
Information
Lectures: Wednesday, 14:15-16:00
Homework: 4 or 5 homework sets

Half of points needed to qualify for exam.
Exam: Oral examination, February 23-24, 2021

Covering lecture material and homework exercises.

Tutorials: Doodle link given during break to check availability
TA: Golnoosh Shahkarami
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Material
Books (for first part, until Christmas break):

Algorithmic Game Theory (Nisan, Roughgarden, Tardos, Vazirani)
Twenty Lectures on Algorithmic Game Theory (Roughgarden)

Some (elementary) background material for self-study:
Linear programming
Probability theory
Matroids

Tutorial "0" next week about background material.

0 / 29



Material
Books (for first part, until Christmas break):

Algorithmic Game Theory (Nisan, Roughgarden, Tardos, Vazirani)
Twenty Lectures on Algorithmic Game Theory (Roughgarden)

Some (elementary) background material for self-study:
Linear programming
Probability theory
Matroids

Tutorial "0" next week about background material.
0 / 29



Topics in Algorithmic Game Theory and Economics

Pieter Kleer

Max Planck Institute for Informatics (D1)
Saarland Informatics Campus

November 11, 2020

Lecture 1
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What is game theory?

Study of mathematical models of strategic interaction among (rational)
players that influence each other’s outcome.

Road users in traffic networks.
Selfish routing of internet traffic.
Online selling platforms.
Auctions.
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Two examples

3 / 29



Traffic networks

Drivers who want to get from work to home as fast as possible,

not
caring about the travel time of other drivers.

Outcome is a driver’s travel time from work to home.
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Traffic networks (cont’d)

Users influence each other’s outcome:

Traffic slows down if many drivers on a road segment.
Drivers use traffic app to determine ‘quickest’ route.
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Traffic networks (cont’d)

Some questions that come up:

Assuming that drivers are selfish, how does traffic spread out over
the road network?

So-called equilibrium flow.
Can we compute these equilibrium flows?

How inefficient is such a traffic situation?
Compared to centralized solution in which we assign routes to
drivers, with the goal of minimizing the total travel time.

Something, say, the government would like to achieve.

Conflicting interests:
Road users want to get home as quickly as possible.

Goal: Minimize individual travel time.
Government wants road network to be used efficiently.

Goal: Minimize total travel time in the network
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Coordination games

1

{•,•}
2

{•,•}

3
{•,•}

4

{•,•}

5
{•,•}

6

{•,•}

7
{•,•}

8

{•,•}

Undirected graph G = (V ,E); nodes in V are players,
Strategy sets Ci ⊆ {1, . . . , c} for i ∈ V ,
Weights we ≥ 0 for e ∈ E .

Assume here we = 1 for e ∈ E.

Choose strategy that maximizes sum of edge weights to neighbors
with same color.
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Coordination games (cont’d)

Game-theoretical problem:

Find coloring in which no player has an incentive to deviate to
another color.

‘Stable’ equilibrium outcome.
Known as (pure) Nash equilibrium.

Centralized (classical) optimization problem:
Find coloring maximizing total weight of unicolored edges.

Socially optimal outcome.
Maximizing overall “happiness” of players.
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A recurring theme (informal)

Discrete (or continuous) optimization problem over set S of strategy
vectors (or profiles) with objective function C : S → R.

Classical (centralized) optimization: Find

s∗ = argmin{C(t) : t ∈ S}.

Game theory variant: Find “equilibrium” solution s ∈ S.
Will see some equilibrium concepts later on.

Fundamental questions in Algorithmic Game Theory (AGT)
Equilibrium computation

Can we compute equilibrium in polynomial time?
Inefficiency of equilibria

How much worse can C(s) be compared to C(s∗)?
Price of Anarchy (PoA)/Price of Stability (PoS).
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Games and equilibrium concepts
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Mathematical formulation

Finite game Γ = (N, (Si)i∈N , (Ci)i∈N) consists of:

Finite set N of players of size n.
Finite strategy set Si for every player i ∈ N.
Cost function Ci : ×iSi → R for every i ∈ N.

Player goal is to choose strategy minimizing cost.
Or to maximize utility Ui = −Ci .

Assuming the players are rational, which strategy profiles can one
expect to see as an outcome of the game?

(All players have full information.)
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Equilibrium concepts

Some solution/equilibrium concepts:
Dominant strategies,
Pure Nash equilibrium,
Mixed Nash equilibrium,
(Coarse) correlated equilibrium, and more...

Natural questions that come up:
Does a solution concept always exist?
Can we compute it in polynomial time, i.e., efficiently?
Are there natural player dynamics converging to it?

And how long do these dynamics take to converge?
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Prisoner’s dilemma

Famous thought experiment.

Prisoner’s dilemma
Alice and Bob committed a crime. Police wants a confession.

Bob
Silent Betray

Alice
Silent (1,1) (3,0)

Betray (0,3) (2,2)

(a,b) refers to years of prison time they get.

Problem is that Alice and Bob are not allowed to communicate.
See also, e.g., "Golden Balls/Split or Steal" on YouTube.

Similar game where communication is possible.
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Dominant strategies

Definition (Dominant strategy)
A strategy ti ∈ Si is dominant for player i ∈ N if

Ci(s1, . . . , ti , . . . , sn) ≤ Ci(s1, . . . , t ′i , . . . , sn)

for every t ′i ∈ Si and any strategy vector

s−i = (s1, . . . , si−1, si+1, . . . , sn) ∈ ×j 6=iSj

of the other players.

Strategy profile t ∈ ×iSi is called dominant if
every player plays a dominant strategy.

No matter what the other players do, it is best to play ti .
Does not always exist.
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Pure Nash equilibrium

Definition (Pure Nash equilibrium (PNE))
A strategy profile s ∈ ×iSi is a pure Nash equilibrium if for every i ∈ N,

Ci(s1, . . . , si , . . . , sn) ≤ Ci(s1, . . . , s′i , . . . , sn)

for every s′i ∈ Si .

In short, Ci(s) ≤ Ci(s′i , s−i).

Given strategies s−i of other players, it’s best to play si .
si is best response to s−i .
Switch from profile s to (s′i , s−i ) is called unilateral player deviation.

PNE is natural outcome of better/best response dynamics (BRD)
Players take turns and switch to strategy that improves their cost.
Remember coordination game example.

PNE not guaranteed to exist in general games.
Existence is known for special class of congestion games.

Next lectures.
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Matching pennies

PNE is not guaranteed to exist, already in very simple games.

Matching pennies
Alice and Bob both choose side of a penny.

Bob
Head Tails

Alice
Head (0,1) (1,0)

Tails (1,0) (0,1)

Alice wants both coins to be on the same side.
Bob wants both coins to be on different sides.

Is there another sensible “equilibrium”?
Yes, randomize over both strategies.
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Mixed Nash equilibrium

Definition (Mixed Nash equilibrium (MNE))
A mixed strategy σi : Si → [0,1] of player i ∈ N is a probability
distribution over pure strategies in Si , i.e.,

∆i =

τ : τ(t) ≥ 0 ∀t ∈ Si and
∑
t∈Si

τ(t) = 1

 .

A collection of mixed strategies σ = (σi)i∈N , with σi ∈ ∆i , is a mixed
Nash equilibrium if

Ex∼σ [Ci(x)] ≤ E(x ′i ,x−i )∼(σ′i ,σ−i )

[
Ci(x ′i , x−i)

]
∀σ′i ∈ ∆i . (1)

Theorem (Nash’s theorem, 1950)
Any finite game Γ has a mixed Nash equilibrium.
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Remark on definition MNE
In definition of MNE, it is sufficient to look at pure strategies σ′i in (1).

Pure strategy (distribution): One strategy played with probability 1.
Exercise: Prove the remark above.

Good news:
There is a sensible equilibrium concept that always exists.

Bad news:
Might not be unique.

Many equilibrium concepts suffer from this

Turns out to be ‘difficult’ to compute (in general).

Is there an equilibrium concept that always exists and is computable?
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Game of Chicken

Game of Chicken
Alice and Bob both approach an intersection.

Bob
Stop Go

Alice
Stop (0,0) (3,−1)

Go (−1,3) (4,4)

Two PNEs: (Stop, Go), (Go, Stop)
One MNE: Both players randomize over Stop and Go.

Distributions over strategy profiles (a,b) for these equilibria are(
0 1
0 0

)
,

(
0 0
1 0

)
and

(1
4

1
4

1
4

1
4

)
.
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Sensible ‘equilibrium’ would be the strategy profile distribution(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
Cannot be achieved as a product distribution of mixed strategies.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

20 / 29



Sensible ‘equilibrium’ would be the strategy profile distribution(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.

Cannot be achieved as a product distribution of mixed strategies.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

20 / 29



Sensible ‘equilibrium’ would be the strategy profile distribution(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
Cannot be achieved as a product distribution of mixed strategies.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

20 / 29



Sensible ‘equilibrium’ would be the strategy profile distribution(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
Cannot be achieved as a product distribution of mixed strategies.

Idea is to introduce traffic light (mediator or trusted third party).

Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

20 / 29



Sensible ‘equilibrium’ would be the strategy profile distribution(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
Cannot be achieved as a product distribution of mixed strategies.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.

Gives realization as recommendation to the players.
Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

20 / 29



Sensible ‘equilibrium’ would be the strategy profile distribution(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
Cannot be achieved as a product distribution of mixed strategies.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

20 / 29



Sensible ‘equilibrium’ would be the strategy profile distribution(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
Cannot be achieved as a product distribution of mixed strategies.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

20 / 29



Sensible ‘equilibrium’ would be the strategy profile distribution(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
Cannot be achieved as a product distribution of mixed strategies.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

20 / 29



Correlated equilibrium

Definition (Correlated equilibrium (CE))
A distribution σ on ×iSi is a correlated equilibrium if for every i ∈ N and
xi ∈ Si , and every unilateral deviation x ′i ∈ Si , it holds that

Ex∼σ [Ci(x) | xi ] ≤ Ex∼σ
[
Ci(x ′i , x−i) | xi

]
.

Theorem (Computation of CE, informal)
A correlated equilibrium can be computed ‘efficiently’ (i.e., this concept
is computationally tractable).

Definition (Coarse correlated equilibrium (CCE))
A distribution σ on ×iSi is a coarse correlated equilibrium if for every
i ∈ N, and every unilateral deviation x ′i ∈ Si , it holds that

Ex∼σ [Ci(x)] ≤ Ex∼σ
[
Ci(x ′i , x−i)

]
.

21 / 29



Correlated equilibrium

Definition (Correlated equilibrium (CE))
A distribution σ on ×iSi is a correlated equilibrium if for every i ∈ N and
xi ∈ Si , and every unilateral deviation x ′i ∈ Si , it holds that

Ex∼σ [Ci(x) | xi ] ≤ Ex∼σ
[
Ci(x ′i , x−i) | xi

]
.

Theorem (Computation of CE, informal)
A correlated equilibrium can be computed ‘efficiently’ (i.e., this concept
is computationally tractable).

Definition (Coarse correlated equilibrium (CCE))
A distribution σ on ×iSi is a coarse correlated equilibrium if for every
i ∈ N, and every unilateral deviation x ′i ∈ Si , it holds that

Ex∼σ [Ci(x)] ≤ Ex∼σ
[
Ci(x ′i , x−i)

]
.

21 / 29



Correlated equilibrium

Definition (Correlated equilibrium (CE))
A distribution σ on ×iSi is a correlated equilibrium if for every i ∈ N and
xi ∈ Si , and every unilateral deviation x ′i ∈ Si , it holds that

Ex∼σ [Ci(x) | xi ] ≤ Ex∼σ
[
Ci(x ′i , x−i) | xi

]
.

Theorem (Computation of CE, informal)
A correlated equilibrium can be computed ‘efficiently’ (i.e., this concept
is computationally tractable).

Definition (Coarse correlated equilibrium (CCE))
A distribution σ on ×iSi is a coarse correlated equilibrium if for every
i ∈ N, and every unilateral deviation x ′i ∈ Si , it holds that

Ex∼σ [Ci(x)] ≤ Ex∼σ
[
Ci(x ′i , x−i)

]
.

21 / 29



Hierarchy of equilibrium concepts

The concepts we have seen so far all are subsets of each other.

PNE
Exists in any congestion game

MNE

Exists in any finite game, but hard to compute

CE

Computationally tractable

CCE

Exercise: Prove that this is indeed a hierarchy.
Every PNE is an MNE, every MNE is a CE, etc.
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Rough outline until Christmas

Congestion and potential games
Existence of PNE.
Computational complexity.

Complexity of computing PNE.
Complexity of best response dynamics.

Inefficiency of equilibria.
Price of Anarchy/Stability.

General 2-player and n-player games
Existence of MNE (Nash’s theorem).

Discussion on computational complexity.
Computation of approximate mixed Nash equilibria.
Computation of (coarse) correlated equilibria.

Linear programming approach.
Decentralized dynamics.

Inefficiency of MNE/CE/CCE.
Roughgarden’s smoothness framework.
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Background (prerequisite) material
Some tools from combinatorics, probability theory and optimization
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Linear programming

Optimize linear function over set of linear constraints, e.g.,

max x1 + 3x2
subject to x1 + x2 ≤ 5

3x1 + x2 ≤ 2
x1, x2 ≥ 0
x1, x2 ∈ R.

In general,
max cT x
subject to Ax ≤ b

x ≥ 0

Theorem (Linear programming, informal)
There is a polynomial time algorithm for finding an optimal solution to a
linear program.

Might have seen this in, e.g., course “Optimization”.
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Probability theory

Basic knowledge about probability theory is assumed, in particular, we
sometimes use concentration inequalities.

Markov’s inequality
Chebyshev’s inequality
Chernoff bounds
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Matroids

Generalization of linear independence of vectors in, e.g., Rn.

Let E = {v1, . . . , vk} be collection of vectors vi ∈ Rn for all i .
Assume that k > n and span(E) = Rn.

Subset of vectors X ⊆ E is called linearly independent if, for γi ∈ R,∑
vi∈X γi · vi = 0 ⇒ γi = 0 ∀i .

No vi ∈ X can be written as linear combination of other vectors.

Example

E = {v1, v2, v3, v2} =

{(
3
2

)
,

(
2
7

)
,

(
17
34

)
,

(
−4
−2

)}
Is X = {v1, v2, v3} independent? NO, because v3 = 3v1 + 4v2.

Maximal independent sets are bases (of Rn).
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Let E be finite set of elements (think of, e.g., vectors).

Matroid
Set systemM = (E , I) with non-empty I ⊆ 2E is matroid if:

Downward-closed : A ∈ I and B ⊆ A⇒ B ∈ I,
Augmentation property :

A,C ∈ I and |C| > |A| ⇒ ∃e ∈ C \ A such that A ∪ {e} ∈ I.
Sets in I are called independent sets.

Linear matroid: Let E = {vi : i = 1, . . . , k} ⊆ Rn and take

W ∈ I ⇔ vectors in W are linearly independent.

Downward-closed property easy to check.
For augmentation property, note that if |C| ≥ |A|+ 1 and every
vi ∈ C is a linear combination of vectors in A, then
span(C) ⊆ span(A), and hence

|C| = dim(span(C)) ≤ dim(span(A)) = |A|,

which gives a contradiction.
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Graphic matroid: Let G = (V ,E) be undirected graph and consider
matroidM = (E , I), with ground the edges E of G, given by

W ∈ I ⇔ subgraph with edges of W has no cycle.

Bases (i.e., maximal independent sets) of the graphic matroid are
spanning trees of G.

G
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