
Exercise 10: Exercising in Style

Task 1: Very Exclusive!

The goal of this exercise is to see that the RMW primitives we have seen in the lecture
lend themselves to nearly trivial mutex implementations.

Throughout this exercise you are allowed to assume that registers can hold un-
bounded values, i.e., that overflows do not occur.

a) Give a solution to mutual exclusion using a fetch-and-add register.

b) Give a solution to mutual exclusion using a compare-and-swap register.

c) Give a solution to mutual exclusion using a load-link/store-conditional register.

d) Your solutions should all be obstruction-free. Can you prevent lockouts, too?

Hint: Give a generic solution that works for a) – c). There are plenty of different
solutions. A generic one that uses only RW registers is to have a “want” flag for each
node that it sets to 1 if it wants to enter the critical section, and then let whoever
wins mutual exclusion close the bidding phase (no more new wants). Subsequently,
switch to a mode that lets the nodes with raised flag each enter the critical section
once and then return to the basic mutual exclusion algorithm.

Task 2: Bonsai Splitter Tree

In this exercise, we construct a highly space-efficient randomized variant of the splitter
tree from the lecture.

a) Show that there is a (randomized) splitter such that each node that does not stop
turns left or right with probability 1/2 each, independently of other nodes entering
the splitter! Note that this allows, e.g., k nodes to turn left, or k nodes to turn
right. We still require that at most one node stops at the splitter, and if only one
node enters the splitter it must stop.

b) Show that for a tree of Θ(n) leaves (constants are your choice), w.h.p., a constant
fraction of all nodes obtains stop at some splitter.

Hint: Fix a node and show that regardless of what the other nodes do it stops in
the tree with constant probability. Then it’s Chernoff time!

c) Now iterate: Let all nodes that did not stop enter a second splitter tree, rinse, and
repeat. Show that this way, you can achieve

(a) O(log k) expected step complexity for the first store of each node

(b) O(log2 n) step complexity w.h.p. for the first store of each node

(c) O(n) total space (this should suffice w.h.p.)

(d) O(k) expected step complexity for collect

Hint: For the space bound, just let the size of each new tree be smaller than the
previous by a constant factor. For everything else, apply the results from the lecture
and use probabilistic bounds where needed (for our randomized splitters all nodes
might turn, e.g., left!).



Task 3*: Stage Names

a) Find out what the renaming problem is!

b) Can it be helpful with store & collect?

c) Do you think renaming is useful for mutual exclusion?

d) What happens if we consider mutual exclusion with crash failures? Do things go
south, or is there a way out?

e) Present these newest trends in the TA session!


