
Topics in Algorithmic Game Theory and Economics

Pieter Kleer

Max Planck Institute for Informatics (D1)
Saarland Informatics Campus

January 27, 2020

Lecture 10
Matroid Secretary Problems

1 / 31

Matroids (recap)

2 / 31

Matroids

Generalization of linear independence of vectors in, e.g., Rn.

Let E = {v1, . . . , vk} be collection of vectors vi ∈ Rn for all i .
Assume that k > n and span(E) = Rn.

Subset of vectors X ⊆ E is called linearly independent if, for γi ∈ R,∑
vi∈X γi · vi = 0 ⇒ γi = 0 ∀i .

No vi ∈ X can be written as linear combination of other vectors.

Example

E = {v1, v2, v3, v2} =

{(
3
2

)
,

(
2
7

)
,

(
17
34

)
,

(
−4
−2

)}
Is X = {v1, v2, v3} independent? NO, because v3 = 3v1 + 4v2.

Maximal independent sets are bases (of Rn).

3 / 31

Matroids

Generalization of linear independence of vectors in, e.g., Rn.

Let E = {v1, . . . , vk} be collection of vectors vi ∈ Rn for all i .

Assume that k > n and span(E) = Rn.

Subset of vectors X ⊆ E is called linearly independent if, for γi ∈ R,∑
vi∈X γi · vi = 0 ⇒ γi = 0 ∀i .

No vi ∈ X can be written as linear combination of other vectors.

Example

E = {v1, v2, v3, v2} =

{(
3
2

)
,

(
2
7

)
,

(
17
34

)
,

(
−4
−2

)}
Is X = {v1, v2, v3} independent? NO, because v3 = 3v1 + 4v2.

Maximal independent sets are bases (of Rn).

3 / 31

Matroids

Generalization of linear independence of vectors in, e.g., Rn.

Let E = {v1, . . . , vk} be collection of vectors vi ∈ Rn for all i .
Assume that k > n and span(E) = Rn.

Subset of vectors X ⊆ E is called linearly independent if, for γi ∈ R,∑
vi∈X γi · vi = 0 ⇒ γi = 0 ∀i .

No vi ∈ X can be written as linear combination of other vectors.

Example

E = {v1, v2, v3, v2} =

{(
3
2

)
,

(
2
7

)
,

(
17
34

)
,

(
−4
−2

)}
Is X = {v1, v2, v3} independent? NO, because v3 = 3v1 + 4v2.

Maximal independent sets are bases (of Rn).

3 / 31

Matroids

Generalization of linear independence of vectors in, e.g., Rn.

Let E = {v1, . . . , vk} be collection of vectors vi ∈ Rn for all i .
Assume that k > n and span(E) = Rn.

Subset of vectors X ⊆ E is called linearly independent if, for γi ∈ R,∑
vi∈X γi · vi = 0 ⇒ γi = 0 ∀i .

No vi ∈ X can be written as linear combination of other vectors.

Example

E = {v1, v2, v3, v2} =

{(
3
2

)
,

(
2
7

)
,

(
17
34

)
,

(
−4
−2

)}
Is X = {v1, v2, v3} independent? NO, because v3 = 3v1 + 4v2.

Maximal independent sets are bases (of Rn).

3 / 31

Matroids

Generalization of linear independence of vectors in, e.g., Rn.

Let E = {v1, . . . , vk} be collection of vectors vi ∈ Rn for all i .
Assume that k > n and span(E) = Rn.

Subset of vectors X ⊆ E is called linearly independent if, for γi ∈ R,∑
vi∈X γi · vi = 0 ⇒ γi = 0 ∀i .

No vi ∈ X can be written as linear combination of other vectors.

Example

E = {v1, v2, v3, v2} =

{(
3
2

)
,

(
2
7

)
,

(
17
34

)
,

(
−4
−2

)}
Is X = {v1, v2, v3} independent? NO, because v3 = 3v1 + 4v2.

Maximal independent sets are bases (of Rn).

3 / 31

Matroids

Generalization of linear independence of vectors in, e.g., Rn.

Let E = {v1, . . . , vk} be collection of vectors vi ∈ Rn for all i .
Assume that k > n and span(E) = Rn.

Subset of vectors X ⊆ E is called linearly independent if, for γi ∈ R,∑
vi∈X γi · vi = 0 ⇒ γi = 0 ∀i .

No vi ∈ X can be written as linear combination of other vectors.

Example

E = {v1, v2, v3, v2} =

{(
3
2

)
,

(
2
7

)
,

(
17
34

)
,

(
−4
−2

)}
Is X = {v1, v2, v3} independent?

NO, because v3 = 3v1 + 4v2.

Maximal independent sets are bases (of Rn).

3 / 31

Matroids

Generalization of linear independence of vectors in, e.g., Rn.

Let E = {v1, . . . , vk} be collection of vectors vi ∈ Rn for all i .
Assume that k > n and span(E) = Rn.

Subset of vectors X ⊆ E is called linearly independent if, for γi ∈ R,∑
vi∈X γi · vi = 0 ⇒ γi = 0 ∀i .

No vi ∈ X can be written as linear combination of other vectors.

Example

E = {v1, v2, v3, v2} =

{(
3
2

)
,

(
2
7

)
,

(
17
34

)
,

(
−4
−2

)}
Is X = {v1, v2, v3} independent? NO, because v3 = 3v1 + 4v2.

Maximal independent sets are bases (of Rn).

3 / 31

Matroids

Generalization of linear independence of vectors in, e.g., Rn.

Let E = {v1, . . . , vk} be collection of vectors vi ∈ Rn for all i .
Assume that k > n and span(E) = Rn.

Subset of vectors X ⊆ E is called linearly independent if, for γi ∈ R,∑
vi∈X γi · vi = 0 ⇒ γi = 0 ∀i .

No vi ∈ X can be written as linear combination of other vectors.

Example

E = {v1, v2, v3, v2} =

{(
3
2

)
,

(
2
7

)
,

(
17
34

)
,

(
−4
−2

)}
Is X = {v1, v2, v3} independent? NO, because v3 = 3v1 + 4v2.

Maximal independent sets are bases (of Rn).
3 / 31

Matroid

Definition (Matroid)

Set systemM = (E , I) with non-empty I ⊆ 2E = {X : X ⊆ E} is
matroid if it satisfies the following:

Downward-closed : A ∈ I and B ⊆ A⇒ B ∈ I,
Augmentation property :

A,C ∈ I and |C| > |A| ⇒ ∃e ∈ C \ A such that A ∪ {e} ∈ I.

Sets in I are called independent sets.

Example (Linear matroid)
Let E = {vi : i = 1, . . . , k} ⊆ Rn and take

W ∈ I ⇔ vectors in W are linearly independent.

Augmentation property: Note that if |C| ≥ |A|+ 1 and every vi ∈ C is a
linear combination of vectors in A, then span(C) ⊆ span(A), and hence
|C| = dim(span(C)) ≤ dim(span(A)) = |A|, which gives a contradiction.

4 / 31

Matroid

Definition (Matroid)

Set systemM = (E , I) with non-empty I ⊆ 2E = {X : X ⊆ E} is
matroid if it satisfies the following:

Downward-closed : A ∈ I and B ⊆ A⇒ B ∈ I,

Augmentation property :
A,C ∈ I and |C| > |A| ⇒ ∃e ∈ C \ A such that A ∪ {e} ∈ I.

Sets in I are called independent sets.

Example (Linear matroid)
Let E = {vi : i = 1, . . . , k} ⊆ Rn and take

W ∈ I ⇔ vectors in W are linearly independent.

Augmentation property: Note that if |C| ≥ |A|+ 1 and every vi ∈ C is a
linear combination of vectors in A, then span(C) ⊆ span(A), and hence
|C| = dim(span(C)) ≤ dim(span(A)) = |A|, which gives a contradiction.

4 / 31

Matroid

Definition (Matroid)

Set systemM = (E , I) with non-empty I ⊆ 2E = {X : X ⊆ E} is
matroid if it satisfies the following:

Downward-closed : A ∈ I and B ⊆ A⇒ B ∈ I,
Augmentation property :

A,C ∈ I and |C| > |A| ⇒ ∃e ∈ C \ A such that A ∪ {e} ∈ I.

Sets in I are called independent sets.

Example (Linear matroid)
Let E = {vi : i = 1, . . . , k} ⊆ Rn and take

W ∈ I ⇔ vectors in W are linearly independent.

Augmentation property: Note that if |C| ≥ |A|+ 1 and every vi ∈ C is a
linear combination of vectors in A, then span(C) ⊆ span(A), and hence
|C| = dim(span(C)) ≤ dim(span(A)) = |A|, which gives a contradiction.

4 / 31

Matroid

Definition (Matroid)

Set systemM = (E , I) with non-empty I ⊆ 2E = {X : X ⊆ E} is
matroid if it satisfies the following:

Downward-closed : A ∈ I and B ⊆ A⇒ B ∈ I,
Augmentation property :

A,C ∈ I and |C| > |A| ⇒ ∃e ∈ C \ A such that A ∪ {e} ∈ I.

Sets in I are called independent sets.

Example (Linear matroid)
Let E = {vi : i = 1, . . . , k} ⊆ Rn and take

W ∈ I ⇔ vectors in W are linearly independent.

Augmentation property: Note that if |C| ≥ |A|+ 1 and every vi ∈ C is a
linear combination of vectors in A, then span(C) ⊆ span(A), and hence
|C| = dim(span(C)) ≤ dim(span(A)) = |A|, which gives a contradiction.

4 / 31

Matroid

Definition (Matroid)

Set systemM = (E , I) with non-empty I ⊆ 2E = {X : X ⊆ E} is
matroid if it satisfies the following:

Downward-closed : A ∈ I and B ⊆ A⇒ B ∈ I,
Augmentation property :

A,C ∈ I and |C| > |A| ⇒ ∃e ∈ C \ A such that A ∪ {e} ∈ I.

Sets in I are called independent sets.

Example (Linear matroid)
Let E = {vi : i = 1, . . . , k} ⊆ Rn and take

W ∈ I ⇔ vectors in W are linearly independent.

Augmentation property: Note that if |C| ≥ |A|+ 1 and every vi ∈ C is a
linear combination of vectors in A, then span(C) ⊆ span(A), and hence
|C| = dim(span(C)) ≤ dim(span(A)) = |A|, which gives a contradiction.

4 / 31

Matroid

Definition (Matroid)

Set systemM = (E , I) with non-empty I ⊆ 2E = {X : X ⊆ E} is
matroid if it satisfies the following:

Downward-closed : A ∈ I and B ⊆ A⇒ B ∈ I,
Augmentation property :

A,C ∈ I and |C| > |A| ⇒ ∃e ∈ C \ A such that A ∪ {e} ∈ I.

Sets in I are called independent sets.

Example (Linear matroid)
Let E = {vi : i = 1, . . . , k} ⊆ Rn and take

W ∈ I ⇔ vectors in W are linearly independent.

Augmentation property: Note that if |C| ≥ |A|+ 1 and every vi ∈ C is a
linear combination of vectors in A, then span(C) ⊆ span(A), and hence
|C| = dim(span(C)) ≤ dim(span(A)) = |A|, which gives a contradiction.

4 / 31

Matroid

Definition (Matroid)

Set systemM = (E , I) with non-empty I ⊆ 2E = {X : X ⊆ E} is
matroid if it satisfies the following:

Downward-closed : A ∈ I and B ⊆ A⇒ B ∈ I,
Augmentation property :

A,C ∈ I and |C| > |A| ⇒ ∃e ∈ C \ A such that A ∪ {e} ∈ I.

Sets in I are called independent sets.

Example (Linear matroid)
Let E = {vi : i = 1, . . . , k} ⊆ Rn and take

W ∈ I ⇔ vectors in W are linearly independent.

Augmentation property: Note that if |C| ≥ |A|+ 1 and every vi ∈ C is a
linear combination of vectors in A,

then span(C) ⊆ span(A), and hence
|C| = dim(span(C)) ≤ dim(span(A)) = |A|, which gives a contradiction.

4 / 31

Matroid

Definition (Matroid)

Set systemM = (E , I) with non-empty I ⊆ 2E = {X : X ⊆ E} is
matroid if it satisfies the following:

Downward-closed : A ∈ I and B ⊆ A⇒ B ∈ I,
Augmentation property :

A,C ∈ I and |C| > |A| ⇒ ∃e ∈ C \ A such that A ∪ {e} ∈ I.

Sets in I are called independent sets.

Example (Linear matroid)
Let E = {vi : i = 1, . . . , k} ⊆ Rn and take

W ∈ I ⇔ vectors in W are linearly independent.

Augmentation property: Note that if |C| ≥ |A|+ 1 and every vi ∈ C is a
linear combination of vectors in A, then span(C) ⊆ span(A),

and hence
|C| = dim(span(C)) ≤ dim(span(A)) = |A|, which gives a contradiction.

4 / 31

Matroid

Definition (Matroid)

Set systemM = (E , I) with non-empty I ⊆ 2E = {X : X ⊆ E} is
matroid if it satisfies the following:

Downward-closed : A ∈ I and B ⊆ A⇒ B ∈ I,
Augmentation property :

A,C ∈ I and |C| > |A| ⇒ ∃e ∈ C \ A such that A ∪ {e} ∈ I.

Sets in I are called independent sets.

Example (Linear matroid)
Let E = {vi : i = 1, . . . , k} ⊆ Rn and take

W ∈ I ⇔ vectors in W are linearly independent.

Augmentation property: Note that if |C| ≥ |A|+ 1 and every vi ∈ C is a
linear combination of vectors in A, then span(C) ⊆ span(A), and hence
|C| = dim(span(C)) ≤ dim(span(A)) = |A|,

which gives a contradiction.

4 / 31

Matroid

Definition (Matroid)

Set systemM = (E , I) with non-empty I ⊆ 2E = {X : X ⊆ E} is
matroid if it satisfies the following:

Downward-closed : A ∈ I and B ⊆ A⇒ B ∈ I,
Augmentation property :

A,C ∈ I and |C| > |A| ⇒ ∃e ∈ C \ A such that A ∪ {e} ∈ I.

Sets in I are called independent sets.

Example (Linear matroid)
Let E = {vi : i = 1, . . . , k} ⊆ Rn and take

W ∈ I ⇔ vectors in W are linearly independent.

Augmentation property: Note that if |C| ≥ |A|+ 1 and every vi ∈ C is a
linear combination of vectors in A, then span(C) ⊆ span(A), and hence
|C| = dim(span(C)) ≤ dim(span(A)) = |A|, which gives a contradiction.

4 / 31

Example (Graphic matroid)
Let G = (V ,E) be undirected graph and consider matroidM = (E , I),
with ground the edges E of G, given by

W ∈ I ⇔ subgraph with edges of W has no cycle.

5 / 31

Example (Graphic matroid)
Let G = (V ,E) be undirected graph and consider matroidM = (E , I),
with ground the edges E of G, given by

W ∈ I ⇔ subgraph with edges of W has no cycle.

G

5 / 31

Example (Graphic matroid)
Let G = (V ,E) be undirected graph and consider matroidM = (E , I),
with ground the edges E of G, given by

W ∈ I ⇔ subgraph with edges of W has no cycle.

G

5 / 31

Example (Graphic matroid)
Let G = (V ,E) be undirected graph and consider matroidM = (E , I),
with ground the edges E of G, given by

W ∈ I ⇔ subgraph with edges of W has no cycle.

G

5 / 31

Example (Graphic matroid)
Let G = (V ,E) be undirected graph and consider matroidM = (E , I),
with ground the edges E of G, given by

W ∈ I ⇔ subgraph with edges of W has no cycle.

G

5 / 31

Example (Graphic matroid)
Let G = (V ,E) be undirected graph and consider matroidM = (E , I),
with ground the edges E of G, given by

W ∈ I ⇔ subgraph with edges of W has no cycle.

G

5 / 31

Bases of a matroid

Maximal independents set of a matroidM = (E , I) are called bases.

Definition (Base)
An independent set X ∈ I is a base if for every e ∈ E \ X it holds that
X + e /∈ I, i.e., no element can be added to X while preserving
independence.

Lemma
All bases of a given matroidM have the same cardinality. This
common cardinality r is called the rank of the matroid.

Example
Bases of graphic matroid on G = (V ,E), with |V | = n, are
spanning trees (when G is connected). Rank is n − 1.

6 / 31

Bases of a matroid

Maximal independents set of a matroidM = (E , I) are called bases.

Definition (Base)
An independent set X ∈ I is a base if for every e ∈ E \ X it holds that
X + e /∈ I,

i.e., no element can be added to X while preserving
independence.

Lemma
All bases of a given matroidM have the same cardinality. This
common cardinality r is called the rank of the matroid.

Example
Bases of graphic matroid on G = (V ,E), with |V | = n, are
spanning trees (when G is connected). Rank is n − 1.

6 / 31

Bases of a matroid

Maximal independents set of a matroidM = (E , I) are called bases.

Definition (Base)
An independent set X ∈ I is a base if for every e ∈ E \ X it holds that
X + e /∈ I, i.e., no element can be added to X while preserving
independence.

Lemma
All bases of a given matroidM have the same cardinality. This
common cardinality r is called the rank of the matroid.

Example
Bases of graphic matroid on G = (V ,E), with |V | = n, are
spanning trees (when G is connected). Rank is n − 1.

6 / 31

Bases of a matroid

Maximal independents set of a matroidM = (E , I) are called bases.

Definition (Base)
An independent set X ∈ I is a base if for every e ∈ E \ X it holds that
X + e /∈ I, i.e., no element can be added to X while preserving
independence.

Lemma
All bases of a given matroidM have the same cardinality.

This
common cardinality r is called the rank of the matroid.

Example
Bases of graphic matroid on G = (V ,E), with |V | = n, are
spanning trees (when G is connected). Rank is n − 1.

6 / 31

Bases of a matroid

Maximal independents set of a matroidM = (E , I) are called bases.

Definition (Base)
An independent set X ∈ I is a base if for every e ∈ E \ X it holds that
X + e /∈ I, i.e., no element can be added to X while preserving
independence.

Lemma
All bases of a given matroidM have the same cardinality. This
common cardinality r is called the rank of the matroid.

Example
Bases of graphic matroid on G = (V ,E), with |V | = n, are
spanning trees (when G is connected). Rank is n − 1.

6 / 31

Bases of a matroid

Maximal independents set of a matroidM = (E , I) are called bases.

Definition (Base)
An independent set X ∈ I is a base if for every e ∈ E \ X it holds that
X + e /∈ I, i.e., no element can be added to X while preserving
independence.

Lemma
All bases of a given matroidM have the same cardinality. This
common cardinality r is called the rank of the matroid.

Example
Bases of graphic matroid on G = (V ,E), with |V | = n, are
spanning trees (when G is connected).

Rank is n − 1.

6 / 31

Bases of a matroid

Maximal independents set of a matroidM = (E , I) are called bases.

Definition (Base)
An independent set X ∈ I is a base if for every e ∈ E \ X it holds that
X + e /∈ I, i.e., no element can be added to X while preserving
independence.

Lemma
All bases of a given matroidM have the same cardinality. This
common cardinality r is called the rank of the matroid.

Example
Bases of graphic matroid on G = (V ,E), with |V | = n, are
spanning trees (when G is connected). Rank is n − 1.

6 / 31

Bases of a matroid

Maximal independents set of a matroidM = (E , I) are called bases.

Definition (Base)
An independent set X ∈ I is a base if for every e ∈ E \ X it holds that
X + e /∈ I, i.e., no element can be added to X while preserving
independence.

Lemma
All bases of a given matroidM have the same cardinality. This
common cardinality r is called the rank of the matroid.

Example
Bases of graphic matroid on G = (V ,E), with |V | = n, are
spanning trees (when G is connected). Rank is n − 1.

6 / 31

(Offline) maximum weight independent set

Consider matroidM = (E , I) with E = {e1, . . . ,em}.
Rename elements such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm
Set X = ∅. For i = 1, . . . ,m:

If X + ei ∈ I, then set X ← X + ei .

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

a b

c

de

f

1

3

2

4

5

6

7
8

9

7 / 31

(Offline) maximum weight independent set

Consider matroidM = (E , I) with E = {e1, . . . ,em}.

Rename elements such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm
Set X = ∅. For i = 1, . . . ,m:

If X + ei ∈ I, then set X ← X + ei .

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

a b

c

de

f

1

3

2

4

5

6

7
8

9

7 / 31

(Offline) maximum weight independent set

Consider matroidM = (E , I) with E = {e1, . . . ,em}.
Rename elements such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm
Set X = ∅. For i = 1, . . . ,m:

If X + ei ∈ I, then set X ← X + ei .

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

a b

c

de

f

1

3

2

4

5

6

7
8

9

7 / 31

(Offline) maximum weight independent set

Consider matroidM = (E , I) with E = {e1, . . . ,em}.
Rename elements such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm
Set X = ∅. For i = 1, . . . ,m:

If X + ei ∈ I, then set X ← X + ei .

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

a b

c

de

f

1

3

2

4

5

6

7
8

9

7 / 31

(Offline) maximum weight independent set

Consider matroidM = (E , I) with E = {e1, . . . ,em}.
Rename elements such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm
Set X = ∅.

For i = 1, . . . ,m:
If X + ei ∈ I, then set X ← X + ei .

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

a b

c

de

f

1

3

2

4

5

6

7
8

9

7 / 31

(Offline) maximum weight independent set

Consider matroidM = (E , I) with E = {e1, . . . ,em}.
Rename elements such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm
Set X = ∅. For i = 1, . . . ,m:

If X + ei ∈ I, then set X ← X + ei .

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

a b

c

de

f

1

3

2

4

5

6

7
8

9

7 / 31

(Offline) maximum weight independent set

Consider matroidM = (E , I) with E = {e1, . . . ,em}.
Rename elements such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm
Set X = ∅. For i = 1, . . . ,m:

If X + ei ∈ I, then set X ← X + ei .

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

a b

c

de

f

1

3

2

4

5

6

7
8

9

7 / 31

(Offline) maximum weight independent set

Consider matroidM = (E , I) with E = {e1, . . . ,em}.
Rename elements such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm
Set X = ∅. For i = 1, . . . ,m:

If X + ei ∈ I, then set X ← X + ei .

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

a b

c

de

f

1

3

2

4

5

6

7
8

9

7 / 31

(Offline) maximum weight independent set

Consider matroidM = (E , I) with E = {e1, . . . ,em}.
Rename elements such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm
Set X = ∅. For i = 1, . . . ,m:

If X + ei ∈ I, then set X ← X + ei .

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

a b

c

de

f

1

3

2

4

5

6

7
8

99

7 / 31

(Offline) maximum weight independent set

Consider matroidM = (E , I) with E = {e1, . . . ,em}.
Rename elements such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm
Set X = ∅. For i = 1, . . . ,m:

If X + ei ∈ I, then set X ← X + ei .

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

a b

c

de

f

1

3

2

4

5

6

7
8

99
8

7 / 31

(Offline) maximum weight independent set

Consider matroidM = (E , I) with E = {e1, . . . ,em}.
Rename elements such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm
Set X = ∅. For i = 1, . . . ,m:

If X + ei ∈ I, then set X ← X + ei .

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

a b

c

de

f

1

3

2

4

5

6

7
8

99
8

7

7 / 31

(Offline) maximum weight independent set

Consider matroidM = (E , I) with E = {e1, . . . ,em}.
Rename elements such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm
Set X = ∅. For i = 1, . . . ,m:

If X + ei ∈ I, then set X ← X + ei .

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

a b

c

de

f

1

3

2

4

5

6

7
8

99
8

7

6

7 / 31

(Offline) maximum weight independent set

Consider matroidM = (E , I) with E = {e1, . . . ,em}.
Rename elements such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm
Set X = ∅. For i = 1, . . . ,m:

If X + ei ∈ I, then set X ← X + ei .

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

a b

c

de

f

1

3

2

4

5

6

7
8

99
8

7

6 3

7 / 31

Matroid secretary problem

8 / 31

Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroidM = (E , I). Set X = ∅.
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is independent, i.e., X + e ∈ I.

Matroid secretary problem: Select (online) independent set
X ∈ I of maximum weight.

In the offline setting, X is maximum weight base of the matroid.
Generalization of the secretary problem.

Corresponds to the so-called 1-uniform matroid.
In k -uniform matroid, X ∈ I if and only if |X | ≤ k .

9 / 31

Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroidM = (E , I). Set X = ∅.
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is independent, i.e., X + e ∈ I.

Matroid secretary problem: Select (online) independent set
X ∈ I of maximum weight.

In the offline setting, X is maximum weight base of the matroid.
Generalization of the secretary problem.

Corresponds to the so-called 1-uniform matroid.
In k -uniform matroid, X ∈ I if and only if |X | ≤ k .

9 / 31

Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroidM = (E , I). Set X = ∅.

Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is independent, i.e., X + e ∈ I.

Matroid secretary problem: Select (online) independent set
X ∈ I of maximum weight.

In the offline setting, X is maximum weight base of the matroid.
Generalization of the secretary problem.

Corresponds to the so-called 1-uniform matroid.
In k -uniform matroid, X ∈ I if and only if |X | ≤ k .

9 / 31

Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroidM = (E , I). Set X = ∅.
Elements in E arrive in unknown uniform random arrival order σ.

Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is independent, i.e., X + e ∈ I.

Matroid secretary problem: Select (online) independent set
X ∈ I of maximum weight.

In the offline setting, X is maximum weight base of the matroid.
Generalization of the secretary problem.

Corresponds to the so-called 1-uniform matroid.
In k -uniform matroid, X ∈ I if and only if |X | ≤ k .

9 / 31

Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroidM = (E , I). Set X = ∅.
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.

Decide irrevocably whether to accept or reject it.
Acceptance is only allowed if X + e is independent, i.e., X + e ∈ I.

Matroid secretary problem: Select (online) independent set
X ∈ I of maximum weight.

In the offline setting, X is maximum weight base of the matroid.
Generalization of the secretary problem.

Corresponds to the so-called 1-uniform matroid.
In k -uniform matroid, X ∈ I if and only if |X | ≤ k .

9 / 31

Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroidM = (E , I). Set X = ∅.
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is independent, i.e., X + e ∈ I.

Matroid secretary problem: Select (online) independent set
X ∈ I of maximum weight.

In the offline setting, X is maximum weight base of the matroid.
Generalization of the secretary problem.

Corresponds to the so-called 1-uniform matroid.
In k -uniform matroid, X ∈ I if and only if |X | ≤ k .

9 / 31

Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroidM = (E , I). Set X = ∅.
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is independent, i.e., X + e ∈ I.

Matroid secretary problem: Select (online) independent set
X ∈ I of maximum weight.

In the offline setting, X is maximum weight base of the matroid.
Generalization of the secretary problem.

Corresponds to the so-called 1-uniform matroid.
In k -uniform matroid, X ∈ I if and only if |X | ≤ k .

9 / 31

Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroidM = (E , I). Set X = ∅.
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is independent, i.e., X + e ∈ I.

Matroid secretary problem: Select (online) independent set
X ∈ I of maximum weight.

In the offline setting, X is maximum weight base of the matroid.

Generalization of the secretary problem.
Corresponds to the so-called 1-uniform matroid.
In k -uniform matroid, X ∈ I if and only if |X | ≤ k .

9 / 31

Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroidM = (E , I). Set X = ∅.
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is independent, i.e., X + e ∈ I.

Matroid secretary problem: Select (online) independent set
X ∈ I of maximum weight.

In the offline setting, X is maximum weight base of the matroid.
Generalization of the secretary problem.

Corresponds to the so-called 1-uniform matroid.
In k -uniform matroid, X ∈ I if and only if |X | ≤ k .

9 / 31

Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroidM = (E , I). Set X = ∅.
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is independent, i.e., X + e ∈ I.

Matroid secretary problem: Select (online) independent set
X ∈ I of maximum weight.

In the offline setting, X is maximum weight base of the matroid.
Generalization of the secretary problem.

Corresponds to the so-called 1-uniform matroid.

In k -uniform matroid, X ∈ I if and only if |X | ≤ k .

9 / 31

Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroidM = (E , I). Set X = ∅.
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is independent, i.e., X + e ∈ I.

Matroid secretary problem: Select (online) independent set
X ∈ I of maximum weight.

In the offline setting, X is maximum weight base of the matroid.
Generalization of the secretary problem.

Corresponds to the so-called 1-uniform matroid.
In k -uniform matroid, X ∈ I if and only if |X | ≤ k .

9 / 31

Some literature

About the matroid secretary problem:
Problem introduced by Babaioff, Immorlica and Kleinberg (2007).

They gave Ω
(

1
log(r)

)
-approximation.

Remember that r is rank of the matroid.
State of the art: Ω

(
1

log log(r)

)
-approximation.

First by Lachish (2014).
Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases
Graphic matroids, k -uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

Stronger question: Does there exist a 1
e -approximation?

Would yield (another) generalization of secretary problem.

10 / 31

Some literature

About the matroid secretary problem:

Problem introduced by Babaioff, Immorlica and Kleinberg (2007).
They gave Ω

(
1

log(r)

)
-approximation.

Remember that r is rank of the matroid.
State of the art: Ω

(
1

log log(r)

)
-approximation.

First by Lachish (2014).
Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases
Graphic matroids, k -uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

Stronger question: Does there exist a 1
e -approximation?

Would yield (another) generalization of secretary problem.

10 / 31

Some literature

About the matroid secretary problem:
Problem introduced by Babaioff, Immorlica and Kleinberg (2007).

They gave Ω
(

1
log(r)

)
-approximation.

Remember that r is rank of the matroid.
State of the art: Ω

(
1

log log(r)

)
-approximation.

First by Lachish (2014).
Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases
Graphic matroids, k -uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

Stronger question: Does there exist a 1
e -approximation?

Would yield (another) generalization of secretary problem.

10 / 31

Some literature

About the matroid secretary problem:
Problem introduced by Babaioff, Immorlica and Kleinberg (2007).

They gave Ω
(

1
log(r)

)
-approximation.

Remember that r is rank of the matroid.
State of the art: Ω

(
1

log log(r)

)
-approximation.

First by Lachish (2014).
Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases
Graphic matroids, k -uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

Stronger question: Does there exist a 1
e -approximation?

Would yield (another) generalization of secretary problem.

10 / 31

Some literature

About the matroid secretary problem:
Problem introduced by Babaioff, Immorlica and Kleinberg (2007).

They gave Ω
(

1
log(r)

)
-approximation.

Remember that r is rank of the matroid.

State of the art: Ω
(

1
log log(r)

)
-approximation.

First by Lachish (2014).
Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases
Graphic matroids, k -uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

Stronger question: Does there exist a 1
e -approximation?

Would yield (another) generalization of secretary problem.

10 / 31

Some literature

About the matroid secretary problem:
Problem introduced by Babaioff, Immorlica and Kleinberg (2007).

They gave Ω
(

1
log(r)

)
-approximation.

Remember that r is rank of the matroid.
State of the art: Ω

(
1

log log(r)

)
-approximation.

First by Lachish (2014).
Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases
Graphic matroids, k -uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

Stronger question: Does there exist a 1
e -approximation?

Would yield (another) generalization of secretary problem.

10 / 31

Some literature

About the matroid secretary problem:
Problem introduced by Babaioff, Immorlica and Kleinberg (2007).

They gave Ω
(

1
log(r)

)
-approximation.

Remember that r is rank of the matroid.
State of the art: Ω

(
1

log log(r)

)
-approximation.

First by Lachish (2014).

Simpler algorithm by Feldman, Svensson and Zenklusen (2015).
Constant factor approximations known for various special cases

Graphic matroids, k -uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

Stronger question: Does there exist a 1
e -approximation?

Would yield (another) generalization of secretary problem.

10 / 31

Some literature

About the matroid secretary problem:
Problem introduced by Babaioff, Immorlica and Kleinberg (2007).

They gave Ω
(

1
log(r)

)
-approximation.

Remember that r is rank of the matroid.
State of the art: Ω

(
1

log log(r)

)
-approximation.

First by Lachish (2014).
Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases
Graphic matroids, k -uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

Stronger question: Does there exist a 1
e -approximation?

Would yield (another) generalization of secretary problem.

10 / 31

Some literature

About the matroid secretary problem:
Problem introduced by Babaioff, Immorlica and Kleinberg (2007).

They gave Ω
(

1
log(r)

)
-approximation.

Remember that r is rank of the matroid.
State of the art: Ω

(
1

log log(r)

)
-approximation.

First by Lachish (2014).
Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases

Graphic matroids, k -uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

Stronger question: Does there exist a 1
e -approximation?

Would yield (another) generalization of secretary problem.

10 / 31

Some literature

About the matroid secretary problem:
Problem introduced by Babaioff, Immorlica and Kleinberg (2007).

They gave Ω
(

1
log(r)

)
-approximation.

Remember that r is rank of the matroid.
State of the art: Ω

(
1

log log(r)

)
-approximation.

First by Lachish (2014).
Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases
Graphic matroids, k -uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

Stronger question: Does there exist a 1
e -approximation?

Would yield (another) generalization of secretary problem.

10 / 31

Some literature

About the matroid secretary problem:
Problem introduced by Babaioff, Immorlica and Kleinberg (2007).

They gave Ω
(

1
log(r)

)
-approximation.

Remember that r is rank of the matroid.
State of the art: Ω

(
1

log log(r)

)
-approximation.

First by Lachish (2014).
Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases
Graphic matroids, k -uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

Stronger question: Does there exist a 1
e -approximation?

Would yield (another) generalization of secretary problem.

10 / 31

Some literature

About the matroid secretary problem:
Problem introduced by Babaioff, Immorlica and Kleinberg (2007).

They gave Ω
(

1
log(r)

)
-approximation.

Remember that r is rank of the matroid.
State of the art: Ω

(
1

log log(r)

)
-approximation.

First by Lachish (2014).
Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases
Graphic matroids, k -uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

Stronger question: Does there exist a 1
e -approximation?

Would yield (another) generalization of secretary problem.

10 / 31

Some literature

About the matroid secretary problem:
Problem introduced by Babaioff, Immorlica and Kleinberg (2007).

They gave Ω
(

1
log(r)

)
-approximation.

Remember that r is rank of the matroid.
State of the art: Ω

(
1

log log(r)

)
-approximation.

First by Lachish (2014).
Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases
Graphic matroids, k -uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

Stronger question: Does there exist a 1
e -approximation?

Would yield (another) generalization of secretary problem.
10 / 31

Matroid secretary problem
Ω
(

1
log(r)

)
-approximation

11 / 31

Random threshold algorithm

Consider (given) matroidM = (E , I) of rank r with |E | = m.

Random threshold algorithm for arrival order σ
Set X = ∅.
Phase I (Observation).

For i = 1, . . . , m
2 : Reject σ(i).

Phase II (Selection).
Let w = maxi=1,...,m/2 wσ(i), and choose j ∈ {0,1 . . . , dlog(r)e}
uniformly at random.
Set threshold

t =
w
2j .

For i = m
2 + 1, . . . ,m: Select σ(i) if wσ(i) ≥ t and X + σ(i) ∈ I.

12 / 31

Random threshold algorithm

Consider (given) matroidM = (E , I) of rank r with |E | = m.

Random threshold algorithm for arrival order σ
Set X = ∅.

Phase I (Observation).
For i = 1, . . . , m

2 : Reject σ(i).
Phase II (Selection).

Let w = maxi=1,...,m/2 wσ(i), and choose j ∈ {0,1 . . . , dlog(r)e}
uniformly at random.
Set threshold

t =
w
2j .

For i = m
2 + 1, . . . ,m: Select σ(i) if wσ(i) ≥ t and X + σ(i) ∈ I.

12 / 31

Random threshold algorithm

Consider (given) matroidM = (E , I) of rank r with |E | = m.

Random threshold algorithm for arrival order σ
Set X = ∅.
Phase I (Observation).

For i = 1, . . . , m
2 :

Reject σ(i).
Phase II (Selection).

Let w = maxi=1,...,m/2 wσ(i), and choose j ∈ {0,1 . . . , dlog(r)e}
uniformly at random.
Set threshold

t =
w
2j .

For i = m
2 + 1, . . . ,m: Select σ(i) if wσ(i) ≥ t and X + σ(i) ∈ I.

12 / 31

Random threshold algorithm

Consider (given) matroidM = (E , I) of rank r with |E | = m.

Random threshold algorithm for arrival order σ
Set X = ∅.
Phase I (Observation).

For i = 1, . . . , m
2 : Reject σ(i).

Phase II (Selection).
Let w = maxi=1,...,m/2 wσ(i), and choose j ∈ {0,1 . . . , dlog(r)e}
uniformly at random.
Set threshold

t =
w
2j .

For i = m
2 + 1, . . . ,m: Select σ(i) if wσ(i) ≥ t and X + σ(i) ∈ I.

12 / 31

Random threshold algorithm

Consider (given) matroidM = (E , I) of rank r with |E | = m.

Random threshold algorithm for arrival order σ
Set X = ∅.
Phase I (Observation).

For i = 1, . . . , m
2 : Reject σ(i).

Phase II (Selection).

Let w = maxi=1,...,m/2 wσ(i), and choose j ∈ {0,1 . . . , dlog(r)e}
uniformly at random.
Set threshold

t =
w
2j .

For i = m
2 + 1, . . . ,m: Select σ(i) if wσ(i) ≥ t and X + σ(i) ∈ I.

12 / 31

Random threshold algorithm

Consider (given) matroidM = (E , I) of rank r with |E | = m.

Random threshold algorithm for arrival order σ
Set X = ∅.
Phase I (Observation).

For i = 1, . . . , m
2 : Reject σ(i).

Phase II (Selection).
Let w = maxi=1,...,m/2 wσ(i),

and choose j ∈ {0,1 . . . , dlog(r)e}
uniformly at random.
Set threshold

t =
w
2j .

For i = m
2 + 1, . . . ,m: Select σ(i) if wσ(i) ≥ t and X + σ(i) ∈ I.

12 / 31

Random threshold algorithm

Consider (given) matroidM = (E , I) of rank r with |E | = m.

Random threshold algorithm for arrival order σ
Set X = ∅.
Phase I (Observation).

For i = 1, . . . , m
2 : Reject σ(i).

Phase II (Selection).
Let w = maxi=1,...,m/2 wσ(i), and choose j ∈ {0,1 . . . , dlog(r)e}
uniformly at random.

Set threshold
t =

w
2j .

For i = m
2 + 1, . . . ,m: Select σ(i) if wσ(i) ≥ t and X + σ(i) ∈ I.

12 / 31

Random threshold algorithm

Consider (given) matroidM = (E , I) of rank r with |E | = m.

Random threshold algorithm for arrival order σ
Set X = ∅.
Phase I (Observation).

For i = 1, . . . , m
2 : Reject σ(i).

Phase II (Selection).
Let w = maxi=1,...,m/2 wσ(i), and choose j ∈ {0,1 . . . , dlog(r)e}
uniformly at random.
Set threshold

t =
w
2j .

For i = m
2 + 1, . . . ,m: Select σ(i) if wσ(i) ≥ t and X + σ(i) ∈ I.

12 / 31

Random threshold algorithm

Consider (given) matroidM = (E , I) of rank r with |E | = m.

Random threshold algorithm for arrival order σ
Set X = ∅.
Phase I (Observation).

For i = 1, . . . , m
2 : Reject σ(i).

Phase II (Selection).
Let w = maxi=1,...,m/2 wσ(i), and choose j ∈ {0,1 . . . , dlog(r)e}
uniformly at random.
Set threshold

t =
w
2j .

For i = m
2 + 1, . . . ,m: Select σ(i) if wσ(i) ≥ t and X + σ(i) ∈ I.

12 / 31

0

Weight

m
Phase I

i = 1, . . . , m
2

Phase II
i = m

2 + 1, . . . ,m

Consider graphic matroid as example:

13 / 31

0

Weight

m
Phase I

i = 1, . . . , m
2

Phase II
i = m

2 + 1, . . . ,m

Consider graphic matroid as example:

13 / 31

0

Weight

m
Phase I

i = 1, . . . , m
2

Phase II
i = m

2 + 1, . . . ,m

Consider graphic matroid as example:

13 / 31

0

Weight

m
Phase I

i = 1, . . . , m
2

Phase II
i = m

2 + 1, . . . ,m

Consider graphic matroid as example:

13 / 31

0

Weight

m
Phase I

i = 1, . . . , m
2

Phase II
i = m

2 + 1, . . . ,m

Consider graphic matroid as example:

13 / 31

0

Weight

m
Phase I

i = 1, . . . , m
2

Phase II
i = m

2 + 1, . . . ,m

Consider graphic matroid as example:

13 / 31

0

Weight

m
Phase I

i = 1, . . . , m
2

Phase II
i = m

2 + 1, . . . ,m

t

Consider graphic matroid as example:

13 / 31

0

Weight

m
Phase I

i = 1, . . . , m
2

Phase II
i = m

2 + 1, . . . ,m

t

Consider graphic matroid as example:

13 / 31

0

Weight

m
Phase I

i = 1, . . . , m
2

Phase II
i = m

2 + 1, . . . ,m

t

Consider graphic matroid as example:

13 / 31

0

Weight

m
Phase I

i = 1, . . . , m
2

Phase II
i = m

2 + 1, . . . ,m

t

Consider graphic matroid as example:

13 / 31

0

Weight

m
Phase I

i = 1, . . . , m
2

Phase II
i = m

2 + 1, . . . ,m

t

Consider graphic matroid as example:

13 / 31

0

Weight

m
Phase I

i = 1, . . . , m
2

Phase II
i = m

2 + 1, . . . ,m

t

Consider graphic matroid as example:

13 / 31

Analysis (sketch)

Theorem
The random threshold algorithm is a 1

32(dlog(r)e+1) -approximation,
where r is the rank of the matroid.

Proof: Consider an optimal base B∗ = {x1, . . . , xr}.
Assume that w(x1) > w(x2) > · · · > w(xr).
Let 1 ≤ q ≤ r be the largest number for which w(xq) ≥ w(x1)/r .

Let w = (35,14,8,6,3,2,1), so that r = 7. Then w(x1)
r = 5 and q = 4.

Then it holds that q∑
i=1

w(xi) ≥
1
2
· w(B∗).

Why?
r∑

i=q+1

w(xi) ≤
r∑

i=q+1

w(x1)

r
≤ w(x1).

14 / 31

Analysis (sketch)

Theorem
The random threshold algorithm is a 1

32(dlog(r)e+1) -approximation,
where r is the rank of the matroid.

Proof: Consider an optimal base B∗ = {x1, . . . , xr}.
Assume that w(x1) > w(x2) > · · · > w(xr).
Let 1 ≤ q ≤ r be the largest number for which w(xq) ≥ w(x1)/r .

Let w = (35,14,8,6,3,2,1), so that r = 7. Then w(x1)
r = 5 and q = 4.

Then it holds that q∑
i=1

w(xi) ≥
1
2
· w(B∗).

Why?
r∑

i=q+1

w(xi) ≤
r∑

i=q+1

w(x1)

r
≤ w(x1).

14 / 31

Analysis (sketch)

Theorem
The random threshold algorithm is a 1

32(dlog(r)e+1) -approximation,
where r is the rank of the matroid.

Proof: Consider an optimal base B∗ = {x1, . . . , xr}.

Assume that w(x1) > w(x2) > · · · > w(xr).
Let 1 ≤ q ≤ r be the largest number for which w(xq) ≥ w(x1)/r .

Let w = (35,14,8,6,3,2,1), so that r = 7. Then w(x1)
r = 5 and q = 4.

Then it holds that q∑
i=1

w(xi) ≥
1
2
· w(B∗).

Why?
r∑

i=q+1

w(xi) ≤
r∑

i=q+1

w(x1)

r
≤ w(x1).

14 / 31

Analysis (sketch)

Theorem
The random threshold algorithm is a 1

32(dlog(r)e+1) -approximation,
where r is the rank of the matroid.

Proof: Consider an optimal base B∗ = {x1, . . . , xr}.
Assume that w(x1) > w(x2) > · · · > w(xr).

Let 1 ≤ q ≤ r be the largest number for which w(xq) ≥ w(x1)/r .

Let w = (35,14,8,6,3,2,1), so that r = 7. Then w(x1)
r = 5 and q = 4.

Then it holds that q∑
i=1

w(xi) ≥
1
2
· w(B∗).

Why?
r∑

i=q+1

w(xi) ≤
r∑

i=q+1

w(x1)

r
≤ w(x1).

14 / 31

Analysis (sketch)

Theorem
The random threshold algorithm is a 1

32(dlog(r)e+1) -approximation,
where r is the rank of the matroid.

Proof: Consider an optimal base B∗ = {x1, . . . , xr}.
Assume that w(x1) > w(x2) > · · · > w(xr).
Let 1 ≤ q ≤ r be the largest number for which w(xq) ≥ w(x1)/r .

Let w = (35,14,8,6,3,2,1), so that r = 7. Then w(x1)
r = 5 and q = 4.

Then it holds that q∑
i=1

w(xi) ≥
1
2
· w(B∗).

Why?
r∑

i=q+1

w(xi) ≤
r∑

i=q+1

w(x1)

r
≤ w(x1).

14 / 31

Analysis (sketch)

Theorem
The random threshold algorithm is a 1

32(dlog(r)e+1) -approximation,
where r is the rank of the matroid.

Proof: Consider an optimal base B∗ = {x1, . . . , xr}.
Assume that w(x1) > w(x2) > · · · > w(xr).
Let 1 ≤ q ≤ r be the largest number for which w(xq) ≥ w(x1)/r .

Let w = (35,14,8,6,3,2,1), so that r = 7. Then w(x1)
r = 5 and q = 4.

Then it holds that q∑
i=1

w(xi) ≥
1
2
· w(B∗).

Why?
r∑

i=q+1

w(xi) ≤
r∑

i=q+1

w(x1)

r
≤ w(x1).

14 / 31

Analysis (sketch)

Theorem
The random threshold algorithm is a 1

32(dlog(r)e+1) -approximation,
where r is the rank of the matroid.

Proof: Consider an optimal base B∗ = {x1, . . . , xr}.
Assume that w(x1) > w(x2) > · · · > w(xr).
Let 1 ≤ q ≤ r be the largest number for which w(xq) ≥ w(x1)/r .

Let w = (35,14,8,6,3,2,1), so that r = 7. Then w(x1)
r = 5 and q = 4.

Then it holds that q∑
i=1

w(xi) ≥
1
2
· w(B∗).

Why?
r∑

i=q+1

w(xi) ≤
r∑

i=q+1

w(x1)

r
≤ w(x1).

14 / 31

Analysis (sketch)

Theorem
The random threshold algorithm is a 1

32(dlog(r)e+1) -approximation,
where r is the rank of the matroid.

Proof: Consider an optimal base B∗ = {x1, . . . , xr}.
Assume that w(x1) > w(x2) > · · · > w(xr).
Let 1 ≤ q ≤ r be the largest number for which w(xq) ≥ w(x1)/r .

Let w = (35,14,8,6,3,2,1), so that r = 7. Then w(x1)
r = 5 and q = 4.

Then it holds that q∑
i=1

w(xi) ≥
1
2
· w(B∗).

Why?

r∑
i=q+1

w(xi) ≤
r∑

i=q+1

w(x1)

r
≤ w(x1).

14 / 31

Analysis (sketch)

Theorem
The random threshold algorithm is a 1

32(dlog(r)e+1) -approximation,
where r is the rank of the matroid.

Proof: Consider an optimal base B∗ = {x1, . . . , xr}.
Assume that w(x1) > w(x2) > · · · > w(xr).
Let 1 ≤ q ≤ r be the largest number for which w(xq) ≥ w(x1)/r .

Let w = (35,14,8,6,3,2,1), so that r = 7. Then w(x1)
r = 5 and q = 4.

Then it holds that q∑
i=1

w(xi) ≥
1
2
· w(B∗).

Why?
r∑

i=q+1

w(xi) ≤
r∑

i=q+1

w(x1)

r
≤ w(x1).

14 / 31

Remember we may focus on q largest elements in optimal base
B∗ = {x1, . . . , xr} with w(x1) ≥ · · · ≥ w(xq) ≥ · · · ≥ w(xr).

Some notation for (random) set T :
Let ni(T) be the number of elements whose weight is at least
w(xi).

Note that ni (B∗) = i .

Let mi(T) be the number of elements whose weight is at least
w(xi)/2.

Lemma
Let X be the set outputted by the random threshold algorithm. For
i = 1, . . . ,q, we have (remember ni(B∗) = i)

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

We first show how lemma leads to desired approximation guarantee.

15 / 31

Remember we may focus on q largest elements in optimal base
B∗ = {x1, . . . , xr} with w(x1) ≥ · · · ≥ w(xq) ≥ · · · ≥ w(xr).

Some notation for (random) set T :

Let ni(T) be the number of elements whose weight is at least
w(xi).

Note that ni (B∗) = i .

Let mi(T) be the number of elements whose weight is at least
w(xi)/2.

Lemma
Let X be the set outputted by the random threshold algorithm. For
i = 1, . . . ,q, we have (remember ni(B∗) = i)

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

We first show how lemma leads to desired approximation guarantee.

15 / 31

Remember we may focus on q largest elements in optimal base
B∗ = {x1, . . . , xr} with w(x1) ≥ · · · ≥ w(xq) ≥ · · · ≥ w(xr).

Some notation for (random) set T :
Let ni(T) be the number of elements whose weight is at least
w(xi).

Note that ni (B∗) = i .

Let mi(T) be the number of elements whose weight is at least
w(xi)/2.

Lemma
Let X be the set outputted by the random threshold algorithm. For
i = 1, . . . ,q, we have (remember ni(B∗) = i)

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

We first show how lemma leads to desired approximation guarantee.

15 / 31

Remember we may focus on q largest elements in optimal base
B∗ = {x1, . . . , xr} with w(x1) ≥ · · · ≥ w(xq) ≥ · · · ≥ w(xr).

Some notation for (random) set T :
Let ni(T) be the number of elements whose weight is at least
w(xi).

Note that ni (B∗) = i .

Let mi(T) be the number of elements whose weight is at least
w(xi)/2.

Lemma
Let X be the set outputted by the random threshold algorithm. For
i = 1, . . . ,q, we have (remember ni(B∗) = i)

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

We first show how lemma leads to desired approximation guarantee.

15 / 31

Remember we may focus on q largest elements in optimal base
B∗ = {x1, . . . , xr} with w(x1) ≥ · · · ≥ w(xq) ≥ · · · ≥ w(xr).

Some notation for (random) set T :
Let ni(T) be the number of elements whose weight is at least
w(xi).

Note that ni (B∗) = i .

Let mi(T) be the number of elements whose weight is at least
w(xi)/2.

Lemma
Let X be the set outputted by the random threshold algorithm. For
i = 1, . . . ,q, we have (remember ni(B∗) = i)

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

We first show how lemma leads to desired approximation guarantee.

15 / 31

Remember we may focus on q largest elements in optimal base
B∗ = {x1, . . . , xr} with w(x1) ≥ · · · ≥ w(xq) ≥ · · · ≥ w(xr).

Some notation for (random) set T :
Let ni(T) be the number of elements whose weight is at least
w(xi).

Note that ni (B∗) = i .

Let mi(T) be the number of elements whose weight is at least
w(xi)/2.

Lemma
Let X be the set outputted by the random threshold algorithm.

For
i = 1, . . . ,q, we have (remember ni(B∗) = i)

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

We first show how lemma leads to desired approximation guarantee.

15 / 31

Remember we may focus on q largest elements in optimal base
B∗ = {x1, . . . , xr} with w(x1) ≥ · · · ≥ w(xq) ≥ · · · ≥ w(xr).

Some notation for (random) set T :
Let ni(T) be the number of elements whose weight is at least
w(xi).

Note that ni (B∗) = i .

Let mi(T) be the number of elements whose weight is at least
w(xi)/2.

Lemma
Let X be the set outputted by the random threshold algorithm. For
i = 1, . . . ,q, we have (remember ni(B∗) = i)

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

We first show how lemma leads to desired approximation guarantee.

15 / 31

Remember we may focus on q largest elements in optimal base
B∗ = {x1, . . . , xr} with w(x1) ≥ · · · ≥ w(xq) ≥ · · · ≥ w(xr).

Some notation for (random) set T :
Let ni(T) be the number of elements whose weight is at least
w(xi).

Note that ni (B∗) = i .

Let mi(T) be the number of elements whose weight is at least
w(xi)/2.

Lemma
Let X be the set outputted by the random threshold algorithm. For
i = 1, . . . ,q, we have (remember ni(B∗) = i)

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

We first show how lemma leads to desired approximation guarantee.

15 / 31

Remember we may focus on q largest elements in optimal base
B∗ = {x1, . . . , xr} with w(x1) ≥ · · · ≥ w(xq) ≥ · · · ≥ w(xr).

Some notation for (random) set T :
Let ni(T) be the number of elements whose weight is at least
w(xi).

Note that ni (B∗) = i .

Let mi(T) be the number of elements whose weight is at least
w(xi)/2.

Lemma
Let X be the set outputted by the random threshold algorithm. For
i = 1, . . . ,q, we have (remember ni(B∗) = i)

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

We first show how lemma leads to desired approximation guarantee.

15 / 31

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

Remember mi (X) is number of elements with weight at least w(xi)/2 in X .

First note that (remember ni (B∗) = i)
q∑

i=1

w(xi) =

[q−1∑
i=1

(w(xi)− w(xi+1))ni (B∗)

]
+ w(xq)nq(B∗)

w(X) ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))mi (X)

]
+

1
2

w(xq)mq(X)

The approximation guarantee then follows as

Eσ[w(X)] ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))Eσ[mi(X)]

]
+

1
2

w(xq)Eσ[mq(X)]

≥ 1
16(dlog(r)e+ 1)

([q−1∑
i=1

(w(xi)− w(xi+1))i

]
+ w(xq)q

)

=
1

16(dlog(r)e+ 1)

q∑
i=1

w(xi) ≥
1

32(dlog(r)e+ 1)
w(B∗).

16 / 31

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

Remember mi (X) is number of elements with weight at least w(xi)/2 in X .

First note that (remember ni (B∗) = i)
q∑

i=1

w(xi) =

[q−1∑
i=1

(w(xi)− w(xi+1))ni (B∗)

]
+ w(xq)nq(B∗)

w(X) ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))mi (X)

]
+

1
2

w(xq)mq(X)

The approximation guarantee then follows as

Eσ[w(X)] ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))Eσ[mi(X)]

]
+

1
2

w(xq)Eσ[mq(X)]

≥ 1
16(dlog(r)e+ 1)

([q−1∑
i=1

(w(xi)− w(xi+1))i

]
+ w(xq)q

)

=
1

16(dlog(r)e+ 1)

q∑
i=1

w(xi) ≥
1

32(dlog(r)e+ 1)
w(B∗).

16 / 31

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

Remember mi (X) is number of elements with weight at least w(xi)/2 in X .

First note that (remember ni (B∗) = i)
q∑

i=1

w(xi) =

[q−1∑
i=1

(w(xi)− w(xi+1))ni (B∗)

]
+ w(xq)nq(B∗)

w(X) ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))mi (X)

]
+

1
2

w(xq)mq(X)

The approximation guarantee then follows as

Eσ[w(X)] ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))Eσ[mi(X)]

]
+

1
2

w(xq)Eσ[mq(X)]

≥ 1
16(dlog(r)e+ 1)

([q−1∑
i=1

(w(xi)− w(xi+1))i

]
+ w(xq)q

)

=
1

16(dlog(r)e+ 1)

q∑
i=1

w(xi) ≥
1

32(dlog(r)e+ 1)
w(B∗).

16 / 31

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

Remember mi (X) is number of elements with weight at least w(xi)/2 in X .

First note that (remember ni (B∗) = i)
q∑

i=1

w(xi) =

[q−1∑
i=1

(w(xi)− w(xi+1))ni (B∗)

]
+ w(xq)nq(B∗)

w(X) ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))mi (X)

]
+

1
2

w(xq)mq(X)

The approximation guarantee then follows as

Eσ[w(X)] ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))Eσ[mi(X)]

]
+

1
2

w(xq)Eσ[mq(X)]

≥ 1
16(dlog(r)e+ 1)

([q−1∑
i=1

(w(xi)− w(xi+1))i

]
+ w(xq)q

)

=
1

16(dlog(r)e+ 1)

q∑
i=1

w(xi) ≥
1

32(dlog(r)e+ 1)
w(B∗).

16 / 31

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

Remember mi (X) is number of elements with weight at least w(xi)/2 in X .

First note that (remember ni (B∗) = i)
q∑

i=1

w(xi) =

[q−1∑
i=1

(w(xi)− w(xi+1))ni (B∗)

]
+ w(xq)nq(B∗)

w(X) ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))mi (X)

]
+

1
2

w(xq)mq(X)

The approximation guarantee then follows as

Eσ[w(X)] ≥

1
2

[q−1∑
i=1

(w(xi)− w(xi+1))Eσ[mi(X)]

]
+

1
2

w(xq)Eσ[mq(X)]

≥ 1
16(dlog(r)e+ 1)

([q−1∑
i=1

(w(xi)− w(xi+1))i

]
+ w(xq)q

)

=
1

16(dlog(r)e+ 1)

q∑
i=1

w(xi) ≥
1

32(dlog(r)e+ 1)
w(B∗).

16 / 31

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

Remember mi (X) is number of elements with weight at least w(xi)/2 in X .

First note that (remember ni (B∗) = i)
q∑

i=1

w(xi) =

[q−1∑
i=1

(w(xi)− w(xi+1))ni (B∗)

]
+ w(xq)nq(B∗)

w(X) ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))mi (X)

]
+

1
2

w(xq)mq(X)

The approximation guarantee then follows as

Eσ[w(X)] ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))Eσ[mi(X)]

]
+

1
2

w(xq)Eσ[mq(X)]

≥ 1
16(dlog(r)e+ 1)

([q−1∑
i=1

(w(xi)− w(xi+1))i

]
+ w(xq)q

)

=
1

16(dlog(r)e+ 1)

q∑
i=1

w(xi) ≥
1

32(dlog(r)e+ 1)
w(B∗).

16 / 31

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

Remember mi (X) is number of elements with weight at least w(xi)/2 in X .

First note that (remember ni (B∗) = i)
q∑

i=1

w(xi) =

[q−1∑
i=1

(w(xi)− w(xi+1))ni (B∗)

]
+ w(xq)nq(B∗)

w(X) ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))mi (X)

]
+

1
2

w(xq)mq(X)

The approximation guarantee then follows as

Eσ[w(X)] ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))Eσ[mi(X)]

]
+

1
2

w(xq)Eσ[mq(X)]

≥ 1
16(dlog(r)e+ 1)

([q−1∑
i=1

(w(xi)− w(xi+1))i

]
+ w(xq)q

)

=
1

16(dlog(r)e+ 1)

q∑
i=1

w(xi) ≥
1

32(dlog(r)e+ 1)
w(B∗).

16 / 31

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i .

Remember mi (X) is number of elements with weight at least w(xi)/2 in X .

First note that (remember ni (B∗) = i)
q∑

i=1

w(xi) =

[q−1∑
i=1

(w(xi)− w(xi+1))ni (B∗)

]
+ w(xq)nq(B∗)

w(X) ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))mi (X)

]
+

1
2

w(xq)mq(X)

The approximation guarantee then follows as

Eσ[w(X)] ≥ 1
2

[q−1∑
i=1

(w(xi)− w(xi+1))Eσ[mi(X)]

]
+

1
2

w(xq)Eσ[mq(X)]

≥ 1
16(dlog(r)e+ 1)

([q−1∑
i=1

(w(xi)− w(xi+1))i

]
+ w(xq)q

)

=
1

16(dlog(r)e+ 1)

q∑
i=1

w(xi) ≥
1

32(dlog(r)e+ 1)
w(B∗).

16 / 31

Lemma
Let X be set outputted by algorithm. For i = 1, . . . ,q,

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i

with mi(X) number of elements selected with weight at least w(xi)/2.

Proof: Fix i and let A be the event that (both)
The max. weight element x1 in B∗ appears in Phase I, and
The chosen j ∈ {0, . . . , dlog(r)e} has the property that

w(xi) ≥ t :=
w(x1)

2j ≥ w(xi)

2
. (1)

(In the example, it could also be that w(x1)/r ≥ w(xi)/2.)

Choice of q guarantees w(xi) ≥ w(x1)/r , so at least one j satisfies (1):

P(A) ≥ 1
2(dlog(r)e+ 1)

.

17 / 31

Lemma
Let X be set outputted by algorithm. For i = 1, . . . ,q,

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i

with mi(X) number of elements selected with weight at least w(xi)/2.

Proof: Fix i and let A be the event that (both)

The max. weight element x1 in B∗ appears in Phase I, and
The chosen j ∈ {0, . . . , dlog(r)e} has the property that

w(xi) ≥ t :=
w(x1)

2j ≥ w(xi)

2
. (1)

(In the example, it could also be that w(x1)/r ≥ w(xi)/2.)

Choice of q guarantees w(xi) ≥ w(x1)/r , so at least one j satisfies (1):

P(A) ≥ 1
2(dlog(r)e+ 1)

.

17 / 31

Lemma
Let X be set outputted by algorithm. For i = 1, . . . ,q,

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i

with mi(X) number of elements selected with weight at least w(xi)/2.

Proof: Fix i and let A be the event that (both)
The max. weight element x1 in B∗ appears in Phase I, and

The chosen j ∈ {0, . . . , dlog(r)e} has the property that

w(xi) ≥ t :=
w(x1)

2j ≥ w(xi)

2
. (1)

(In the example, it could also be that w(x1)/r ≥ w(xi)/2.)

Choice of q guarantees w(xi) ≥ w(x1)/r , so at least one j satisfies (1):

P(A) ≥ 1
2(dlog(r)e+ 1)

.

17 / 31

Lemma
Let X be set outputted by algorithm. For i = 1, . . . ,q,

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i

with mi(X) number of elements selected with weight at least w(xi)/2.

Proof: Fix i and let A be the event that (both)
The max. weight element x1 in B∗ appears in Phase I, and
The chosen j ∈ {0, . . . , dlog(r)e} has the property that

w(xi) ≥ t :=
w(x1)

2j ≥ w(xi)

2
. (1)

(In the example, it could also be that w(x1)/r ≥ w(xi)/2.)

Choice of q guarantees w(xi) ≥ w(x1)/r , so at least one j satisfies (1):

P(A) ≥ 1
2(dlog(r)e+ 1)

.

17 / 31

Lemma
Let X be set outputted by algorithm. For i = 1, . . . ,q,

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i

with mi(X) number of elements selected with weight at least w(xi)/2.

Proof: Fix i and let A be the event that (both)
The max. weight element x1 in B∗ appears in Phase I, and
The chosen j ∈ {0, . . . , dlog(r)e} has the property that

w(xi) ≥ t :=
w(x1)

2j ≥ w(xi)

2
. (1)

R

(In the example, it could also be that w(x1)/r ≥ w(xi)/2.)

Choice of q guarantees w(xi) ≥ w(x1)/r , so at least one j satisfies (1):

P(A) ≥ 1
2(dlog(r)e+ 1)

.

17 / 31

Lemma
Let X be set outputted by algorithm. For i = 1, . . . ,q,

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i

with mi(X) number of elements selected with weight at least w(xi)/2.

Proof: Fix i and let A be the event that (both)
The max. weight element x1 in B∗ appears in Phase I, and
The chosen j ∈ {0, . . . , dlog(r)e} has the property that

w(xi) ≥ t :=
w(x1)

2j ≥ w(xi)

2
. (1)

Rw(x1)/r w(xi)/2 t w(xi) w(x1)

(In the example, it could also be that w(x1)/r ≥ w(xi)/2.)

Choice of q guarantees w(xi) ≥ w(x1)/r , so at least one j satisfies (1):

P(A) ≥ 1
2(dlog(r)e+ 1)

.

17 / 31

Lemma
Let X be set outputted by algorithm. For i = 1, . . . ,q,

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i

with mi(X) number of elements selected with weight at least w(xi)/2.

Proof: Fix i and let A be the event that (both)
The max. weight element x1 in B∗ appears in Phase I, and
The chosen j ∈ {0, . . . , dlog(r)e} has the property that

w(xi) ≥ t :=
w(x1)

2j ≥ w(xi)

2
. (1)

Rw(x1)/r w(xi)/2 t w(xi) w(x1)

(In the example, it could also be that w(x1)/r ≥ w(xi)/2.)

Choice of q guarantees w(xi) ≥ w(x1)/r , so at least one j satisfies (1):

P(A) ≥ 1
2(dlog(r)e+ 1)

.

17 / 31

Lemma
Let X be set outputted by algorithm. For i = 1, . . . ,q,

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i

with mi(X) number of elements selected with weight at least w(xi)/2.

Proof: Fix i and let A be the event that (both)
The max. weight element x1 in B∗ appears in Phase I, and
The chosen j ∈ {0, . . . , dlog(r)e} has the property that

w(xi) ≥ t :=
w(x1)

2j ≥ w(xi)

2
. (1)

Rw(x1)/r w(xi)/2 t w(xi) w(x1)

(In the example, it could also be that w(x1)/r ≥ w(xi)/2.)

Choice of q guarantees w(xi) ≥ w(x1)/r , so at least one j satisfies (1):

P(A) ≥ 1
2(dlog(r)e+ 1)

.

17 / 31

Lemma
Let X be set outputted by algorithm. For i = 1, . . . ,q,

Eσ[mi(X)] ≥ 1
8(dlog(r)e+ 1)

· i

with mi(X) number of elements selected with weight at least w(xi)/2.

Proof: Fix i and let A be the event that (both)
The max. weight element x1 in B∗ appears in Phase I, and
The chosen j ∈ {0, . . . , dlog(r)e} has the property that

w(xi) ≥ t :=
w(x1)

2j ≥ w(xi)

2
. (1)

Rw(x1)/r w(xi)/2 t w(xi) w(x1)

(In the example, it could also be that w(x1)/r ≥ w(xi)/2.)

Choice of q guarantees w(xi) ≥ w(x1)/r , so at least one j satisfies (1):

P(A) ≥ 1
2(dlog(r)e+ 1)

.
17 / 31

With probability P(A) ≥ 1/(2(dlog(r)e+ 1)), chosen j is such that

w(xi) ≥ t =
w(x1)

2j ≥ w(xi)

2
.

For any 1 ≤ j < i , it holds that w(xj) ≥ w(xi) ≥ t .
Every such xj can potentially be chosen in Phase II as it exceeds
the threshold.

It might be rejected still based on the independence criterium.

For given ordering σ, let Y be cardinality of maximal size independent
set of threshold-exceeding elements that appear in Phase II.

Because the set {x2, . . . , xi} is independent, it follows that

Eσ[Y | A] ≥ i − 1
2
≥ i

4

as every xj appears in Phase II with prob. 1/2.
Here we use the fact that we are considering a matroid!

18 / 31

With probability P(A) ≥ 1/(2(dlog(r)e+ 1)), chosen j is such that

w(xi) ≥ t =
w(x1)

2j ≥ w(xi)

2
.

For any 1 ≤ j < i , it holds that w(xj) ≥ w(xi) ≥ t .

Every such xj can potentially be chosen in Phase II as it exceeds
the threshold.

It might be rejected still based on the independence criterium.

For given ordering σ, let Y be cardinality of maximal size independent
set of threshold-exceeding elements that appear in Phase II.

Because the set {x2, . . . , xi} is independent, it follows that

Eσ[Y | A] ≥ i − 1
2
≥ i

4

as every xj appears in Phase II with prob. 1/2.
Here we use the fact that we are considering a matroid!

18 / 31

With probability P(A) ≥ 1/(2(dlog(r)e+ 1)), chosen j is such that

w(xi) ≥ t =
w(x1)

2j ≥ w(xi)

2
.

For any 1 ≤ j < i , it holds that w(xj) ≥ w(xi) ≥ t .
Every such xj can potentially be chosen in Phase II as it exceeds
the threshold.

It might be rejected still based on the independence criterium.

For given ordering σ, let Y be cardinality of maximal size independent
set of threshold-exceeding elements that appear in Phase II.

Because the set {x2, . . . , xi} is independent, it follows that

Eσ[Y | A] ≥ i − 1
2
≥ i

4

as every xj appears in Phase II with prob. 1/2.
Here we use the fact that we are considering a matroid!

18 / 31

With probability P(A) ≥ 1/(2(dlog(r)e+ 1)), chosen j is such that

w(xi) ≥ t =
w(x1)

2j ≥ w(xi)

2
.

For any 1 ≤ j < i , it holds that w(xj) ≥ w(xi) ≥ t .
Every such xj can potentially be chosen in Phase II as it exceeds
the threshold.

It might be rejected still based on the independence criterium.

For given ordering σ, let Y be cardinality of maximal size independent
set of threshold-exceeding elements that appear in Phase II.

Because the set {x2, . . . , xi} is independent, it follows that

Eσ[Y | A] ≥ i − 1
2
≥ i

4

as every xj appears in Phase II with prob. 1/2.
Here we use the fact that we are considering a matroid!

18 / 31

With probability P(A) ≥ 1/(2(dlog(r)e+ 1)), chosen j is such that

w(xi) ≥ t =
w(x1)

2j ≥ w(xi)

2
.

For any 1 ≤ j < i , it holds that w(xj) ≥ w(xi) ≥ t .
Every such xj can potentially be chosen in Phase II as it exceeds
the threshold.

It might be rejected still based on the independence criterium.

For given ordering σ, let Y be cardinality of maximal size independent
set of threshold-exceeding elements that appear in Phase II.

Because the set {x2, . . . , xi} is independent, it follows that

Eσ[Y | A] ≥ i − 1
2
≥ i

4

as every xj appears in Phase II with prob. 1/2.
Here we use the fact that we are considering a matroid!

18 / 31

With probability P(A) ≥ 1/(2(dlog(r)e+ 1)), chosen j is such that

w(xi) ≥ t =
w(x1)

2j ≥ w(xi)

2
.

For any 1 ≤ j < i , it holds that w(xj) ≥ w(xi) ≥ t .
Every such xj can potentially be chosen in Phase II as it exceeds
the threshold.

It might be rejected still based on the independence criterium.

For given ordering σ, let Y be cardinality of maximal size independent
set of threshold-exceeding elements that appear in Phase II.

Because the set {x2, . . . , xi} is independent, it follows that

Eσ[Y | A] ≥ i − 1
2
≥ i

4

as every xj appears in Phase II with prob. 1/2.

Here we use the fact that we are considering a matroid!

18 / 31

With probability P(A) ≥ 1/(2(dlog(r)e+ 1)), chosen j is such that

w(xi) ≥ t =
w(x1)

2j ≥ w(xi)

2
.

For any 1 ≤ j < i , it holds that w(xj) ≥ w(xi) ≥ t .
Every such xj can potentially be chosen in Phase II as it exceeds
the threshold.

It might be rejected still based on the independence criterium.

For given ordering σ, let Y be cardinality of maximal size independent
set of threshold-exceeding elements that appear in Phase II.

Because the set {x2, . . . , xi} is independent, it follows that

Eσ[Y | A] ≥ i − 1
2
≥ i

4

as every xj appears in Phase II with prob. 1/2.
Here we use the fact that we are considering a matroid!

18 / 31

Eσ[Y | A] ≥ i−1
2 ≥

i
4

One might interpret Phase II as just greedily selecting elements that
exceed the threshold t .

Greedy algorithm (with weights equal to 1 for every element)
implies that the size of the set chosen is at least Y .
(Might also argue directly through the augmentation property.)

To conclude,

Eσ[mi(X)] = Eσ[Y | A] · P(A) ≥ 1
8(dlog(r)e+ 1)

· i .

19 / 31

Eσ[Y | A] ≥ i−1
2 ≥

i
4

One might interpret Phase II as just greedily selecting elements that
exceed the threshold t .

Greedy algorithm (with weights equal to 1 for every element)
implies that the size of the set chosen is at least Y .
(Might also argue directly through the augmentation property.)

To conclude,

Eσ[mi(X)] = Eσ[Y | A] · P(A) ≥ 1
8(dlog(r)e+ 1)

· i .

19 / 31

Eσ[Y | A] ≥ i−1
2 ≥

i
4

One might interpret Phase II as just greedily selecting elements that
exceed the threshold t .

Greedy algorithm (with weights equal to 1 for every element)
implies that the size of the set chosen is at least Y .

(Might also argue directly through the augmentation property.)

To conclude,

Eσ[mi(X)] = Eσ[Y | A] · P(A) ≥ 1
8(dlog(r)e+ 1)

· i .

19 / 31

Eσ[Y | A] ≥ i−1
2 ≥

i
4

One might interpret Phase II as just greedily selecting elements that
exceed the threshold t .

Greedy algorithm (with weights equal to 1 for every element)
implies that the size of the set chosen is at least Y .
(Might also argue directly through the augmentation property.)

To conclude,

Eσ[mi(X)] = Eσ[Y | A] · P(A) ≥ 1
8(dlog(r)e+ 1)

· i .

19 / 31

Eσ[Y | A] ≥ i−1
2 ≥

i
4

One might interpret Phase II as just greedily selecting elements that
exceed the threshold t .

Greedy algorithm (with weights equal to 1 for every element)
implies that the size of the set chosen is at least Y .
(Might also argue directly through the augmentation property.)

To conclude,

Eσ[mi(X)] = Eσ[Y | A] · P(A) ≥ 1
8(dlog(r)e+ 1)

· i .

19 / 31

Eσ[Y | A] ≥ i−1
2 ≥

i
4

One might interpret Phase II as just greedily selecting elements that
exceed the threshold t .

Greedy algorithm (with weights equal to 1 for every element)
implies that the size of the set chosen is at least Y .
(Might also argue directly through the augmentation property.)

To conclude,

Eσ[mi(X)] = Eσ[Y | A] · P(A) ≥ 1
8(dlog(r)e+ 1)

· i .

19 / 31

Comments

Theorem

The random threshold algorithm is
1

32(dlog(r)e+ 1)
-approximation,

where r is the rank of the matroidM = (E , I).

Algorithm can be adjusted to the setting where the rank of the
matroid is unknown.

This makes analysis more complicated.
“Single-threshold” algorithms can never give constant-factor
approximation.

As shown by Babaioff et al. (2018).
Problem can be turned into a randomized strategyproof
mechanism.

Elements are bidders that each can receive one "unit of stuff".
Matroid constraint on which combination of bidders can be
allocated a unit.

20 / 31

Comments

Theorem

The random threshold algorithm is
1

32(dlog(r)e+ 1)
-approximation,

where r is the rank of the matroidM = (E , I).

Algorithm can be adjusted to the setting where the rank of the
matroid is unknown.

This makes analysis more complicated.
“Single-threshold” algorithms can never give constant-factor
approximation.

As shown by Babaioff et al. (2018).
Problem can be turned into a randomized strategyproof
mechanism.

Elements are bidders that each can receive one "unit of stuff".
Matroid constraint on which combination of bidders can be
allocated a unit.

20 / 31

Comments

Theorem

The random threshold algorithm is
1

32(dlog(r)e+ 1)
-approximation,

where r is the rank of the matroidM = (E , I).

Algorithm can be adjusted to the setting where the rank of the
matroid is unknown.

This makes analysis more complicated.
“Single-threshold” algorithms can never give constant-factor
approximation.

As shown by Babaioff et al. (2018).
Problem can be turned into a randomized strategyproof
mechanism.

Elements are bidders that each can receive one "unit of stuff".
Matroid constraint on which combination of bidders can be
allocated a unit.

20 / 31

Comments

Theorem

The random threshold algorithm is
1

32(dlog(r)e+ 1)
-approximation,

where r is the rank of the matroidM = (E , I).

Algorithm can be adjusted to the setting where the rank of the
matroid is unknown.

This makes analysis more complicated.

“Single-threshold” algorithms can never give constant-factor
approximation.

As shown by Babaioff et al. (2018).
Problem can be turned into a randomized strategyproof
mechanism.

Elements are bidders that each can receive one "unit of stuff".
Matroid constraint on which combination of bidders can be
allocated a unit.

20 / 31

Comments

Theorem

The random threshold algorithm is
1

32(dlog(r)e+ 1)
-approximation,

where r is the rank of the matroidM = (E , I).

Algorithm can be adjusted to the setting where the rank of the
matroid is unknown.

This makes analysis more complicated.
“Single-threshold” algorithms can never give constant-factor
approximation.

As shown by Babaioff et al. (2018).
Problem can be turned into a randomized strategyproof
mechanism.

Elements are bidders that each can receive one "unit of stuff".
Matroid constraint on which combination of bidders can be
allocated a unit.

20 / 31

Comments

Theorem

The random threshold algorithm is
1

32(dlog(r)e+ 1)
-approximation,

where r is the rank of the matroidM = (E , I).

Algorithm can be adjusted to the setting where the rank of the
matroid is unknown.

This makes analysis more complicated.
“Single-threshold” algorithms can never give constant-factor
approximation.

As shown by Babaioff et al. (2018).

Problem can be turned into a randomized strategyproof
mechanism.

Elements are bidders that each can receive one "unit of stuff".
Matroid constraint on which combination of bidders can be
allocated a unit.

20 / 31

Comments

Theorem

The random threshold algorithm is
1

32(dlog(r)e+ 1)
-approximation,

where r is the rank of the matroidM = (E , I).

Algorithm can be adjusted to the setting where the rank of the
matroid is unknown.

This makes analysis more complicated.
“Single-threshold” algorithms can never give constant-factor
approximation.

As shown by Babaioff et al. (2018).
Problem can be turned into a randomized strategyproof
mechanism.

Elements are bidders that each can receive one "unit of stuff".
Matroid constraint on which combination of bidders can be
allocated a unit.

20 / 31

Comments

Theorem

The random threshold algorithm is
1

32(dlog(r)e+ 1)
-approximation,

where r is the rank of the matroidM = (E , I).

Algorithm can be adjusted to the setting where the rank of the
matroid is unknown.

This makes analysis more complicated.
“Single-threshold” algorithms can never give constant-factor
approximation.

As shown by Babaioff et al. (2018).
Problem can be turned into a randomized strategyproof
mechanism.

Elements are bidders that each can receive one "unit of stuff".

Matroid constraint on which combination of bidders can be
allocated a unit.

20 / 31

Comments

Theorem

The random threshold algorithm is
1

32(dlog(r)e+ 1)
-approximation,

where r is the rank of the matroidM = (E , I).

Algorithm can be adjusted to the setting where the rank of the
matroid is unknown.

This makes analysis more complicated.
“Single-threshold” algorithms can never give constant-factor
approximation.

As shown by Babaioff et al. (2018).
Problem can be turned into a randomized strategyproof
mechanism.

Elements are bidders that each can receive one "unit of stuff".
Matroid constraint on which combination of bidders can be
allocated a unit.

20 / 31

Beyond matroids

21 / 31

Online selection problems

Consider
Finite set of elements E = {e1, . . . ,em}.
Weight function w : E → R≥0.
Downward-closed collection F ⊆ 2E = {X : X ⊆ E}.

Matroid set system (possibly) without augmentation property.

Online selection:
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e ∈ F .

Goal: Select (online) independent set X ∈ F of max. weight.

In general, for arbitrary downward-closed set systems, no
constant-factor approximation exists.

22 / 31

Online selection problems

Consider
Finite set of elements E = {e1, . . . ,em}.
Weight function w : E → R≥0.
Downward-closed collection F ⊆ 2E = {X : X ⊆ E}.

Matroid set system (possibly) without augmentation property.

Online selection:

Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e ∈ F .

Goal: Select (online) independent set X ∈ F of max. weight.

In general, for arbitrary downward-closed set systems, no
constant-factor approximation exists.

22 / 31

Online selection problems

Consider
Finite set of elements E = {e1, . . . ,em}.
Weight function w : E → R≥0.
Downward-closed collection F ⊆ 2E = {X : X ⊆ E}.

Matroid set system (possibly) without augmentation property.

Online selection:
Elements in E arrive in unknown uniform random arrival order σ.

Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e ∈ F .

Goal: Select (online) independent set X ∈ F of max. weight.

In general, for arbitrary downward-closed set systems, no
constant-factor approximation exists.

22 / 31

Online selection problems

Consider
Finite set of elements E = {e1, . . . ,em}.
Weight function w : E → R≥0.
Downward-closed collection F ⊆ 2E = {X : X ⊆ E}.

Matroid set system (possibly) without augmentation property.

Online selection:
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.

Decide irrevocably whether to accept or reject it.
Acceptance is only allowed if X + e ∈ F .

Goal: Select (online) independent set X ∈ F of max. weight.

In general, for arbitrary downward-closed set systems, no
constant-factor approximation exists.

22 / 31

Online selection problems

Consider
Finite set of elements E = {e1, . . . ,em}.
Weight function w : E → R≥0.
Downward-closed collection F ⊆ 2E = {X : X ⊆ E}.

Matroid set system (possibly) without augmentation property.

Online selection:
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e ∈ F .

Goal: Select (online) independent set X ∈ F of max. weight.

In general, for arbitrary downward-closed set systems, no
constant-factor approximation exists.

22 / 31

Online selection problems

Consider
Finite set of elements E = {e1, . . . ,em}.
Weight function w : E → R≥0.
Downward-closed collection F ⊆ 2E = {X : X ⊆ E}.

Matroid set system (possibly) without augmentation property.

Online selection:
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e ∈ F .

Goal: Select (online) independent set X ∈ F of max. weight.

In general, for arbitrary downward-closed set systems, no
constant-factor approximation exists.

22 / 31

Online selection problems

Consider
Finite set of elements E = {e1, . . . ,em}.
Weight function w : E → R≥0.
Downward-closed collection F ⊆ 2E = {X : X ⊆ E}.

Matroid set system (possibly) without augmentation property.

Online selection:
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e ∈ F .

Goal: Select (online) independent set X ∈ F of max. weight.

In general, for arbitrary downward-closed set systems, no
constant-factor approximation exists.

22 / 31

Online selection problems

Consider
Finite set of elements E = {e1, . . . ,em}.
Weight function w : E → R≥0.
Downward-closed collection F ⊆ 2E = {X : X ⊆ E}.

Matroid set system (possibly) without augmentation property.

Online selection:
Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e ∈ F .

Goal: Select (online) independent set X ∈ F of max. weight.

In general, for arbitrary downward-closed set systems, no
constant-factor approximation exists.

22 / 31

Online selection for general systems

Theorem (Babaioff et al. (2007))
There is no randomized algorithm that, for every downward-closed set
system F = (E , I) with m elements and (random) weights in {0,1},
obtains an approximation guarantee better than O(ln ln(n)/ ln(n)).

Proof (very informal): Let n ≥ 0 be an integer and set r = ln(n).
E = S1 ∪ S2 ∪ · · · ∪ Sk is disjoint union of sets Si with k = dn

r e.
Every Si either has r or r − 1 elements.

S1 S2 S3

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

This set system is (structurally) very “far away” from a matroid.

23 / 31

Online selection for general systems

Theorem (Babaioff et al. (2007))
There is no randomized algorithm that, for every downward-closed set
system F = (E , I) with m elements and (random) weights in {0,1},
obtains an approximation guarantee better than O(ln ln(n)/ ln(n)).

Proof (very informal): Let n ≥ 0 be an integer and set r = ln(n).
E = S1 ∪ S2 ∪ · · · ∪ Sk is disjoint union of sets Si with k = dn

r e.
Every Si either has r or r − 1 elements.

S1 S2 S3

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

This set system is (structurally) very “far away” from a matroid.

23 / 31

Online selection for general systems

Theorem (Babaioff et al. (2007))
There is no randomized algorithm that, for every downward-closed set
system F = (E , I) with m elements and (random) weights in {0,1},
obtains an approximation guarantee better than O(ln ln(n)/ ln(n)).

Proof (very informal): Let n ≥ 0 be an integer and set r = ln(n).

E = S1 ∪ S2 ∪ · · · ∪ Sk is disjoint union of sets Si with k = dn
r e.

Every Si either has r or r − 1 elements.

S1 S2 S3

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

This set system is (structurally) very “far away” from a matroid.

23 / 31

Online selection for general systems

Theorem (Babaioff et al. (2007))
There is no randomized algorithm that, for every downward-closed set
system F = (E , I) with m elements and (random) weights in {0,1},
obtains an approximation guarantee better than O(ln ln(n)/ ln(n)).

Proof (very informal): Let n ≥ 0 be an integer and set r = ln(n).
E = S1 ∪ S2 ∪ · · · ∪ Sk is disjoint union of sets Si with k = dn

r e.

Every Si either has r or r − 1 elements.

S1 S2 S3

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

This set system is (structurally) very “far away” from a matroid.

23 / 31

Online selection for general systems

Theorem (Babaioff et al. (2007))
There is no randomized algorithm that, for every downward-closed set
system F = (E , I) with m elements and (random) weights in {0,1},
obtains an approximation guarantee better than O(ln ln(n)/ ln(n)).

Proof (very informal): Let n ≥ 0 be an integer and set r = ln(n).
E = S1 ∪ S2 ∪ · · · ∪ Sk is disjoint union of sets Si with k = dn

r e.
Every Si either has r or r − 1 elements.

S1 S2 S3

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

This set system is (structurally) very “far away” from a matroid.

23 / 31

Online selection for general systems

Theorem (Babaioff et al. (2007))
There is no randomized algorithm that, for every downward-closed set
system F = (E , I) with m elements and (random) weights in {0,1},
obtains an approximation guarantee better than O(ln ln(n)/ ln(n)).

Proof (very informal): Let n ≥ 0 be an integer and set r = ln(n).
E = S1 ∪ S2 ∪ · · · ∪ Sk is disjoint union of sets Si with k = dn

r e.
Every Si either has r or r − 1 elements.

S1 S2 S3

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

This set system is (structurally) very “far away” from a matroid.

23 / 31

Online selection for general systems

Theorem (Babaioff et al. (2007))
There is no randomized algorithm that, for every downward-closed set
system F = (E , I) with m elements and (random) weights in {0,1},
obtains an approximation guarantee better than O(ln ln(n)/ ln(n)).

Proof (very informal): Let n ≥ 0 be an integer and set r = ln(n).
E = S1 ∪ S2 ∪ · · · ∪ Sk is disjoint union of sets Si with k = dn

r e.
Every Si either has r or r − 1 elements.

S1 S2 S3

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

This set system is (structurally) very “far away” from a matroid.

23 / 31

Online selection for general systems

Theorem (Babaioff et al. (2007))
There is no randomized algorithm that, for every downward-closed set
system F = (E , I) with m elements and (random) weights in {0,1},
obtains an approximation guarantee better than O(ln ln(n)/ ln(n)).

Proof (very informal): Let n ≥ 0 be an integer and set r = ln(n).
E = S1 ∪ S2 ∪ · · · ∪ Sk is disjoint union of sets Si with k = dn

r e.
Every Si either has r or r − 1 elements.

S1 S2 S3

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

This set system is (structurally) very “far away” from a matroid.

23 / 31

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

|Si | ∈ {r , r − 1}
S1 S2 S3

The weights are generated independently for every e ∈ E :

we =

{
1 with probability 1

r
0 with probability 1− 1

r
.

No (randomized) algorithm A can give constant-factor approximation.

What can we achieve online (sketch):
As soon as A selects an element e ∈ Si∗ (for some i∗), it can only
pick subsequent elements from the same Si∗ .
Elements from Si∗ that have not yet arrive, have total expected
weight at most 1. (By definition of weights.)
Therefore, set selected by A has weight at most 2 in expectation.

24 / 31

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

|Si | ∈ {r , r − 1}
S1 S2 S3

The weights are generated independently for every e ∈ E :

we =

{
1 with probability 1

r
0 with probability 1− 1

r
.

No (randomized) algorithm A can give constant-factor approximation.

What can we achieve online (sketch):
As soon as A selects an element e ∈ Si∗ (for some i∗), it can only
pick subsequent elements from the same Si∗ .
Elements from Si∗ that have not yet arrive, have total expected
weight at most 1. (By definition of weights.)
Therefore, set selected by A has weight at most 2 in expectation.

24 / 31

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

|Si | ∈ {r , r − 1}
S1 S2 S3

The weights are generated independently for every e ∈ E :

we =

{
1 with probability 1

r
0 with probability 1− 1

r
.

No (randomized) algorithm A can give constant-factor approximation.

What can we achieve online (sketch):
As soon as A selects an element e ∈ Si∗ (for some i∗), it can only
pick subsequent elements from the same Si∗ .
Elements from Si∗ that have not yet arrive, have total expected
weight at most 1. (By definition of weights.)
Therefore, set selected by A has weight at most 2 in expectation.

24 / 31

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

|Si | ∈ {r , r − 1}
S1 S2 S3

The weights are generated independently for every e ∈ E :

we =

{
1 with probability 1

r
0 with probability 1− 1

r
.

No (randomized) algorithm A can give constant-factor approximation.

What can we achieve online (sketch):
As soon as A selects an element e ∈ Si∗ (for some i∗), it can only
pick subsequent elements from the same Si∗ .
Elements from Si∗ that have not yet arrive, have total expected
weight at most 1. (By definition of weights.)
Therefore, set selected by A has weight at most 2 in expectation.

24 / 31

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

|Si | ∈ {r , r − 1}
S1 S2 S3

The weights are generated independently for every e ∈ E :

we =

{
1 with probability 1

r
0 with probability 1− 1

r
.

No (randomized) algorithm A can give constant-factor approximation.

What can we achieve online (sketch):
As soon as A selects an element e ∈ Si∗ (for some i∗), it can only
pick subsequent elements from the same Si∗ .
Elements from Si∗ that have not yet arrive, have total expected
weight at most 1. (By definition of weights.)
Therefore, set selected by A has weight at most 2 in expectation.

24 / 31

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

|Si | ∈ {r , r − 1}
S1 S2 S3

The weights are generated independently for every e ∈ E :

we =

{
1 with probability 1

r
0 with probability 1− 1

r
.

No (randomized) algorithm A can give constant-factor approximation.

What can we achieve online (sketch):

As soon as A selects an element e ∈ Si∗ (for some i∗), it can only
pick subsequent elements from the same Si∗ .
Elements from Si∗ that have not yet arrive, have total expected
weight at most 1. (By definition of weights.)
Therefore, set selected by A has weight at most 2 in expectation.

24 / 31

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

|Si | ∈ {r , r − 1}
S1 S2 S3

The weights are generated independently for every e ∈ E :

we =

{
1 with probability 1

r
0 with probability 1− 1

r
.

No (randomized) algorithm A can give constant-factor approximation.

What can we achieve online (sketch):
As soon as A selects an element e ∈ Si∗ (for some i∗), it can only
pick subsequent elements from the same Si∗ .

Elements from Si∗ that have not yet arrive, have total expected
weight at most 1. (By definition of weights.)
Therefore, set selected by A has weight at most 2 in expectation.

24 / 31

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

|Si | ∈ {r , r − 1}
S1 S2 S3

The weights are generated independently for every e ∈ E :

we =

{
1 with probability 1

r
0 with probability 1− 1

r
.

No (randomized) algorithm A can give constant-factor approximation.

What can we achieve online (sketch):
As soon as A selects an element e ∈ Si∗ (for some i∗), it can only
pick subsequent elements from the same Si∗ .
Elements from Si∗ that have not yet arrive, have total expected
weight at most 1.

(By definition of weights.)
Therefore, set selected by A has weight at most 2 in expectation.

24 / 31

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

|Si | ∈ {r , r − 1}
S1 S2 S3

The weights are generated independently for every e ∈ E :

we =

{
1 with probability 1

r
0 with probability 1− 1

r
.

No (randomized) algorithm A can give constant-factor approximation.

What can we achieve online (sketch):
As soon as A selects an element e ∈ Si∗ (for some i∗), it can only
pick subsequent elements from the same Si∗ .
Elements from Si∗ that have not yet arrive, have total expected
weight at most 1. (By definition of weights.)

Therefore, set selected by A has weight at most 2 in expectation.

24 / 31

X ⊆ E independent (i.e., X ∈ F)⇔ X ⊆ Si for some i = 1, . . . , k .

|Si | ∈ {r , r − 1}
S1 S2 S3

The weights are generated independently for every e ∈ E :

we =

{
1 with probability 1

r
0 with probability 1− 1

r
.

No (randomized) algorithm A can give constant-factor approximation.

What can we achieve online (sketch):
As soon as A selects an element e ∈ Si∗ (for some i∗), it can only
pick subsequent elements from the same Si∗ .
Elements from Si∗ that have not yet arrive, have total expected
weight at most 1. (By definition of weights.)
Therefore, set selected by A has weight at most 2 in expectation.

24 / 31

|Si | ∈ {r , r − 1}
S1 S2 S3

What can we achieve offline (sketch):
Balls-in-bins calculation shows that, in expectation, there will be
always at least one Si that has Ω(ln(n)/ ln ln(n)) elements with
weight 1.
Offline optimum OPT = Ω(ln(n)/ ln ln(n)) in expectation.

Final remark:

Theorem (Rubinstein, 2016)
There exists an Ω(1/ log(n))-approximation w.r.t. the offline optimum
for general downward-closed set system with weights in {0,1}.

This is then tight up to a factor log log(n).

25 / 31

|Si | ∈ {r , r − 1}
S1 S2 S3

What can we achieve offline (sketch):

Balls-in-bins calculation shows that, in expectation, there will be
always at least one Si that has Ω(ln(n)/ ln ln(n)) elements with
weight 1.
Offline optimum OPT = Ω(ln(n)/ ln ln(n)) in expectation.

Final remark:

Theorem (Rubinstein, 2016)
There exists an Ω(1/ log(n))-approximation w.r.t. the offline optimum
for general downward-closed set system with weights in {0,1}.

This is then tight up to a factor log log(n).

25 / 31

|Si | ∈ {r , r − 1}
S1 S2 S3

What can we achieve offline (sketch):
Balls-in-bins calculation shows that, in expectation, there will be
always at least one Si that has Ω(ln(n)/ ln ln(n)) elements with
weight 1.

Offline optimum OPT = Ω(ln(n)/ ln ln(n)) in expectation.

Final remark:

Theorem (Rubinstein, 2016)
There exists an Ω(1/ log(n))-approximation w.r.t. the offline optimum
for general downward-closed set system with weights in {0,1}.

This is then tight up to a factor log log(n).

25 / 31

|Si | ∈ {r , r − 1}
S1 S2 S3

What can we achieve offline (sketch):
Balls-in-bins calculation shows that, in expectation, there will be
always at least one Si that has Ω(ln(n)/ ln ln(n)) elements with
weight 1.
Offline optimum OPT = Ω(ln(n)/ ln ln(n)) in expectation.

Final remark:

Theorem (Rubinstein, 2016)
There exists an Ω(1/ log(n))-approximation w.r.t. the offline optimum
for general downward-closed set system with weights in {0,1}.

This is then tight up to a factor log log(n).

25 / 31

|Si | ∈ {r , r − 1}
S1 S2 S3

What can we achieve offline (sketch):
Balls-in-bins calculation shows that, in expectation, there will be
always at least one Si that has Ω(ln(n)/ ln ln(n)) elements with
weight 1.
Offline optimum OPT = Ω(ln(n)/ ln ln(n)) in expectation.

Final remark:

Theorem (Rubinstein, 2016)
There exists an Ω(1/ log(n))-approximation w.r.t. the offline optimum
for general downward-closed set system with weights in {0,1}.

This is then tight up to a factor log log(n).

25 / 31

|Si | ∈ {r , r − 1}
S1 S2 S3

What can we achieve offline (sketch):
Balls-in-bins calculation shows that, in expectation, there will be
always at least one Si that has Ω(ln(n)/ ln ln(n)) elements with
weight 1.
Offline optimum OPT = Ω(ln(n)/ ln ln(n)) in expectation.

Final remark:

Theorem (Rubinstein, 2016)
There exists an Ω(1/ log(n))-approximation w.r.t. the offline optimum
for general downward-closed set system with weights in {0,1}.

This is then tight up to a factor log log(n).

25 / 31

|Si | ∈ {r , r − 1}
S1 S2 S3

What can we achieve offline (sketch):
Balls-in-bins calculation shows that, in expectation, there will be
always at least one Si that has Ω(ln(n)/ ln ln(n)) elements with
weight 1.
Offline optimum OPT = Ω(ln(n)/ ln ln(n)) in expectation.

Final remark:

Theorem (Rubinstein, 2016)
There exists an Ω(1/ log(n))-approximation w.r.t. the offline optimum
for general downward-closed set system with weights in {0,1}.

This is then tight up to a factor log log(n).

25 / 31

Graphic matroid
Korula-Pál algorithm

26 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)

Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.

Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.

Decide irrevocably whether to accept or reject it.
Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.

That is, X + e does not contain a cycle.

a b

c

de

f

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f 9

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f 99

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f 998

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f 9988

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f 9988

4

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f 9988

4

3

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f 9988

4

33

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f 9988

4

33

6

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f 9988

4

33

66

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f 9988

4

33

66

7

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f 9988

4

33

66

7

10

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f 9988

4

33

66

7

10

4

27 / 31

Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).

Online selection (with initially X = ∅)
Edges of (known) graph G = (V ,E) arrive in unknown uniform
random arrival order σ.
Upon arrival of e ∈ E , its weight we ≥ 0 is revealed.
Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if X + e is forest of G.
That is, X + e does not contain a cycle.

a b

c

de

f 9988

4

33

66

7

10

44

27 / 31

1/(2e)-approximation

Assume that V = {1, . . . ,n}.

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

We either orient every edge to its node with highest index, or
every edge to its node with lowest index.
Az is set of all arcs that are oriented into z.
For every z ∈ V at most one arc from every Az is selected.

28 / 31

1/(2e)-approximation

Assume that V = {1, . . . ,n}.

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:

With prob. 1
2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

We either orient every edge to its node with highest index, or
every edge to its node with lowest index.
Az is set of all arcs that are oriented into z.
For every z ∈ V at most one arc from every Az is selected.

28 / 31

1/(2e)-approximation

Assume that V = {1, . . . ,n}.

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

We either orient every edge to its node with highest index, or
every edge to its node with lowest index.
Az is set of all arcs that are oriented into z.
For every z ∈ V at most one arc from every Az is selected.

28 / 31

1/(2e)-approximation

Assume that V = {1, . . . ,n}.

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

We either orient every edge to its node with highest index, or
every edge to its node with lowest index.
Az is set of all arcs that are oriented into z.
For every z ∈ V at most one arc from every Az is selected.

28 / 31

1/(2e)-approximation

Assume that V = {1, . . . ,n}.

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

We either orient every edge to its node with highest index, or
every edge to its node with lowest index.
Az is set of all arcs that are oriented into z.
For every z ∈ V at most one arc from every Az is selected.

28 / 31

1/(2e)-approximation

Assume that V = {1, . . . ,n}.

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

We either orient every edge to its node with highest index, or
every edge to its node with lowest index.
Az is set of all arcs that are oriented into z.
For every z ∈ V at most one arc from every Az is selected.

28 / 31

1/(2e)-approximation

Assume that V = {1, . . . ,n}.

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:

Run (in parallel) the secretary algorithm on every Az .

We either orient every edge to its node with highest index, or
every edge to its node with lowest index.
Az is set of all arcs that are oriented into z.
For every z ∈ V at most one arc from every Az is selected.

28 / 31

1/(2e)-approximation

Assume that V = {1, . . . ,n}.

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

We either orient every edge to its node with highest index, or
every edge to its node with lowest index.
Az is set of all arcs that are oriented into z.
For every z ∈ V at most one arc from every Az is selected.

28 / 31

1/(2e)-approximation

Assume that V = {1, . . . ,n}.

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

We either orient every edge to its node with highest index, or
every edge to its node with lowest index.

Az is set of all arcs that are oriented into z.
For every z ∈ V at most one arc from every Az is selected.

28 / 31

1/(2e)-approximation

Assume that V = {1, . . . ,n}.

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

We either orient every edge to its node with highest index, or
every edge to its node with lowest index.
Az is set of all arcs that are oriented into z.

For every z ∈ V at most one arc from every Az is selected.

28 / 31

1/(2e)-approximation

Assume that V = {1, . . . ,n}.

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

We either orient every edge to its node with highest index, or
every edge to its node with lowest index.
Az is set of all arcs that are oriented into z.
For every z ∈ V at most one arc from every Az is selected.

28 / 31

Example (Every edge oriented to lowest index node)
1 2

3

45

6

Preprocessing.
Randomly orient every edge to highest index, or every edge to
lowest index.
Resulting arcs A are partitioned into sets Az for z ∈ V .

Running secretary algorithms on the Az . For all z ∈ V (in parallel):

Phase I: First observe b |Az |
e c of edges contained in Az .

Phase II: Select first edge whose weight exceeds best weight
seen in Phase I.

29 / 31

Example (Every edge oriented to lowest index node)
1 2

3

45

6

Preprocessing.
Randomly orient every edge to highest index, or every edge to
lowest index.

Resulting arcs A are partitioned into sets Az for z ∈ V .

Running secretary algorithms on the Az . For all z ∈ V (in parallel):

Phase I: First observe b |Az |
e c of edges contained in Az .

Phase II: Select first edge whose weight exceeds best weight
seen in Phase I.

29 / 31

Example (Every edge oriented to lowest index node)
1 2

3

45

6

A1 = {(6,1), (5,1), (2,1)}
A2 = {(5,2), (4,2), (3,2)}
A3 = {(4,3)}
A4 = {(5,4)}
A5 = {(6,5)}
A6 = ∅

Preprocessing.
Randomly orient every edge to highest index, or every edge to
lowest index.
Resulting arcs A are partitioned into sets Az for z ∈ V .

Running secretary algorithms on the Az . For all z ∈ V (in parallel):

Phase I: First observe b |Az |
e c of edges contained in Az .

Phase II: Select first edge whose weight exceeds best weight
seen in Phase I.

29 / 31

Example (Every edge oriented to lowest index node)
1 2

3

45

6

A1 = {(6,1), (5,1), (2,1)}
A2 = {(5,2), (4,2), (3,2)}
A3 = {(4,3)}
A4 = {(5,4)}
A5 = {(6,5)}
A6 = ∅

Preprocessing.
Randomly orient every edge to highest index, or every edge to
lowest index.
Resulting arcs A are partitioned into sets Az for z ∈ V .

Running secretary algorithms on the Az .

For all z ∈ V (in parallel):

Phase I: First observe b |Az |
e c of edges contained in Az .

Phase II: Select first edge whose weight exceeds best weight
seen in Phase I.

29 / 31

Example (Every edge oriented to lowest index node)
1 2

3

45

6

A1 = {(6,1), (5,1), (2,1)}
A2 = {(5,2), (4,2), (3,2)}
A3 = {(4,3)}
A4 = {(5,4)}
A5 = {(6,5)}
A6 = ∅

Preprocessing.
Randomly orient every edge to highest index, or every edge to
lowest index.
Resulting arcs A are partitioned into sets Az for z ∈ V .

Running secretary algorithms on the Az . For all z ∈ V (in parallel):

Phase I: First observe b |Az |
e c of edges contained in Az .

Phase II: Select first edge whose weight exceeds best weight
seen in Phase I.

29 / 31

Example (Every edge oriented to lowest index node)
1 2

3

45

6

A1 = {(6,1), (5,1), (2,1)}
A2 = {(5,2), (4,2), (3,2)}
A3 = {(4,3)}
A4 = {(5,4)}
A5 = {(6,5)}
A6 = ∅

Preprocessing.
Randomly orient every edge to highest index, or every edge to
lowest index.
Resulting arcs A are partitioned into sets Az for z ∈ V .

Running secretary algorithms on the Az . For all z ∈ V (in parallel):

Phase I: First observe b |Az |
e c of edges contained in Az .

Phase II: Select first edge whose weight exceeds best weight
seen in Phase I.

29 / 31

Example (Every edge oriented to lowest index node)
1 2

3

45

6

A1 = {(6,1), (5,1), (2,1)}
A2 = {(5,2), (4,2), (3,2)}
A3 = {(4,3)}
A4 = {(5,4)}
A5 = {(6,5)}
A6 = ∅

Preprocessing.
Randomly orient every edge to highest index, or every edge to
lowest index.
Resulting arcs A are partitioned into sets Az for z ∈ V .

Running secretary algorithms on the Az . For all z ∈ V (in parallel):

Phase I: First observe b |Az |
e c of edges contained in Az .

Phase II: Select first edge whose weight exceeds best weight
seen in Phase I.

29 / 31

Example (Every edge oriented to lowest index node)
1 2

3

45

6

A1 = {(6,1), (5,1), (2,1)}
A2 = {(5,2), (4,2), (3,2)}
A3 = {(4,3)}
A4 = {(5,4)}
A5 = {(6,5)}
A6 = ∅

Preprocessing.
Randomly orient every edge to highest index, or every edge to
lowest index.
Resulting arcs A are partitioned into sets Az for z ∈ V .

Running secretary algorithms on the Az . For all z ∈ V (in parallel):

Phase I: First observe b |Az |
e c of edges contained in Az .

Phase II: Select first edge whose weight exceeds best weight
seen in Phase I.

29 / 31

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

High-level steps to show it is 1
2e -approximation:

First show that indeed forest is outputted.
That is, an independent set of the graphic matroid.

Then compare to (oriented) offline max. weight spanning tree.
Give bound on expected contribution per node:

Factor 1
2 is result of (randomly) orienting edges.

Factor 1
e is result of running (parallel) secretary algorithms.

30 / 31

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

High-level steps to show it is 1
2e -approximation:

First show that indeed forest is outputted.
That is, an independent set of the graphic matroid.

Then compare to (oriented) offline max. weight spanning tree.
Give bound on expected contribution per node:

Factor 1
2 is result of (randomly) orienting edges.

Factor 1
e is result of running (parallel) secretary algorithms.

30 / 31

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

High-level steps to show it is 1
2e -approximation:

First show that indeed forest is outputted.

That is, an independent set of the graphic matroid.
Then compare to (oriented) offline max. weight spanning tree.
Give bound on expected contribution per node:

Factor 1
2 is result of (randomly) orienting edges.

Factor 1
e is result of running (parallel) secretary algorithms.

30 / 31

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

High-level steps to show it is 1
2e -approximation:

First show that indeed forest is outputted.
That is, an independent set of the graphic matroid.

Then compare to (oriented) offline max. weight spanning tree.
Give bound on expected contribution per node:

Factor 1
2 is result of (randomly) orienting edges.

Factor 1
e is result of running (parallel) secretary algorithms.

30 / 31

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

High-level steps to show it is 1
2e -approximation:

First show that indeed forest is outputted.
That is, an independent set of the graphic matroid.

Then compare to (oriented) offline max. weight spanning tree.

Give bound on expected contribution per node:
Factor 1

2 is result of (randomly) orienting edges.
Factor 1

e is result of running (parallel) secretary algorithms.

30 / 31

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

High-level steps to show it is 1
2e -approximation:

First show that indeed forest is outputted.
That is, an independent set of the graphic matroid.

Then compare to (oriented) offline max. weight spanning tree.
Give bound on expected contribution per node:

Factor 1
2 is result of (randomly) orienting edges.

Factor 1
e is result of running (parallel) secretary algorithms.

30 / 31

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

High-level steps to show it is 1
2e -approximation:

First show that indeed forest is outputted.
That is, an independent set of the graphic matroid.

Then compare to (oriented) offline max. weight spanning tree.
Give bound on expected contribution per node:

Factor 1
2 is result of (randomly) orienting edges.

Factor 1
e is result of running (parallel) secretary algorithms.

30 / 31

Graphic matroid secretary algorithm for graph G = (V ,E)

Before the edges arrive:
With prob. 1

2 replace every edge {i , j} (i < j) with arc (i , j), or

with prob. 1
2 replace every edge {i , j} (i < j) with arc (j , i).

Let A be the resulting (random) set of directed arcs, and

Az = {(u, z) ∈ A : {u, z} ∈ E} for z ∈ V .

When the edges arrive:
Run (in parallel) the secretary algorithm on every Az .

High-level steps to show it is 1
2e -approximation:

First show that indeed forest is outputted.
That is, an independent set of the graphic matroid.

Then compare to (oriented) offline max. weight spanning tree.
Give bound on expected contribution per node:

Factor 1
2 is result of (randomly) orienting edges.

Factor 1
e is result of running (parallel) secretary algorithms.

30 / 31

Final remarks

By now, 1
4 -approximation for graphic matroid secretary problem is

known.

See paper of Soto, Turkieltaub and Verdugo (2018).
Proof uses similar algorithm and analysis as that of Kesselheim et
al. (2013) for online bipartite matching.
Technique also applies to other special cases of matroids.

Is there 1
e -approximation for graphic matroid secretary problem?

31 / 31

Final remarks

By now, 1
4 -approximation for graphic matroid secretary problem is

known.
See paper of Soto, Turkieltaub and Verdugo (2018).

Proof uses similar algorithm and analysis as that of Kesselheim et
al. (2013) for online bipartite matching.
Technique also applies to other special cases of matroids.

Is there 1
e -approximation for graphic matroid secretary problem?

31 / 31

Final remarks

By now, 1
4 -approximation for graphic matroid secretary problem is

known.
See paper of Soto, Turkieltaub and Verdugo (2018).
Proof uses similar algorithm and analysis as that of Kesselheim et
al. (2013) for online bipartite matching.

Technique also applies to other special cases of matroids.

Is there 1
e -approximation for graphic matroid secretary problem?

31 / 31

Final remarks

By now, 1
4 -approximation for graphic matroid secretary problem is

known.
See paper of Soto, Turkieltaub and Verdugo (2018).
Proof uses similar algorithm and analysis as that of Kesselheim et
al. (2013) for online bipartite matching.
Technique also applies to other special cases of matroids.

Is there 1
e -approximation for graphic matroid secretary problem?

31 / 31

Final remarks

By now, 1
4 -approximation for graphic matroid secretary problem is

known.
See paper of Soto, Turkieltaub and Verdugo (2018).
Proof uses similar algorithm and analysis as that of Kesselheim et
al. (2013) for online bipartite matching.
Technique also applies to other special cases of matroids.

Is there 1
e -approximation for graphic matroid secretary problem?

31 / 31

