
Lecture 9

Self-Stabilization and
Recovery

Previously, we have seen ways of handling permanent faults: nodes crashed and
never booted up again, or they turned Byzantine, which was an untreatable
condition. However, not every job needs the same tool. For instance, Byzantine
tolerance needs that f < n/3 nodes are faulty, and that might not be true over
extended periods of time. Instead, nodes or communication links (i.e., edges)
may undergo transient failures. They recover eventually, but that doesn’t mean
the state of their volatile memory hasn’t been corrupted!

Can we design a distributed system that survives transient (short-lived)
failures, even if all nodes are temporarily failing? In other words, can we build
a distributed system that repairs itself? More precisely, we want the system to
recover from arbitrary transient faults (which can result in an arbitrary state!)
after transient faults ceased. This is captured in the following definition, which
considers arbitrarily initial states, but an execution model that does not (need
to) care about transient faults.

Definition 9.1 (Self-Stabilization). Denote by S the state space of a distributed
system, i.e., the product space over all individual nodes’ state spaces. An execu-
tion of an algorithm is a (bounded or unbounded) sequence of state transitions
that is valid in that it follows the rules given by the algorithm and the execution
model. Define a set C of correct executions, i.e., executions that satisfy some
desirable properties. The system/algorithm is called self-stabilizing (w.r.t. C) iff
every possible execution, no matter what the initial state, has a correct suffix.

Usually, the information that the algorithm stabilizes is of limited use, as
the time for it to do so might be unbounded. This means that typically we are
interested in algorithms that have a small stabilization time. The definition of
self-stabilization given above is very general, so there wasn’t any notion of time.
It needs to be derived from the execution model, which we didn’t specify! So
let’s define what we mean for synchronous and asynchronous message passing
systems.

Definition 9.2 (Stabilization time). Fix a set of parameters, e.g., the number
of nodes n and the diameter of the network D. The stabilization time of a
synchronous self-stabilizing system is the maximum number of rounds R so that
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removing the first R rounds from the execution results in a correct execution,
taken over all executions on n-node graphs of diameter D. If this maximum
doesn’t exist, the algorithm has unbounded stabilization time. For an asynchro-
nous system, we do the same with respect to asynchronous rounds, i.e., after
normalizing the maximum message delay to 1, we check the maximum number
of time units we need to cut off of the front of an execution to make the suffix
correct.

Remarks:

• S needs not be complicated. For instance, for the MIS algorithm from the
lecture, it was merely a few bits: Is the node in the MIS? Is it terminated?
Are we in a round for trying to join the MIS or just propagating the
information which nodes did? Etc. Self-stabilization then means that
even if who’s in the MIS and who’s not is completely messed up, the
algorithm will re-construct an MIS.

• This definition is quite abstract, but can be applied to essentially any
state-based description of a system. Of course, C should be a set of exe-
cutions in which the system is considered to behave “correctly.”

• The requirement here is very strong. Ending up in C from any state is
equivalent to saying that anything can happen to the volatile memory
(a.k.a. states) during a period of transient failures.

• The program code of the nodes and their hardware capabilities must not be
changed. Also, the communication infrastructure must operate correctly
after transient faults ceased. Otherwise there’s no way of guaranteeing
that the nodes behave as intended by the algorithm, and we can’t hope
to guarantee recovery!

• This seems obvious, but it means that one has to be careful. What if a
simple bit flip tells the node to stop running the algorithm?

• Some things can’t be self-stabilizing. For instance, the (single-shot) con-
sensus algorithms we discussed generates some output based on the inputs.
There is no way that we can ensure that everything works out if we make
everyone believe the inputs were actually different! Let’s try to capture
this issue better.

9.1 Self-stabilizing Algorithms can’t Terminate

Lemma 9.3. A self-stabilizing algorithm can never terminate, unless for each
node there is a single output that is always correct.

Proof. Suppose there are two possible conflicting terminal states for a node v.
More precisely, there are system/input combinations for which the algorithm
must output different values at v when it terminates. We set the system/input
combination to one of them and let it run until v terminates. Now we switch the
state of v to the other terminal state from above (a transient fault may cause
this). We have found an execution in which v doesn’t change its state any more
(as it has terminated), but has incorrect output. Hence, the execution has no
correct suffix, i.e., the algorithm can’t be self-stabilizing!
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Remarks:

• For instance, the only self-stabilizing coloring algorithm that terminates
assigns a unique color to each node identifier – e.g., the identifier itself.
Boring!

• That’s also why consensus doesn’t make a lot of sense here, at least not
in the usual way the problem is posed.

• However, having inputs does make sense. One can give the inputs in
registers that cannot be touched and require the algorithm to stabilize to
correct outputs for these inputs. If the input registers are affected by a
fault, it’s also okay that the outputs change accordingly.

9.2 Dijkstra’s Token Ring

One of the first self-stabilizing algorithms was Dijkstra’s token ring network. A
token ring is an early form of a local area network where nodes are arranged in a
directed ring, communicating by a token. The system is correct if there is exactly
one token in the ring, which keeps being passed around. Let’s have a look at a
simple solution. Given an oriented ring, we simply call the clockwise neighbor
child c, and the counterclockwise neighbor parent p. Also, there is a leader node
v0. Every node v is in a state S(v) ∈ {0, 1, . . . , n − 1}, perpetually informing
its child about its state. The token is implicitly passed on by nodes switching
state. Upon noticing a change of the parent state S(p), node v executes the
following code:

Algorithm 19 Self-stabilizing token ring. A node with S(v) 6= S(p) holds a
token – except for v0, which has the token if S(v) = S(p). In each round, each
node announces its state to its child, which then updates its own state as below.

1: if v = v0 then
2: if S(v) = S(p) then
3: S(v) := S(v) + 1 (mod n)
4: end if
5: else
6: S(v) := S(p)
7: end if

Theorem 9.4. In a synchronous system, Algorithm 19 is self-stabilizing with
stabilization time at most 2n.

Proof. Suppose the leader attains a state s that nobody else within the first n
rounds. By the rules of the algorithm, the state propagates around the ring,
and exactly n rounds later the leader switches to state (s + 1) mod n; at this
time, all other nodes are in state s. From that point on, the algorithm circulates
a single token around the ring.

Now assume that for n rounds, the leader does not attain a state that nobody
else had initially. Within n rounds, the original state of the leader propagates
around the ring, reaching the leader again. Any state that is not eliminated
during that time must be attained by the leader, which increases its state by
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1 mod n each time it switches its state. Note that the leader cannot perform this
operation n times without reaching a state that no node in the system initially
had. Therefore, after at most n rounds the leader is in a state s such that state
s + 1 mod n is not present in the system. As we assumed that the leader does
not switch to state s+ 1 mod n within the first n rounds, the leader must have
switched to state s after any initial “copies” of s have been overwritten by some
other state. Hence, the leader will switch to state s+ 1 mod n exactly n rounds
after switching to state s, i.e., all other nodes are in state s in that round.

In both cases, the system stabilizes within a total of 2n rounds.

Remarks:

• This is asymptotically optimal, as two tokens could be on opposite sides
of the ring. It takes at least n/2 rounds to distinguish this from a 1-token
system.

• The algorithm also works in asynchronous systems. Can you see how to
generalize the above proof?

• We defined the stabilization time as a specific value. Usually determining
it precisely is very hard (or just tedious), so we tend to give upper bounds
on the stabilization time. Language then deteriorates a bit and we tend to
talk of an algorithm “having stabilization time S” when actually meaning
that it has stabilization time at most S.

• It can be a lot of fun designing self-stabilizing algorithms, and it’s not
always as difficult as one might expect. However, it’s essential to do baby
steps. Initially, one shows seemingly very weak statements, but the result-
ing increased degree of organization in the system makes it much easier
to follow up with stronger properties. The above proof exemplifies this;
reversing the order helped, as it made clear why we wanted to show the
intermediate claim that eventually the leader attains a state that wasn’t
present before.

9.3 Synchronous = Self-stabilizing
Asynchronous!

Finding and proving correct self-stabilizing algorithms can be difficult. Let’s
automate the process!

We want to transform an arbitrary synchronous R-round message-passing
algorithm A into a self-stabilizing asynchronous one. This way we can reason
about things in a simplified setting (synchronous message-passing), immediately
obtain a result in the asynchronous model, and self-stabilization comes for free.
The hard part is to make sure that all nodes think they are in the same round
of A; instead of solving this problem, though, each node v simulates R copies
v1, . . . , vR of itself, where vi is in round i. Each round, v simply communicates
all messages all vi send as a bundle, and uses the received message bundles in
the next round.
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Theorem 9.5. Given a deterministic synchronous message-passing algorithm
A that runs for R rounds, we can construct an asynchronous self-stabilizing
algorithm T (A) that stabilizes in R time. If the message size of A is at most

Mi in round i, the message size of T (A) is
∑R
i=1Mi.

Proof. For each round i of A, each node v ∈ V simulates a copy vi of itself
in round i. Each copy sends messages to some neighbors wi, {v, w} ∈ V , and
receives the messages of them. Then it computes its state for round i+ 1, i.e.,
the state of vi+1. The state of v1 is determined solely by the input of v, and
from the state of vR the output of v can be determined. For this simulation,
v needs to keep communicating the messages of all copies v1, . . . , vR, yielding
message size

∑R
i=1Mi.

We know from Lemma 9.3 that a self-stabilizing algorithm cannot terminate.
Hence, v will just keep sending the message vectors to all neighbors and updating
the state of each of its copies vi whenever receiving a message vector from a
neighbor. Now why is the algorithm self-stabilizing? Well, we know that once
transient faults cease, each node will correctly compute the messages of the first
round and send them in the message vectors. Once a node received such vectors
from all neighbors, it locally simulates round 2 correctly and sends message
vectors with correct messages for rounds 1 and 2. This takes at most one time
unit in terms of asynchronous time complexity. By induction, after R time units
the correct results on termination are determined by all nodes.

Remarks:

• Using this transformation, also known as local checking, designing self-
stabilizing algorithms just turned from art to craft.

• Note that if R is a function of, e.g., n, (an upper bound on) n must be
known and hardwired into the algorithm.

• The asynchronous model needs to be slightly augmented here to make
sense. Transmitting “continuously” in the message passing model would
mean to send an infinite number of messages. Instead, one assumes that
nodes can perform a “busy-wait,” for which they keep executing a loop.
The next loop execution is one of the possible actions the scheduler can
trigger (apart from receiving a message).

• Note that a node may send a huge number of messages during the sta-
bilization phase. However, in principle it’s ok to mitigate this problem
by nodes waiting and collecting messages for some time before processing
them.

• In the asynchronous shared memory model this problem doesn’t exist,
simply because the busy-wait is already a necessary part of the model.

• This transformation does not work for randomized algorithms. Execution
and output would change all the time.

• In practice, one simply uses “pseudo-randomness.” We fix sufficiently long
random bit strings in advance, giving them to the nodes as part of the
program memory.
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• Of course the result is – technically – a deterministic algorithm, and all
respective restrictions apply. One can always find a bad input/schedule
combination, unless guarantees are, in fact, deterministic. However, as
soon as the adversary is “oblivious,” i.e., needs to make its decisions inde-
pendently of the pseudo-random strings, we’re good again. This usually
is fine, unless there is an actual adversary who exploits this weakness!

• The impact on the message size is small for very fast algorithms.

• If there is a local fault or the topology or inputs change locally, this will
only cause corrections in an R-hop neighborhood of the faults for an R-
round algorithm.

• Ergo, this transformation rocks when applied to very fast algorithms!

9.4 Non-local Recovery

Recall that there are global problems, like MST computation. Using the above
transformation would yield prohibitively large messages, even when starting
from an algorithm using small messages! One way to handle this would be to
keep executing a respective algorithm repeatedly, controlling it via a BFS tree.
However, this would imply large stabilization times.

Can we have something simpler? If everything can be messed up, the answer
is no. The lower bounds tell us that we can’t be faster in the worst case. But if
there are only few changes, we can exploit the convenient structure of the MST
problem again.

Lemma 9.6. If at most k edges in a (connected) weighted graph change their
weight, appear, or are deleted (such that the graph is still connected), the new
MST differs in at most k edges from the previous one.

Proof. Consider a single edge e and suppose it increases its weight or gets
deleted. If it’s not in the MST M , nothing changes. Otherwise, it might not
be in the MST any more. Denote by e′ the lightest edge that does not close a
cycle with M \ {e}. Then (M \ {e}) ∪ {e′} is the new MST: Running Kruskal
on the new graph will select all edges from E ∩M that are lighter than e′, then
e′, and then (as the connectivity components at this point are identical to the
run on the original graph) the remaining edges of M \ {e}.

Now suppose an edge e appears or decreases its weight. If it already was in
the MST M or is not in the new MST, nothing changes. Otherwise, there is
a unique edge e′ ∈ M heaviest in a cycle in M ∪ {e}. The same reasoning as
above shows that the new MST is (M \ {e′}) ∪ {e}.

This shows the claim for k = 1. By induction on k, it follows for any k.

This yields a very easy way of fixing a “broken” MST depending on the
number of changes.

Theorem 9.7. Assume that we have a fixed BFS tree that does not change.
There is an MST algorithm that can recover from k changes in edge weights,
deletions, or insertions in O(k + D) rounds, assuming that it had terminated
before.
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Proof sketch. Run the distributed version of Kruskal on the BFS tree until ter-
mination. Now suppose k changes are made. The nodes noticing these will
start sending corrections to their parents concerning their local forests (i.e., re-
port insertions, deletions, and weight changes). As Lemma 9.6 generalizes to
the min-weight maximal forests maintained locally by the BFS tree nodes in
the distributed version of Kruskal’s algorithm, none of these forests change by
more than k edge “swaps.” Hence, each node needs to send at most k messages
to report updates to its parent. They may send some intermediate incorrect
values, but the pipelining argument generalizes to this setting, too. Hence the
root will learn about the new MST within O(k +D) rounds.

Remarks:

• This demonstrates how important insights into the structure of problems
are. This idea is very straightforward once the distributed version of
Kruskal’s algorithm is known, which relies on the matroid structure of the
problem. This is another way of exploiting this structure!

• As pointed out, the lower bounds imply that a self-stabilizing algorithm
cannot be that fast. The issue is that the entire computation needs to be
repeated, as any pre-computed information cannot be trusted!

• Handling changes in the BFS tree is more involved. While adding or
deleting a single edge can also only change a single BFS tree edge (just
apply Lemma 9.6 with all edges having weight 1), adapting the distributed
data structure given by the states of the nodes becomes a nuisance.

9.5 2-Party Systems Stabilize

We finish the chapter with another non-trivial example beyond self-stabilization,
showing the beauty and potential of the area: In a small town, every evening
each citizen calls all his (or her) friends, asking them whether they will vote
for the Democratic or the Republican party at the next election.1 In our town
citizens listen to their friends, and everybody re-chooses his or her affiliation
according to the majority of friends.2 Is this process going to “stabilize” (in one
way or another)?

• Is eventually everybody voting for the same party? No.

• Will each citizen eventually stay with the same party? No.

• Will citizens that stayed with the same party for some time, stay with
that party forever? No.

• And if their friends also constantly root for the same party? No.

• Will this beast stabilize at all?!? Yes!

1We are in the US, and as we know from The Simpsons, you “throw your vote away” if
you vote for somebody else. As a consequence our example has two parties only.

2Assume for the sake of simplicity that everybody has an odd number of friends.
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Theorem 9.8 (Dems & Reps). Eventually every citizen is rooting for the same
party every other day.3

Proof. To prove that the opinions eventually become fixed or cycle every other
day, think of each friendship between citizens as a pair of (directed) edges, one
in each direction. Let us say an edge is currently bad if the party of the advising
friend differs from the next-day’s party of the advised friend. In other words,
the edge is bad if the advised friend did not follow the advisor’s opinion (which
means that the advisor was in the minority). An edge that is not bad is good.

Consider the out-edges of citizen c on day t, during which (say) c roots for
the Democrats. Assume that during day t, g out-edges of c are good, and b
out-edges are bad. Note that g + b is the degree of c. Since g out-edges were
good, g friends of c root for the Democrats on day t+ 1. Likewise, b friends of c
root for the Republicans on day t+1. In other words, on the evening of day t+1
citizen c will receive g recommendations for Democrats, and b for Republicans.
We distinguish two cases:

• g > b: In this case, citizen c will still (or again) root for the Democrats on
day t+ 2. Note that in this case, on day t+ 1, exactly g in-edges of c are
good, and exactly b in-edges are bad. In other words, the number of bad
out-edges on day t is exactly the number of bad in-edges on day t+ 1.

• g < b: In this case, citizen c will root for the Republicans on day t + 2.
Note that in this case, on day t+ 1, exactly b in-edges of c are good, and
exactly g in-edges are bad. In other words, the number of bad out-edges
on day t was exactly the number of good in-edges on day t+ 1 (and vice
versa). Since citizen c is rooting for the Republicans, the number of bad
out-edges on day t was strictly larger than the number of bad in-edges on
day t+ 1.

We account for every edge as out-edge on day t, and as in-edge on day t + 1.
Since in both of the above cases the number of bad edges does not increase, the
total number of bad edges B cannot increase. In fact, if any node switches its
party from day t to t+ 2, we know that the total number of bad edges strictly
decreases. But B cannot decrease forever. Once B hits its minimum, the system
stabilizes in the sense that every citizen will either stick with his or her party
forever or flip-flop every day – the system “stabilizes.”

Remarks:

• The model can be generalized considerably by, for example, adding weights
to vertices (meaning some citizens’ opinions are more important than oth-
ers), adding weights to edges (meaning the influence between some citizens
is stronger than between others), allowing loops (citizens who consider
their own current opinions as well), allowing tie-breaking mechanisms,
and even allowing different thresholds for party changes.

• Some of you may be reminded of Conway’s Game of Life: We are given an
infinite two-dimensional grid of cells, each of which is in one of two possible
states, dead or alive. Every cell interacts with its eight neighbors. In each

3Hence the term “swing voter.”
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round, the following transitions occur: Any live cell with fewer than two
live neighbors dies, as if caused by loneliness. Any live cell with more
than three live neighbors dies, as if by overcrowding. Any live cell with
two or three live neighbors lives on to the next generation. Any dead cell
with exactly three live neighbors is “born” and becomes a live cell. The
initial pattern constitutes the “seed” of the system. The first generation
is created by applying the above rules simultaneously to every cell in the
seed, births and deaths happen simultaneously, and the discrete moment
at which this happens is sometimes called a tick. (In other words, each
generation is a pure function of the one before.) The rules continue to
be applied repeatedly to create further generations. John Conway figured
that these rules were enough to generate interesting situations, including
“breeders” which create “guns” which in turn create “gliders.” As such
Life in some sense answers an old question by John von Neumann, whether
there can be a simple machine that can build copies of itself. In fact, Life
is Turing complete, that is, as powerful as any computer.

Figure 9.1: A “glider gun”. . .

Figure 9.2: . . . in action.

Bibliographic Notes

Self-stabilization was first introduced in a paper by Edsger W. Dijkstra in 1974
[Dij74], in the context of a token ring network. It was shown that the ring
stabilizes in time Θ(n). For his work Dijkstra received the 2002 ACM PODC
Influential Paper Award. Shortly after receiving the award he passed away.
With Dijkstra being such an eminent person in distributed computing (e.g.
concurrency, semaphores, mutual exclusion, deadlock, finding shortest paths in
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graphs, fault-tolerance, self-stabilization), the award was renamed Edsger W.
Dijkstra Prize in Distributed Computing. In 1991 Awerbuch et al. showed that
any algorithm can be modified into a self-stabilizing algorithm that stabilizes in
the same time that is needed to compute the solution from scratch [APSV91];
this construction is explained in Theorem 9.5.

For fast “distributed correction” of MSTs see the work by Peleg [Pel98]. This
paper in fact deals with the more general case of matroids, and hence spotlights
how the matroid structure is exploited by the distributed version of Kruskal’s
algorithm as well as the adaption to changing edge sets and weights.

The Republicans vs. Democrats problem was popularized by Peter Winkler,
in his column “Puzzled” [Win08]. Goles et al. already proved in [GO80] that
any configuration of any such system with symmetric edge weights will end up
in a situation where each citizen votes for the same party every second day. The
understanding of this problem has been significantly extended recently [FKW13,
KPW14]. Closely related to this puzzle is the well known Game of Life which
was described by the mathematician John Conway and made popular by Martin
Gardner [Gar70].

This lecture is in large parts based on material by Roger Wattenhofer.
Thanks!
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