

preferene lists. At some point, either no agents remain, in whih ase the math-

ing is oalition-free, or no agent is assigned to his/her redued �rst hoie (i.e.

the �rst hoie on his/her redued preferene list).

In this last ase, it turns out that there must be a oalition C in M , whih

an be found in O(r) time by searhing the envy graph restrited to redued

�rst-hoie edges. After satisfying C, eah agent in C is assigned to his/her

redued �rst hoie. Therefore, no agent is in more than one oalition, giving

O(r) oalitions overall. The runtime of this preliminary implementation then is


(m+ r

2

). We now present a linear-time extension of Yuan's desription of the

Top Trading Cyles Method [15℄.

In our implementation, deletions of houses from agents' preferene lists are

not expliitly arried out. Instead, a house that is no longer exhangeable is



for eah mathed agent a suh that p(a) 6=M(a)

P := fag; // P is a stak of agents

(a) := 1; // ounters reord the number of times an agent is in P

while P 6= ;

a

0

:= P:pop();

p(a

0

) := most-preferred unlabelled house on preferene list of a

0

;

if (a

0

) = 2

C := oalition in P ontaining a

0

;

satisfy C;

for eah a

00

2 C

label M(a

00

);

(a

00

) := 0;

P:pop();

else if p(a

0

) =M(a

0

)

label M(a

0

);

(a

0

) := 0;

else

P:push(a

0

);

a

00

:=M(p(a

0

));

(a

00

) := (a

00

) + 1;

P:push(a

00

);

Fig. 2. Phase 3 loop

labelled (all houses are initially unlabelled). For eah agent a we maintain a

pointer p(a) to the �rst unlabelled house on a's preferene list { this is equivalent

to the �rst house on a's redued preferene list. Initially p(a) points to the �rst

house on a's preferene list, and subsequently p(a) traverses left to right. Also,

in order to identify oalitions, we initialize a ounter (a) to 0 for eah agent a.

Then, we enter the main body of the algorithm, as given in Figure 2.

This algorithm repeatedly searhes for oalitions, building a path P of agents

(represented by a stak) in the (simulated) envy graph restrited to redued �rst-

hoie edges. At eah iteration of the while loop, we pop an agent a

0

from the

stak and move up p(a

0

) if neessary. If P yles (i.e. we �nd that (a

0

) = 2),

there is a oalition C { the agents involved in C are removed from onsideration

and the houses assigned to these agents are labelled (in pratie the agents in C

an be identi�ed and C an be satis�ed during the stak popping operations).

Alternatively, if P reahes a dead-end (a

0

is already assigned to his/her �rst

hoie), this agent is removed from onsideration and his/her assigned house is

labelled. Otherwise, we keep extending the path by following the redued �rst-

hoie edges.

At the termination of this phase we note that M is oalition-free by the

orretness of the Top Trading Cyles Method [14℄. AlsoM remains a maximum

trade-in-free mathing, sine eah agent and house mathed at the end of Phase 2

is also mathed at the end of Phase 3. Finally, it is lear this phase runs in O(m)

time given the data strutures desribed above. We summarize the preeding

disussion in the following theorem.



Theorem 1. A maximum Pareto optimal mathing an be found in O(

p

nm)

time. Suh a mathing is also a maximum mathing of agents to houses.

We now show that any improvement to the omplexity of the above algo-

rithm would imply an improved algorithm for �nding a maximum mathing in

a bipartite graph. Without loss of generality, let G = (A;H;E) be an arbitrary

bipartite graph with no isolated verties. Construt an instane I of POM with

bipartite graph G, where eah agent a's preferene list in I is an arbitrary per-

mutation over a's neighbours in G. By Theorem 1, any maximum Pareto optimal

mathing in I is also a maximum mathing in G. Sine I may be onstruted

from G in O(m) time, the omplexity of �nding a maximum mathing in a bi-

partite graph is bounded above by the omplexity of �nding a maximum Pareto

optimal mathing.

3.3 Initial property rights

Suppose that a subset A

0

of the agents already own a house. We now desribe

an individually rational modi�ation of our algorithm, whih ensures that every

agent in A

0

ends up with the same house or better.

We begin with a mathing M that pre-assigns every agent a 2 A

0

to his/her

existing house h. We then trunate the preferene list of eah suh a by removing

all houses less preferable than M(a). Now, we enter Phase 1, where we use the

Hoproft-Karp algorithm to exhaustively augment M into some mathing M

0

.

Members of A

0

must still be mathed in M

0

, and sine their preferene lists were

trunated, their new assignments must be at least as preferable as those in M .

Note that M

0

may not be a maximum mathing of A to H , however M

0

does

have maximum ardinality among all mathings that respet the initial property

rights. The remaining two phases do not move any agent from being mathed to

unmathed, and so the result follows immediately.

In the speial ase that all agents own a house initially (i.e. I is an instane

of a housing market), it is lear that Phases 1 and 2 of the algorithm are not

required. Moreover it is known that Phase 3 produes the unique mathing that

belongs to the ore of the market [12℄, a stronger notion than Pareto optimality.

4 Minimum Pareto optimal mathings

In this setion, we onsider the problem of �nding a minimum Pareto optimal

mathing. Let MIN-POM denote the problem deiding, given an instane I of

POM and an integer K, whether I admits a Pareto optimal mathing of size at

most K. We �rstly prove that MIN-POM is NP-omplete via a redution from

MMM, whih is the problem of deiding, given a graph G and an integer K,

whether G admits a maximal mathing of size at most K.

Theorem 2. MIN-POM is NP-omplete.

Proof. By Proposition 3, MIN-POM belongs to NP. To show NP-hardness, we

give a redution from the NP-omplete restrition of MMM to subdivision graphs



[6℄ (given a graph G, the subdivision graph of G is obtained by subdividing

eah edge e = fu;wg into two edges fu; v

e

g; fv

e

; wg, where v

e

is a new vertex

orresponding to e).

Let G = (V;E) (a subdivision graph) and K (a positive integer) be given

as an instane of MMM. Then V is a disjoint union of two sets U and W ,

where eah edge e 2 E joins a vertex in U to a vertex in W . Assume that

U = fu

1

; u

2

; : : : ; u

r

g and W = fw

1

; w

2

; : : : ; w

s

g. Without loss of generality

assume that eah vertex u

i

2 U has degree 2, and moreover assume that p

i

and

q

i

are two sequenes suh that p

i

< q

i

, fu

i

; w

p

i

g 2 E and fu

i

; w

q

i

g 2 E.

We reate an instane I of MIN-POM as follows. Let A be the set of agents

and let H be the set of houses, where A = A

1

[ A

2

, A

t

= fa

t

1

; a

t

2

; : : : ; a

t

r

g

(t = 1; 2), H = W [ X and X = fx

1

; x

2

; : : : ; x

r

g. For eah i (1 � i � r), we

reate preferene lists for agents a

1

i

and a

2

i

as follows:

a

1

i

: x

i

w

p

i

w

q

i

a

2

i

: x

i

w

q

i

w

p

i

We laim that G has a maximal mathing of size at most K if and only if I has

a Pareto optimal mathing of size at most K + r.

For, suppose that M is a maximal mathing in G of size at most K. We

onstrut a set M

0

as follows. For any u

i

2 U that is unmathed in M , add the

pair (a

1

i

; x

i

) to M

0

. Now suppose that (u

i

; w

j

) 2 M . If j = p

i

, add the pairs

(a

1

i

; w

j

) and (a

2

i

; x

i

) to M

0

. If j = q

i

, add the pairs (a

1

i

; x

i

) and (a

2

i

; w

j

) to M

0

.

ClearlyM

0

is a mathing in I , and jM

0

j = jM j+r � K+r. It is straightforward

to verify that, by the maximality of M in G, M

0

is Pareto optimal in I .

Conversely suppose thatM

0

is a Pareto optimal mathing in I of size at most

K+r. For eah i (1 � i � r), either (a

1

i

; x

i

) 2M

0

or (a

2

i

; x

i

) 2M

0

, for otherwise

M

0

is not trade-in-free. Hene we may onstrut a mathing M in G as follows.

For eah i (1 � i � r), if (a

t

i

; w

j

) 2 M

0

for some t (1 � t � 2), add (u

i

; w

j

) to

M . Then jM j = jM

0

j � r � K. The maximality of M

0

learly implies that M is

maximal in G. ut

For a given instane I of POM with bipartite graph G, we denote by p

�

(I)

and p

+

(I) the sizes of a minimum and maximum Pareto optimal mathing in

I respetively. Similarly, we denote by �

�

1

(G) and �

1

(G) the sizes of a mini-

mum maximal and a maximum mathing in G respetively. It is known that

�

�

1

(G) � �

1

(G)=2 [9℄. By Proposition 2, Pareto optimal mathings in I are

maximal mathings in G. Hene, by Theorem 1, we have that �

�

1

(G) � p

�

(I) �

p

+

(I) = �

1

(G). It is therefore immediate that, for a given instane I of POM,

the problem of �nding a minimum Pareto optimal mathing is approximable

within a fator of 2.

5 Interpolation of Pareto optimal mathings

In this setion, we prove that, for a given instane I of POM, there are Pareto

optimal mathings of all sizes between p

�

(I) and p

+

(I).

Given a mathing M , an augmenting path P for M is an alternating se-

quene of distint agents and houses ha

1

; h

1

; a

2

; : : : ; a

k

; h

k

i, where a

1

and h

k

are



unmathed in M , h

i

2 A

i

, and M(a

i+1

) = h

i

(1 � i � k � 1). We assoiate

with eah suh augmenting path a vetor rank

P

, whose ith omponent ontains

the rank of a

i

for h

i

. Given two augmenting paths P and Q for M , we say that

P / Q if (i) both P and Q begin from the same agent, and (ii) rank

P

is lexio-

graphially less than rank

Q

. Also for paths P and Q, we de�ne three operations:

Pre�x

P

(v) is the substring of P from a

1

to v 2 P , SuÆx

P

(v) is the substring of

P from v 2 P to h

k

, and P �Q denotes the onatenation of P and Q.

Theorem 3. For a given instane I of POM, there exist Pareto optimal math-

ings of size k, for eah k suh that p

�

(I) � k � p

+

(I).

Proof. Let M be any Pareto optimal mathing suh that jM j < p

+

(I), and let

M

0

be the mathing that results from augmenting M along some /-minimal

augmenting path P . We will show in turn that M

0

is maximal, trade-in-free and

oalition-free; the result then follows by indution.

If M

0

is not maximal, then learly we ontradit the maximality of M . Now

suppose that M

0

is not trade-in-free. Then there exists an agent a and house

h, where a is mathed in M

0

, h is unmathed in M

0

, and a prefers h to M

0

(a).

Sine h is also unmathed in M , a must be in P , for otherwise M(a) = M

0

(a),

andM is not trade-in-free. But then P

0

= Pre�x

P

(a) �hhi is an augmenting path

for M , ontraditing the /-minimality of P .

Finally suppose for a ontradition that M

0

is not oalition-free. Then there

exists a oalition C = ha

0

; a

1

; : : : ; a

k�1

i with respet toM

0

. At least one agent in

P must also be in C, for otherwiseM is not oalition-free. Let a

i

be the �rst suh

agent in P . We establish some properties of M

0

(a

i+1

). Firstly, M

0

(a

i+1

) must

be mathed in M , for otherwise M admits the augmenting path Pre�x

P

(a

i

) �

hM

0

(a

i+1

)i, ontraditing the /-minimality of P . Also, M

0

(a

i+1

) annot appear

before a

i

in P , for otherwise a

i

is not the �rst agent in P to be in C. Lastly,

M

0

(a

i+1

) annot appear after a

i

in P , for otherwise M admits the augmenting

path Pre�x

P

(a

i

)� SuÆx

P

(M

0

(a

i+1

)), ontraditing the /-minimality of P . So, it

must be the ase that M

0

(a

i+1

) is mathed in M and does not appear in P . Let

a

i+j

be the �rst agent in C after a

i

, suh that a

i+j

is in P . Note that a

i+j

6= a

i+1

by the above properties ofM

0

(a

i+1

), but sine C is a yle, a

i+j

= a

i

is possible.

It follows that the subsequene S = hM

0

(a

i+1

); a

i+1

; : : : ;M

0

(a

i+j�1

); a

i+j�1

i of

C is disjoint from P , and so P

0

= Pre�x

P

(a

i

) � S� SuÆx

P

(M

0

(a

i+j

)) is a valid

augmenting path of M . But then P

0

ontradits the /-minimality of P , sine a

i

prefers M

0

(a

i+1

) to M

0

(a

i

). ut

Corollary 1. Given an instane I of POM and a Pareto optimal mathing M

in I of size k, we an onstrut a Pareto optimal mathing M

0

of size k + 1, or

determine that no suh mathing exists, in O(m) time.

Proof. Let G be the bipartite graph in I , with edges in M direted from H

to A, and edges not in M direted from A to H . Also assoiate with eah

non-mathing edge (a

i

; h

j

) the rank of a

i

for h

j

. We searh for a /-minimal

augmenting path by performing an ordered depth �rst searh of G starting from

the set of unmathed agents, where for eah agent a in the searh, we explore



outgoing edges from a in inreasing order of rank. In general, ordered depth-�rst

searh is asymptotially slower than depth-�rst searh. However, the O(m) result

holds, sine eah preferene list is already given in inreasing order of rank. ut

We remark that the results of this setion extend to the ase where a subset

of the agents have initial property rights.

6 Uniqueness of Pareto optimal mathings

In this setion, we give a haraterization of instanes with no initial property

rights that admit a unique Pareto optimal mathing. This is based on the onept

of a signature of a Pareto optimal mathing.

If a mathing M is Pareto optimal, the envy graph G(M) ontains no yles,

and therefore admits a topologial ordering. We say that a reversed topologial

ordering of G(M), denoted by �(M), is a signature of M . The next lemma will

help us establish that the signature of a mathing is unique for that mathing.

This lemma is similar to [1, Lemma 1℄, though the proof here, whih uses the

onept of a signature, is muh simpler.

Lemma 1. Given an instane I of POM, the algorithm Greedy-POM an gen-

erate any Pareto optimal mathing in I.

Proof. Let M be an arbitrary Pareto optimal mathing in I . We laim that by

proessing the agents in order of �(M), the greedy algorithm returns M .

Suppose for a ontradition that Greedy-POM returns a mathing M

0

6=M .

It follows that sine M

0

is Pareto optimal, some agent must preferM

0

to M . Let

a be the �rst suh agent in �(M).

Now,M

0

(a) must be mathed inM , say to a

0

, for otherwiseM is not maximal

(if a is unmathed inM), orM is not trade-in-free (if a is mathed inM). G(M)

must therefore ontain an edge from a to a

0

, meaning that a

0

preedes a in �(M).

At the time a

0

is proessed by Greedy-POM, M

0

(a) is unmathed (sine it is

assigned later to a). So, a

0

must prefer M

0

(a

0

) to M(a

0

) =M

0

(a), ontraditing

the assumption that a was the �rst suh agent in �(M). ut

Corollary 2. Given an instane I of POM, every agent permutation is a sig-

nature of exatly one Pareto optimal mathing in I.

We an now present a neessary and suÆient ondition, hekable in linear

time, for a POM instane to admit a unique Pareto optimal mathing.

Theorem 4. An instane I of POM admits a unique Pareto optimal mathing

M if and only if every agent is mathed in M with his/her �rst hoie.

Proof. Let M be the unique Pareto optimal mathing in I . Sine every agent

permutation is a signature of M , G(M) ontains no edges. Then every agent

must be mathed to his/her �rst hoie.

Conversely, let M be a mathing in I in whih every agent is mathed with

his/her �rst hoie. Then if M

0

is any mathing in I suh that M

0

6= M , it

follows that M �M

0

. Hene M is the unique Pareto optimal mathing in I . ut



7 Conluding remarks

We onlude with an open problem. The basi POM de�nition given in Setion

2 an be generalized by permitting agents to ontain ties in their preferene

lists (i.e. to rank equally two or more houses). In this ontext the de�nition of

the relation � is the same as that given in Setion 2, and hene the de�nition

of Pareto optimality remains unhanged. A maximum Pareto optimal mathing

an be found in O(

p

nm logn) time using a similar redution to the Assignment

problem as desribed in Setion 1 (in this ase rank

a;h

is the number of houses

that a prefers to h). However is the problem of �nding a maximum Pareto

optimal mathing solvable in O(

p

nm) time?
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