If you have questions regarding the exercises, please ask them on the mailing list. Follow the hand-in instructions listed on the course website. Exercises marked with a star are not mandatory and solutions to them will not be discussed in the tutorials.

Exercise 2: Flirting with Synchrony and Asynchrony

Task 1: Growing Balls

In this exercise, we will see how a crucial step of the γ -synchronizer works; specifically, that a desirable partition of the nodes exists.

Denote by B(v, r) the ball of radius r around v, i.e., $B(v, r) = \{u \in V : dist(u, v) \le r\}$. Consider the following partitioning algorithm. Note the difference between int *ercluster* edges and int*racluster* edges.

Al	gorithm	1	Cluster	construction.	$\rho \ge$	2 is	\mathbf{a}	given	parameter.
----	---------	----------	---------	---------------	------------	------	--------------	-------	------------

```
1: while there are unprocessed nodes do
     select an arbitrary unprocessed node v;
 2:
 3:
     r := 0:
      while |B(v, r+1)| > \rho |B(v, r)| do
 4:
        r := r + 1
 5:
      end while
 6:
     makeCluster(B(v, r))
                                              // all nodes in B(v, r) are now processed
 7:
 8:
     remove all cluster nodes from the current graph
9: end while
10: select intercluster edges
```

- a) Show that Algorithm 1 constructs clusters of radius at most $\log_{\rho} n$.
- b) Show that Algorithm 1 produces at most ρn intercluster edges.
- c) For given cluster radius $k \in \{1, ..., \lfloor \log n \rfloor\}$, determine an appropriate choice $\rho(k) \geq 2$, proving the precondition of Corollary 2.14!

Hint: As a short-hand, we often don't write out common terms like n that are assumed to be globally known. Specifically, $\rho(k)$ may also depend on n, as if we had written $\rho(k, n)$. If in doubt, then we weren't clear enough, so tell us!

Task 2: Showing Dijkstra, and Bellman & Ford the Ropes

- a) Show that if the asynchronous Bellman-Ford algorithm from the lecture is executed synchronously, it sends only $\mathcal{O}(|E|)$ messages.
- b) Use this to construct an asynchronous BFS tree construction algorithm of time complexity $\mathcal{O}(D)$ that uses $\mathcal{O}(|E|D)$ messages and terminates. You may assume that D is known here.
- c) Can you give an asynchronous Bellman-Ford-based algorithm that sends $\mathcal{O}(|E|+nD)$ messages and runs for $\mathcal{O}(D^2)$ rounds?

Hint: Either answer is feasible, provided it is backed up by appropriate reasoning!

Task 3*: Liaison with Leslie Lamport

- a) Look up what the happened-before relation, Lamport clocks, and vector clocks are.
- b) Contemplate their relation to synchronizers and what you've learned in the lecture.
- c) Discuss your findings in the exercise session!