
Lecture 1

Vertex Coloring

1.1 The Problem

Nowadays multi-core computers get more and more processors, and the question
is how to handle all this parallelism well. So, here’s a basic problem: Consider
a doubly linked list that is shared by many processors. It supports insertions
and deletions, and there are simple operations like summing up the size of the
entries that should be done very fast. We decide to organize the data structure
as an array of dynamic length, where each array index may or may not hold an
entry. Each entry consists of the array indices of the next entry and the previous
entry in the list, some basic information about the entry (e.g. its size), and a
pointer to the lion’s share of the data, which can be anywhere in the memory.

1 2 3 4 5 6 7 8 9

Memory structure Logical structure

1 2 3 4 5 6 7 8 9

next
previous

size
data

Figure 1.1: Linked listed after initialization. Blue links are forward pointers,
red links backward pointers (these are omitted from now on).

We now can quickly determine the total size by reading the array in one
go from memory, which is quite fast. However, how can we do insertions and
deletions fast? These are local operations affecting only one list entry and the
pointers of its “neighbors,” i.e., the previous and next list element. We want to
be able to do many such operations concurrently, by different processors, while
maintaining the link structure! Being careless and letting each processor act
independently invites disaster, see Figure 1.3.

1



2 LECTURE 1. VERTEX COLORING

. . . 1 2 3 4 5 6 7 8 9 . . .

Memory structure Logical structure

1 4 2 5 3 6 8 7 9

Figure 1.2: State after many insertion and deletion operations. There may also
be “dead” cells which are currently not part of the list. These are not shown;
we assume that these are taken care of every now and then to avoid wasting too
much memory.

1 3 4

1 3 4

2

1 3 4

2

1 3 4

2

Figure 1.3: Concurrent insertion of a new entry 2 between 1 and 3, and (logical)
deletion of entry 3. The deletion of 3 requires to change the successor and
predecessor of 1 and 4, but the insertion of 2 changes the successor of 1 as well.
Not doing this in a consistent order messes up the list. Note that entry 3 might
get physically deleted as well, rendering many of our pointers invalid.

On the other hand, any set of concurrent modifications that does not involve
neighbors is fine: The result is a neat doubly linked list. Clearly, we want to be
able to manipulate arbitrary list entries. This can be rephrased as an (in)famous
graph problem.

Problem 1.1 (Vertex Coloring). Given an undirected graph G = (V,E), assign
a color cu to each vertex u ∈ V such that the following holds: e = {v, w} ∈
E ⇒ cv 6= cw.

We then can “cycle” through the colors and perform concurrent operations
on all “nodes” (a.k.a. list entries) of the same color without worrying. Once
we’re done with all colors, we color the new list, and so on. We now have a
challenging task:

• We want to use very few colors, so cycling through them is completed
quickly. Coloring with a minimal number of colors is in general very hard,



1.1. THE PROBLEM 3

3

1 2

3

Figure 1.4: 3-colorable graph with a valid coloring.

but fortunately we’re dealing with a very simple graph.

• The coloring itself needs to be done fast, too. Otherwise we’ll be waiting
for the new coloring to be ready all the time.

• That means we want to use all our processors. It’s easy to split up re-
sponsibility for the list entries by splitting up the array. The downside of
this is that the processors receive only fragmented parts of the list (see
Figure 1.5).

• Trying to get consecutive pieces under the control of a single processor
requires to break symmetry: List fragments get longer only if more nodes
are added than removed. If the list is fragmented into single nodes, this
roughly means that we want to find a maximal independent set, i.e., a set
containing no neighbors to which we cannot add a node without destroy-
ing this property. This turns out to be essentially the same problem as
coloring, as we will see in the exercises.

. . . 1 2 3 4 5 6 7 8 9 . . .

Processor1 Processor2 Processor3

Memory structure Logical structure

1 4 2 5 3 6 8 7 9

Figure 1.5: List split. We may get lucky in some places of the list (as for the
blue processor), but in wide parts the list will be fragmented between processes.

As the list is fragmented among the processors anyway, it’s useful to pretend
that we have as many processors as we want. That means each of the nodes can
have its “own” processor! If we can deal with this case efficiently, it will cer-
tainly work out with fewer processors! Oh, and one more thing: We have some
additional information we can glean from the setup. Each node has a unique
identifier associated with it, namely its array index. Note that this means nodes
already “look different” initially, which is crucial for coloring deterministically
without starting from the endpoints only.



4 LECTURE 1. VERTEX COLORING

Remarks:

• In distributed computing, we often take the point of view that the system is
a graph whose nodes are processors and whose edges are both representing
relations with respect to the problem at hand and communication links.
This will come in handy here as an abstraction, but in many systems it is
literally true.

• The assumption of unique identifiers is standard, the reason being that
deterministic distributed algorithms can’t even do basic things without
them (for instance coloring a list quickly). On the other hand, using
randomization it’s trivial to generate unique identifiers with overwhelming
probability. Nonetheless, it is also studied how important such identifiers
actually are; more about that in another lecture!

• The linked list here is a toy example, but an entire branch of distributed
computing is occupied with finding efficient data structures for shared
memory systems like the one informally described above. We’ll have an-
other look at such systems further into the course!

1.2 2-Coloring the List

Clearly, we can color the list with two colors, simply by passing through the
list and alternating. Since this is sequential, i.e., only one process is actually
working, it takes Θ(n) steps in a list of n nodes. We can parallelize this strategy,
however. For i ∈ [n] := {0, . . . , n − 1}, denote by vi the array index of the ith

node in the list. As always in this course, log denotes the base-2 logarithm.
First, we add “shortcuts” to our linked list.

Algorithm 1 Parallel pointer jumping

1: for j = 0, . . . , dlog ne − 1 do
2: for each node vi in parallel do
3: if i− 2j ≥ 0 and i+ 2j < n then
4: {have node vi create shortcuts between vi−2j and vi+2j}
5: store a pointer to vi−2j at element vi+2j

6: store a pointer to vi+2j at element vi−2j

7: end if
8: end for
9: end for

Here we assume that processes share a common clock to coordinate the
execution of the outer loop, or somehow simulate this behavior. We’ll examine
this issue more closely in the next lecture; let’s assume for now that we can
handle this and call each iteration of the outer loop a round.

Let’s have a closer look at what this algorithm does.

Lemma 1.2 (Shortcuts from pointer jumping). After r rounds of Algorithm 1,
at each array index vi with i ≥ 2r the index vi−2r is stored. Likewise, at each
index vi with i < n− 2r, vi+2r is stored.



1.2. 2-COLORING THE LIST 5

Proof. We show the claim by induction. The base case is r = 0, i.e., the initial
state. As 20 = 1, the statement is just another way of saying that we have a
doubly linked list, so we’re in the clear. Now assume that the claim is true for
some 0 ≤ r < dlog ne. In the rth round, we have j = r − 1. For any i ≥ 2r,
(the process responsible for) node vi−2r−1 will add vi−2r to the entry at array
index vi. It can do this, because by induction hypothesis vi−2r and vi can be
looked up at the array index vi−2r−1 . Note that processes dealing with a vi with
i < 2r−1 will not get confused: they will know that i < 2r−1 because vi−2r−1

was not added to the entry corresponding to vi. Similarly, for each i < n− 2r,
vi+2r−1 will add vi+2r to the entry at index vi.

1 4 2 5 3 6 8 7 9 1 4 2 5 3 6 8 7 9

Figure 1.6: Parallel pointer jumping. Depicted are the additional pointers/links
of node 3 only.

With these shortcuts, we can color the list quickly.

Algorithm 2 2-coloring the list

1: execute Algorithm 1
2: color the list head by 0 (i.e., index v0)
3: for j = dlog ne − 1, . . . , 1 do
4: for each node vi colored 0 in parallel do
5: if i+ 2j < n then
6: color index vi+2j by 0
7: end if
8: end for
9: end for

10: color all remaining nodes by 1

Theorem 1.3 (Correctness of Algorithm 2). Algorithm 2 colors the doubly
linked list with 2 colors.

Proof. From Lemma 1.2, we know that array elements will store the necessary
information to execute the for-loops. By induction, we see that after r rounds
of the loop, all nodes vi with i mod 2dlogne−r = 0 are colored 0. The loop runs
for dlog ne − 1 rounds, i.e., until j = 1. Thus, all nodes in even distance from
the list head are colored 0, while the remaining nodes get colored 1.



6 LECTURE 1. VERTEX COLORING

1 4 2 5 3 6 8 7 9 1 4 2 5 3 6 8 7 9

1 4 2 5 3 6 8 7 9 1 4 2 5 3 6 8 7 9

1 4 2 5 3 6 8 7 9

Figure 1.7: Execution of the 2-coloring algorithm. Each step uses a different
“level” of pointers constructed with the pointer jumping algorithm; the final
steps just uses the neighbor pointers.

Remarks:

• In the above algorithms, we referred to n. However, n is unknown due to
parallel insertions and deletions (maintaining a shared counter is another
fundamental problem!). This can be resolved by letting vi terminate when
it knows that its work is done, which is the case when not both vi−2j and
vi+2j are written to vi in round j. The processors then just need to notify
each other once all their associated nodes are terminated.

• For 2-coloring, the O(log n) rounds of this algorithm are the best we can
get: another straightforward induction shows that following pointers, it
takes dlog he rounds to “see” something that is h “hops” in the list away,
and unless individual processors read large chunks of memory, this has to
be done.

• The issue is that 2-coloring is too rigid. Once we color a single node, all
other nodes’ colors are determined. The problem is not local.

• This is also bad for another reason: if we have only small changes in the
list, we would like to avoid having to recolor it from scratch. It would
be nice to have an algorithm where the output depends only on a small
number of hops around each node. This would most likely also yield a fast
and efficient algorithm!

• We can use the pointer jumping technique to speed up algorithms that
are more local in this sense: if in round r nodes write everything they
know to the array entries of nodes in distance 2r−1, it takes only dlog he
steps until the output of an algorithm depending on nodes in distance at
most h can be determined. However, this is only practical if h is small, as
otherwise a lot of work is done!

1.3 Using 3 Colors

What good does it do to get down to two colors, but at a large overhead?
None, as we have to do it again after each change of the list. Let’s be a bit
more relaxed and permit c > 2 colors. This means that, no matter what the
neighbors’ colors are, there’s always a free one to pick! Given that we start with
a valid coloring – the array indices – we can use this to reduce the number of
colors to 3. Let’s assume in the following that v−1 = vn−1 and vn = v0 (i.e.,



1.3. USING 3 COLORS 7

head and tail of the list also have pointers to each other), since this will simplify
describing algorithms.

Algorithm 3 color reduction

1: for each node vi in parallel do
2: cvi := vi
3: end for
4: while ∃vi : cvi > 2 do
5: for each node vi with cvi > max{cvi−1

, cvi+1
, 2} in parallel do

6: cvi := min
(
[3] \ {cvi−1

, cvi+1
}
)

7: end for
8: end while

Lemma 1.4. Algorithm 3 computes a 3-coloring. It terminates in c rounds,
where c is the number of different colors in the initial coloring (here n, because
the array indices are unique).

Proof. No two neighbors can change their color in the same round, as this would
require that each of their colors is larger than the other. Thus, the coloring is
valid after each round (given that it was valid initially). A node with the current
maximum color will change its color (because no neighbor can have this color,
too). Note also that no colors other than 0, 1, or 2 are ever picked by a node.
It follows that the algorithm completes after at most c rounds and the result is
a valid 3-coloring.

Remarks:

• A time complexity of (almost) n rounds is attained if we still have a nice,
well-ordered list, i.e., vi = i for all i. In other words, if we’re unlucky, we
color the list sequentially.

• The algorithm is, however, good to reduce the number of colors to 3 if we
only have a few colors to begin with.

• If we have an arbitrary graph of maximum degree ∆ (i.e., no node has
more than ∆ neighbors), the same approach can be used to find a (∆+1)-
coloring (see Figure 1.8).

• It’s not hard to show that if the initial coloring is random, the algorithm
will finish in Θ(log n/ log log n) rounds with a very large probability. Can
you prove it?

• One can construct such an initial coloring by picking colors randomly at
each node from a sufficiently large range.

• Combining with pointer jumping, we get a running time of Θ(log log n)
for 3-coloring, exponentially faster than for 2-coloring!



8 LECTURE 1. VERTEX COLORING

Figure 1.8: Vertex 100 receives the lowest possible color.

1.4 Cole-Vishkin

The previous algorithm reduced the number of colors in each step, starting from
a valid coloring. We can now ask: Can this be done more quickly/efficiently?
The answer turns out to be yes, as shown by the following algorithm, which is
based on a simple, but ingenious idea.

Algorithm 4 Cole-Vishkin color reduction

1: for each node vi in parallel do
2: cvi := vi
3: end for
4: while ∃vi : cvi > 5 for all nodes in parallel do
5: interpret cvi and cvi−1 as (infinite) little-endian bit-strings, i.e., starting

with the least significant bit
6: let j be the smallest index where they differ
7: concatenate the differing bit itself and j (encoded as bitstring), yielding

color c
8: cvi := c
9: end while

Example:

Part of an execution of Algorithm 4, written in little-endian (least significant
bit is far left):

vi−2 0000110100 → . . . → . . .
vi−1 0000100101 → 01010 → . . .
vi 0000100110 → 10001 → 1000

The trick is that either the first or the second part of (the bit string of) the
new color saves the day.

Lemma 1.5 (Correctness of Cole-Vishkin). Algorithm 4 computes a valid col-
oring.

Proof. Since the initial coloring is valid, we need to show that a valid coloring
enables to compute the new colors and the new coloring is valid. The first part
readily follows from the fact that two different colors must have differing bit
strings, so the index j can be computed. Now consider two neighbors vi and
vi−1. If they determine different indices j for which the current colors differ
from vi−1 and vi−2 respectively, the front part of the new colors is different.



1.4. COLE-VISHKIN 9

Otherwise, the “least significant differing bit” part of their new colors implies a
differing bit!

This algorithm terminates in (almost) log∗ n time. Log-Star is the number
of times one needs to take the logarithm (to the base 2) to get to at most 1,
starting with n:

Definition 1.6 (Log-Star).
∀x ≤ 1 : log∗ x := 0 ∀x > 1 : log∗ x := 1 + log∗(log x)

Theorem 1.7. Algorithm 4 computes a valid 6-coloring in log∗ n+O(1) rounds.

Proof. Correctness is shown in Lemma 1.5. The time complexity follows from
the fact that if the original color had b bits, the new color has at most dlog be+1
bits: the number of bits to encode an index in a b-bit string plus the appended
bit. The O(1) term addresses the fact that we don’t actually apply the base-
2 logarithm in each step. (The non-exciting computations showing that this
makes only a minor difference are omitted.) The reason why we end up with
6 colors is simple: encoding an index of a 3-bit value yields 00, 01, or 10 as
leading parts; appending a bit yields 6 possibilities. It’s simple to check that
for any larger number of initial colors, fewer possibilities will remain.

Remarks:

• Log-star is an amazingly slowly growing function. Log-star of all the
atoms in the observable universe (estimated to be 1080) is 5. Hence, for
all practical purposes, it’s constant.

• One can use Algorithm 3 to reduce the number of colors to 3 in 3 rounds.

• As stated, the algorithm has a termination condition that cannot be
checked efficiently based on local information. Fortunately, we can just
get rid of this condition and run the algorithm for the right number of
rounds given by Theorem 1.7.

• This does not work if n is unknown. This issue has two different solutions:
a practical one and a theoretical one. Can you figure out both?

• For a change, the O(1) term is actually hiding only a small constant.
The time complexity of the problem has been nailed down to be precisely
1/2 · log∗ n for infinitely many values of n [RS15].

• Another detail here is that instead of n, the argument of the log∗ is, in
fact, the initial range of colors. In our case, this is the current size of
the array, which may be larger than n, typically by some constant factor.
However, even if it would be exponentially larger, this would mean we
need to do just one or two more rounds of the algorithm to handle this.

• A simple modification results in running time 1/2 · log∗ n + O(1) (see
exercises).

• Using pointer jumping, the running time can be reduced to log(log∗ n) +
O(1). Shockingly, this is not the most ridiculously slow-growing function
I’ve encountered in a statement that is not deliberately about slow-growing
functions.



10 LECTURE 1. VERTEX COLORING

• The technique is not limited to lists. It can be used to color oriented trees
and constant-degree graphs in O(log∗ n) rounds, too (see exercises).

1.5 Linial’s Lower Bound

If we can color the list that fast, can’t we find an algorithm that does it in truly
constant time? The answer is no, and we’re going to see now why. We’ll focus
on the case where interactions are solely with neighbors, in which one requires
Ω(log∗ n) rounds. Such algorithms are called message-passing algorithms, for
reasons that will be discussed in the next lecture. With shared memory, the
variant of Cole-Vishkin with pointer jumping is asymptotically optimal [FR90].
We also restrict to deterministic algorithms.

Before we do the proof, let’s simplify the situation a bit. First, observe
that all information the output of vi can be influenced by in a T -round mes-
sage passing algorithm is the information that’s initially available at nodes
vi−T , vi−T+1, . . . , vi+T . In the worst case, every content stored is identical,1

so the only real difference are the actual array indices (and memory addresses).
Note also that the order is relevant: We have forward and backward pointers,
i.e., we can distinguish directions, and obviously it’s possible to count the num-
ber of “hops” traversed. Consequently, even if we don’t know anything about a
coloring algorithm except that it is a deterministic T -round algorithm A (with
neighbor-neighbor interactions only), we can conclude that there is a function

f : (x0, . . . , x2T )→ [c]

so that cvi = f(vi−T , vi−T+1, . . . , vi+T ) when executingA. Here, c is the number
of colors used by A and we assume without loss of generality (w.l.o.g.) that [c]
is the set of colors produced by the algorithm.2

x1 x5x3 x4x2

f(x1, x2, x3, x4, x5)

Figure 1.9: Interpreting a 2-round coloring algorithm as a coloring function f
mapping 5-tuples to colors.

If A produces a valid coloring, we also know that

f(x0, . . . , x2T ) 6= f(x1, . . . , x2T+1)

provided that xi 6= xj for i 6= j, i, j ∈ [2T + 2]: The two arguments could be the
views of adjacent nodes in the list, and they must not compute the same color.

Now comes the clever bit making our lives much easier: We restrict the
problem without actually taking away what makes it hard. This will simplify
our key argument, as it has an algorithmic component – and it would be more

1Even if that wasn’t true, the same argument applies taking this content into account.
2As opposed to, e.g., {pink, elephant, turtle}.



1.5. LINIAL’S LOWER BOUND 11

challenging to come up with an algorithm for the more general setting. For
c, k ∈ N, we say that g is a k-ary c-coloring function if

∀0 ≤ x1 < x2 < . . . < xk < n : g(x1, x2, . . . , xk) ∈ [c]

and

∀0 ≤ x1 < x2 < . . . < xk+1 < n : g(x1, x2, . . . , xk) 6= g(x2, x3, . . . , xk+1).

For k = 2T +1, these are the exact same requirements as to f , however, only for
ascending addresses x1 < . . . < xk+1 < n. Note that by restricting the domain
of f to such inputs, we see that the existence of a T -round algorithm A using c
colors implies the existence of a (2T + 1)-ary c-coloring function f .

x1 x5x3 x4x2 x6

x1 x5x3 x4x2

x5x3 x4x2 x6

P:

P1:

P2:

f(x1, x2, x3, x4, x5)

f(x2, x3, x4, x5, x6)

Figure 1.10: 5-tuples that correspond to possible views of adjacent nodes must
result in different colors.

Using this connection, we can now move on to the proof of the lower bound,
which consists of showing that if c is small, then T cannot be arbitrarily small,
too.

Lemma 1.8 (1-ary functions require many colors). If f is a 1-ary c-coloring
function, then c ≥ n.

Proof. By definition, f(x1) 6= f(x2) for all 0 ≤ x1 < x2 < n, i.e.,

∀x1 6= x2 ∈ [n] : x1 6= x2 ⇔ f(x1) 6= f(x2).

In other words, f is an injection, which is only possible if c ≥ n.

The main step of the proof is to show that we can construct (k − 1)-ary
2c-coloring functions out of k-ary c-coloring functions. That is, we can “pay”
for saving time by using more colors.

Lemma 1.9 (k-ary c-coloring enables (k − 1)-ary 2c-coloring). If f is a k-ary
c-coloring function for some k > 0, then a (k − 1)-ary 2c-coloring function g
exists.

Proof. First, let h be a bijection from the subsets of [c] to [2c]. Concretely, we
may choose for S ⊆ [c] as h(S) the string of c bits in which the ith bit is 1 if
and only if i− 1 ∈ S (but any other bijection would do, too).



12 LECTURE 1. VERTEX COLORING

Next, define

g′(x1, . . . , xk−1) := {f(x1, . . . , xk) |xk−1 < xk < n},

i.e., g′ is the set of all colors that can possibly be assigned by f when all but the
last argument of f are specified. These are the colors that might cause trouble
when g assigns a color to x1, . . . , xk−1 without considering xk. Using h, we can
interpret this set as a new color:3

g(x1, . . . , xk−1) := h ◦ g′(x1, . . . , xk−1) = h(g′(x1, . . . , xk−1)).

It’s straightforward to check that this is a well-defined function with range [2c]:
g′(x1, . . . , xk−1) ⊆ [c] and h maps such sets to a color from [2c]. In order to
verify that g is indeed a (k − 1)-ary 2c-coloring function, we thus must show
that

∀0 ≤ x1 < x2 < . . . , xk < n : g(x1, . . . , xk−1) 6= g(x2, . . . , xk).

Let 0 ≤ x1 < x2 < . . . < xk < n. Clearly, f(x1, . . . , xk) ∈ g′(x1, . . . , xk−1).
On the other hand, we have that f(x1, . . . , xk) 6= f(x2, . . . , xk+1) for any
xk < xk+1 < n, because f is a coloring function. This is equivalent to say-
ing that f(x1, . . . , xk) /∈ g′(x2, . . . , xk). We conclude that g′(x1, . . . , xk−1) 6=
g′(x2, . . . , xk). Since h is a bijection, this is equivalent to

g(x1, . . . , xk−1) = h(g′(x1, . . . , xk−1)) 6= h(g′(x2, . . . , xk)) = g(x2, . . . , xk).

With these lemmas, it’s a piece of cake to obtain the lower bound.

Theorem 1.10 (Linial’s lower bound). Coloring a list with a message passing
algorithm that uses (at most) 4 colors requires at least 1/2 · log∗ n− 1 rounds.

Proof. Assume that A is a T -round coloring algorithm using 4 colors. Thus, a
(2T+1)-ary 4-coloring function exists. We apply Lemma 1.9 for 2T times, to see

that then a 1-ary (2T 2)
4
-coloring function exists. Here, a2 denotes the tetration

or “power tower,” the a-fold iterated exponentiation by 2. From Lemma 1.8,
we know that

2T+22 =
(

2T 2
)4 ≥ n,

yielding

2T + 2 ≥ log∗ n

and finally

T ≥ log∗ n
2
− 1.

3Note that h doesn’t really do anything but “rename” the sets such that they are easy to
count. That’s why, rather than turtles or sets, we like our colors to be numbers!



1.5. LINIAL’S LOWER BOUND 13

Remarks:

• More colors don’t help a lot. If we consider c colors in the above proof,
we get that it requires at least 1/2 · (log∗ n− log∗ c) rounds to color with
c colors.

• Randomization doesn’t help either. Naor extended the lower bound to
randomized algorithms [Nao91].

• I’ve been a bit sloppy, as I haven’t defined the model precisely. This can
easily lead to mistakes, so I will make amends in the next lecture. The
given proof works in the so-called message passing model, which we get
to know in more detail in the next lecture.

• If one permits non-neighbor interactions, the lower bound weakens to
dlog(1/2 · (log∗ n− log∗ c))e [FR90], just like we could speed up the Cole-
Vishkin algorithm using pointer jumping.

What to take Home

• Exploiting parallelism, distributed algorithms can be extremely fast.

• Symmetry breaking is a fundamental challenge in distributed computing,
and a coloring is a basic structure that breaks symmetry between neigh-
bors.

• The key to understanding parallelism is to understand what is possible
based on limited (in particular local) information.

• What can and can’t be done is quite sensitive to the model. When consid-
ering running time bounds, impossibility results, etc. it is thus important
to keep in mind that changing an aspect of the model may have a dramatic
impact. Try always to understand what aspects of a model cause a certain
result, and wonder whether changing them would change the game!

• On the other hand, we can frequently prove unconditional lower bounds
in distributed computing, such as Theorem 1.7. If we do figure out what
the suitable model of computation is for a given system, we may be able to
understand precisely how fast things can be done. Contrast this with lower
bounds on sorting (which restrict the feasible operations) or impossibilities
in the sequential world that rest on conjectures like P 6= NP or the unique
games conjecture!

• Math is going to be our friend in this lecture. If your reflex is to disagree,
try to imagine figuring out how fast the list can be colored by concurrent
processes without the tools we used. Moreover, coming up with a proof
requires us to reflect on our assumptions and crystallize ideas; that’s dif-
ficult, but very useful when dealing with more complex problems later
on!



14 LECTURE 1. VERTEX COLORING

Bibliographic Notes

The basic technique of the log-star algorithm is by Cole and Vishkin [CV86].
The technique can be generalized and extended, e.g., to a ring topology or to
graphs with constant degree [GP87, GPS88, KMW05]. Using it as a subroutine,
one can solve many problems in log-star time.

The lower bound of Theorem 1.7 is due to Linial [Lin92]. Linial’s paper also
contains a number of other results on coloring, e.g., that any message passing
algorithm for coloring d-regular trees of radius r that runs in time at most
2r/3 requires at least Ω(

√
d) colors. The presentation here is based on a more

streamlined version by Laurinharju and Suomela [LS14].
Figures 1.9 and 1.10 are courtesy of Jukka Suomela and under a creative

commons license.4 Figures 1.4 and 1.8 are courtesy of Roger Wattenhofer;
substantial parts of today’s lecture are based on material from his course at ETH
Zurich. Wide parts of today’s lecture are covered by books [CLR90, Pel00].

Bibliography

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. The MIT Press, Cambridge, MA, 1990.

[CV86] R. Cole and U. Vishkin. Deterministic coin tossing and accelerating
cascades: micro and macro techniques for designing parallel algo-
rithms. In 18th annual ACM Symposium on Theory of Computing
(STOC), 1986.

[FR90] Faith E. Fich and Vijaya Ramachandran. Lower bounds for parallel
computation on linked structures. In Proc. 2nd Annual ACM Sympo-
sium on Parallel Algorithms and Architectures (SPAA 1990), pages
109–116, 1990.

[GP87] Andrew V. Goldberg and Serge A. Plotkin. Parallel (∆+1)-coloring
of constant-degree graphs. Inf. Process. Lett., 25(4):241–245, June
1987.

[GPS88] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon.
Parallel Symmetry-Breaking in Sparse Graphs. SIAM J. Discrete
Math., 1(4):434–446, 1988.

[KMW05] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. On
the Locality of Bounded Growth. In 24th ACM Symposium on the
Principles of Distributed Computing (PODC), Las Vegas, Nevada,
USA, July 2005.

[Lin92] N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal
on Computing, 21(1)(1):193–201, February 1992.

[LS14] Juhana Laurinharju and Jukka Suomela. Brief Announcement:
Linial’s Lower Bound Made Easy. In Symposium on Principles of
Distributed Computing (PODC), pages 377–378, 2014.

4CC BY-SA 3.0, see https://creativecommons.org/licenses/by-sa/3.0/.



BIBLIOGRAPHY 15

[Nao91] Moni Naor. A Lower Bound on Probabilistic Algorithms for Distribu-
tive Ring Coloring. SIAM J. Discrete Math., 4(3):409–412, 1991.

[Pel00] David Peleg. Distributed computing: a locality-sensitive approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

[RS15] Joel Rybicki and Jukka Suomela. Exact bounds for distributed graph
colouring. CoRR, abs/1502.04963, 2015.



16 LECTURE 1. VERTEX COLORING


