Topics in Algorithmic Game Theory and Economics

Pieter Kleer

Max Planck Institute for Informatics (D1) Saarland Informatics Campus

January 27, 2020

Lecture 10
Matroid Secretary Problems

Matroids (recap)

Generalization of linear independence of vectors in, e.g., \mathbb{R}^n .

Generalization of linear independence of vectors in, e.g., \mathbb{R}^n .

Let $E = \{v_1, \dots, v_k\}$ be collection of vectors $v_i \in \mathbb{R}^n$ for all i.

Generalization of linear independence of vectors in, e.g., \mathbb{R}^n .

Let $E = \{v_1, \dots, v_k\}$ be collection of vectors $v_i \in \mathbb{R}^n$ for all i.

• Assume that k > n and span(E) = \mathbb{R}^n .

Generalization of linear independence of vectors in, e.g., \mathbb{R}^n .

Let $E = \{v_1, \dots, v_k\}$ be collection of vectors $v_i \in \mathbb{R}^n$ for all i.

• Assume that k > n and span $(E) = \mathbb{R}^n$.

Subset of vectors $X \subseteq E$ is called linearly independent if, for $\gamma_i \in \mathbb{R}$,

$$\sum_{v_i \in X} \gamma_i \cdot v_i = 0 \ \Rightarrow \ \gamma_i = 0 \ \forall i.$$

Generalization of linear independence of vectors in, e.g., \mathbb{R}^n .

Let $E = \{v_1, \dots, v_k\}$ be collection of vectors $v_i \in \mathbb{R}^n$ for all i.

• Assume that k > n and span(E) = \mathbb{R}^n .

Subset of vectors $X \subseteq E$ is called linearly independent if, for $\gamma_i \in \mathbb{R}$,

$$\sum_{\mathbf{v}_i \in X} \gamma_i \cdot \mathbf{v}_i = 0 \implies \gamma_i = 0 \ \forall i.$$

• No $v_i \in X$ can be written as linear combination of other vectors.

Generalization of linear independence of vectors in, e.g., \mathbb{R}^n .

Let $E = \{v_1, \dots, v_k\}$ be collection of vectors $v_i \in \mathbb{R}^n$ for all i.

• Assume that k > n and span $(E) = \mathbb{R}^n$.

Subset of vectors $X \subseteq E$ is called linearly independent if, for $\gamma_i \in \mathbb{R}$,

$$\sum_{v_i \in X} \gamma_i \cdot v_i = 0 \implies \gamma_i = 0 \ \forall i.$$

• No $v_i \in X$ can be written as linear combination of other vectors.

Example

$$E = \{v_1, v_2, v_3, v_2\} = \left\{ \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 17 \\ 34 \end{pmatrix}, \begin{pmatrix} -4 \\ -2 \end{pmatrix} \right\}$$

Is $X = \{v_1, v_2, v_3\}$ independent?

Generalization of linear independence of vectors in, e.g., \mathbb{R}^n .

Let $E = \{v_1, \dots, v_k\}$ be collection of vectors $v_i \in \mathbb{R}^n$ for all i.

• Assume that k > n and span(E) = \mathbb{R}^n .

Subset of vectors $X \subseteq E$ is called linearly independent if, for $\gamma_i \in \mathbb{R}$,

$$\sum_{v_i \in X} \gamma_i \cdot v_i = 0 \implies \gamma_i = 0 \ \forall i.$$

• No $v_i \in X$ can be written as linear combination of other vectors.

Example

$$E = \{v_1, v_2, v_3, v_2\} = \left\{ \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 17 \\ 34 \end{pmatrix}, \begin{pmatrix} -4 \\ -2 \end{pmatrix} \right\}$$

Is $X = \{v_1, v_2, v_3\}$ independent? NO, because $v_3 = 3v_1 + 4v_2$.

Generalization of linear independence of vectors in, e.g., \mathbb{R}^n .

Let $E = \{v_1, \dots, v_k\}$ be collection of vectors $v_i \in \mathbb{R}^n$ for all i.

• Assume that k > n and span(E) = \mathbb{R}^n .

Subset of vectors $X \subseteq E$ is called linearly independent if, for $\gamma_i \in \mathbb{R}$,

$$\sum_{v_i \in X} \gamma_i \cdot v_i = 0 \ \Rightarrow \ \gamma_i = 0 \ \forall i.$$

• No $v_i \in X$ can be written as linear combination of other vectors.

Example

$$E = \{v_1, v_2, v_3, v_2\} = \left\{ \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 17 \\ 34 \end{pmatrix}, \begin{pmatrix} -4 \\ -2 \end{pmatrix} \right\}$$

Is $X = \{v_1, v_2, v_3\}$ independent? NO, because $v_3 = 3v_1 + 4v_2$.

• Maximal independent sets are bases (of \mathbb{R}^n).

Definition (Matroid)

Set system $\mathcal{M}=(E,\mathcal{I})$ with non-empty $\mathcal{I}\subseteq 2^E=\{X:X\subseteq E\}$ is matroid if it satisfies the following:

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is matroid if it satisfies the following:

• *Downward-closed*: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is matroid if it satisfies the following:

- Downward-closed: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- Augmentation property:

$$A, C \in \mathcal{I}$$
 and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is matroid if it satisfies the following:

- Downward-closed: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- Augmentation property:

$$A, C \in \mathcal{I}$$
 and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is matroid if it satisfies the following:

- Downward-closed: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- Augmentation property:

$$A, C \in \mathcal{I}$$
 and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

Sets in \mathcal{I} are called independent sets.

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is matroid if it satisfies the following:

- *Downward-closed*: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- Augmentation property:

$$A, C \in \mathcal{I}$$
 and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

Sets in \mathcal{I} are called independent sets.

Example (Linear matroid)

Let
$$E = \{v_i : i = 1, \dots, k\} \subseteq \mathbb{R}^n$$
 and take

 $W \in \mathcal{I} \Leftrightarrow \text{vectors in } W \text{ are linearly independent.}$

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is matroid if it satisfies the following:

- Downward-closed: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- Augmentation property:

$$A, C \in \mathcal{I}$$
 and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

Sets in \mathcal{I} are called independent sets.

Example (Linear matroid)

Let
$$E = \{v_i : i = 1, ..., k\} \subseteq \mathbb{R}^n$$
 and take $W \in \mathcal{I} \iff \text{vectors in } W \text{ are linearly independent.}$

• Augmentation property: Note that if $|C| \ge |A| + 1$ and every $v_i \in C$ is a linear combination of vectors in A,

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is matroid if it satisfies the following:

- Downward-closed: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- Augmentation property:

$$A, C \in \mathcal{I}$$
 and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

Sets in \mathcal{I} are called independent sets.

Example (Linear matroid)

Let
$$E = \{v_i : i = 1, ..., k\} \subseteq \mathbb{R}^n$$
 and take $W \in \mathcal{I} \iff \text{vectors in } W \text{ are linearly independent.}$

• Augmentation property: Note that if $|C| \ge |A| + 1$ and every $v_i \in C$ is a linear combination of vectors in A, then $\text{span}(C) \subseteq \text{span}(A)$,

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is matroid if it satisfies the following:

- Downward-closed: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- Augmentation property:

$$A, C \in \mathcal{I}$$
 and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

Sets in \mathcal{I} are called independent sets.

Example (Linear matroid)

Let $E = \{v_i : i = 1, ..., k\} \subseteq \mathbb{R}^n$ and take

 $\textit{W} \in \mathcal{I} \;\; \Leftrightarrow \;\; \text{vectors in } \textit{W} \text{ are linearly independent.}$

• Augmentation property: Note that if $|C| \ge |A| + 1$ and every $v_i \in C$ is a linear combination of vectors in A, then $\text{span}(C) \subseteq \text{span}(A)$, and hence $|C| = \dim(\text{span}(C)) \le \dim(\text{span}(A)) = |A|$,

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is matroid if it satisfies the following:

- Downward-closed: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- Augmentation property:

$$A, C \in \mathcal{I}$$
 and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

Sets in \mathcal{I} are called independent sets.

Example (Linear matroid)

Let $E = \{v_i : i = 1, \dots, k\} \subseteq \mathbb{R}^n$ and take

$$W \in \mathcal{I} \Leftrightarrow \text{vectors in } W \text{ are linearly independent.}$$

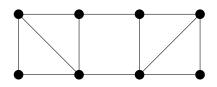
• Augmentation property: Note that if $|C| \ge |A| + 1$ and every $v_i \in C$ is a linear combination of vectors in A, then $\text{span}(C) \subseteq \text{span}(A)$, and hence $|C| = \dim(\text{span}(C)) \le \dim(\text{span}(A)) = |A|$, which gives a contradiction.

Let G = (V, E) be undirected graph and consider matroid $\mathcal{M} = (E, \mathcal{I})$, with ground the edges E of G, given by

 $W \in \mathcal{I} \Leftrightarrow \text{subgraph with edges of } W \text{ has no cycle.}$

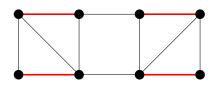
Let G = (V, E) be undirected graph and consider matroid $\mathcal{M} = (E, \mathcal{I})$, with ground the edges E of G, given by

 $W \in \mathcal{I} \Leftrightarrow \text{subgraph with edges of } W \text{ has no cycle.}$



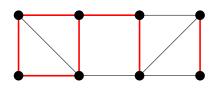
Let G = (V, E) be undirected graph and consider matroid $\mathcal{M} = (E, \mathcal{I})$, with ground the edges E of G, given by

 $W \in \mathcal{I} \Leftrightarrow \text{subgraph with edges of } W \text{ has no cycle.}$



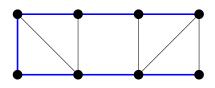
Let G = (V, E) be undirected graph and consider matroid $\mathcal{M} = (E, \mathcal{I})$, with ground the edges E of G, given by

 $W \in \mathcal{I} \Leftrightarrow \text{subgraph with edges of } W \text{ has no cycle.}$



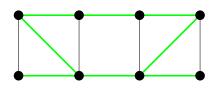
Let G = (V, E) be undirected graph and consider matroid $\mathcal{M} = (E, \mathcal{I})$, with ground the edges E of G, given by

 $W \in \mathcal{I} \Leftrightarrow \text{subgraph with edges of } W \text{ has no cycle.}$



Let G = (V, E) be undirected graph and consider matroid $\mathcal{M} = (E, \mathcal{I})$, with ground the edges E of G, given by

 $W \in \mathcal{I} \Leftrightarrow \text{subgraph with edges of } W \text{ has no cycle.}$



Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)

An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$,

Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)

An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$, i.e., no element can be added to X while preserving independence.

Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)

An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$, i.e., no element can be added to X while preserving independence.

Lemma

All bases of a given matroid \mathcal{M} have the same cardinality.

Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)

An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$, i.e., no element can be added to X while preserving independence.

Lemma

All bases of a given matroid \mathcal{M} have the same cardinality. This common cardinality r is called the rank of the matroid.

Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)

An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$, i.e., no element can be added to X while preserving independence.

Lemma

All bases of a given matroid \mathcal{M} have the same cardinality. This common cardinality r is called the rank of the matroid.

Example

• Bases of graphic matroid on G = (V, E), with |V| = n, are spanning trees (when G is connected).

Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)

An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$, i.e., no element can be added to X while preserving independence.

Lemma

All bases of a given matroid \mathcal{M} have the same cardinality. This common cardinality r is called the rank of the matroid.

Example

• Bases of graphic matroid on G = (V, E), with |V| = n, are spanning trees (when G is connected). Rank is n - 1.

Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)

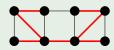
An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$, i.e., no element can be added to X while preserving independence.

Lemma

All bases of a given matroid \mathcal{M} have the same cardinality. This common cardinality r is called the rank of the matroid.

Example

• Bases of graphic matroid on G = (V, E), with |V| = n, are spanning trees (when G is connected). Rank is n - 1.



(Offline) maximum weight independent set

(Offline) maximum weight independent set

Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \dots, e_m\}$.

Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \dots, e_m\}$.

• Rename elements such that $w_1 \ge w_2 \ge \cdots \ge w_m \ge 0$.

Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \dots, e_m\}$.

• Rename elements such that $w_1 \ge w_2 \ge \cdots \ge w_m \ge 0$.

Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \dots, e_m\}$.

• Rename elements such that $w_1 \ge w_2 \ge \cdots \ge w_m \ge 0$.

Greedy algorithm

Set $X = \emptyset$.

Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \dots, e_m\}$.

• Rename elements such that $w_1 \ge w_2 \ge \cdots \ge w_m \ge 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \dots, m$:

Consider matroid
$$\mathcal{M} = (E, \mathcal{I})$$
 with $E = \{e_1, \dots, e_m\}$.

• Rename elements such that $w_1 \ge w_2 \ge \cdots \ge w_m \ge 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \dots, m$:

• If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \dots, e_m\}$.

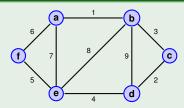
• Rename elements such that $w_1 \ge w_2 \ge \cdots \ge w_m \ge 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \dots, m$:

• If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.



Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \dots, e_m\}$.

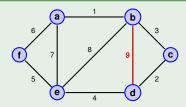
• Rename elements such that $w_1 \ge w_2 \ge \cdots \ge w_m \ge 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \dots, m$:

• If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.



Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \dots, e_m\}$.

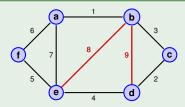
• Rename elements such that $w_1 \ge w_2 \ge \cdots \ge w_m \ge 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \dots, m$:

• If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.



Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \dots, e_m\}$.

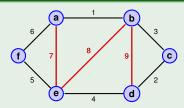
• Rename elements such that $w_1 \ge w_2 \ge \cdots \ge w_m \ge 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \dots, m$:

• If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.



Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \dots, e_m\}$.

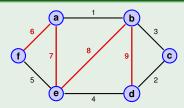
• Rename elements such that $w_1 \ge w_2 \ge \cdots \ge w_m \ge 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \dots, m$:

• If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.



Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \dots, e_m\}$.

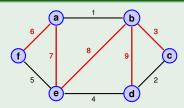
• Rename elements such that $w_1 \ge w_2 \ge \cdots \ge w_m \ge 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \dots, m$:

• If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.



Selecting maximum weight independent set online.

Selecting maximum weight independent set online.

Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

• Elements in *E* arrive in unknown uniform random arrival order σ .

Selecting maximum weight independent set online.

- Elements in *E* arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.

Selecting maximum weight independent set online.

- Elements in *E* arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.

Selecting maximum weight independent set online.

- Elements in *E* arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is independent, i.e., $X + e \in \mathcal{I}$.

Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

- Elements in *E* arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is independent, i.e., $X + e \in \mathcal{I}$.

Matroid secretary problem: Select (online) independent set $X \in \mathcal{I}$ of maximum weight.

In the offline setting, X is maximum weight base of the matroid.

Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

- Elements in *E* arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is independent, i.e., $X + e \in \mathcal{I}$.

Matroid secretary problem: Select (online) independent set $X \in \mathcal{I}$ of maximum weight.

- In the offline setting, X is maximum weight base of the matroid.
- Generalization of the secretary problem.

Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

- Elements in E arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is independent, i.e., $X + e \in \mathcal{I}$.

Matroid secretary problem: Select (online) independent set $X \in \mathcal{I}$ of maximum weight.

- In the offline setting, X is maximum weight base of the matroid.
- Generalization of the secretary problem.
 - Corresponds to the so-called 1-uniform matroid.

Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

- Elements in E arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is independent, i.e., $X + e \in \mathcal{I}$.

Matroid secretary problem: Select (online) independent set $X \in \mathcal{I}$ of maximum weight.

- In the offline setting, X is maximum weight base of the matroid.
- Generalization of the secretary problem.
 - Corresponds to the so-called 1-uniform matroid.
 - In k-uniform matroid, $X \in \mathcal{I}$ if and only if $|X| \leq k$.

About the matroid secretary problem:

• Problem introduced by Babaioff, Immorlica and Kleinberg (2007).

- Problem introduced by Babaioff, Immorlica and Kleinberg (2007).
 - They gave $\Omega\left(\frac{1}{\log(r)}\right)$ -approximation.

- Problem introduced by Babaioff, Immorlica and Kleinberg (2007).
 - They gave $\Omega\left(\frac{1}{\log(r)}\right)$ -approximation.
 - Remember that r is rank of the matroid.

- Problem introduced by Babaioff, Immorlica and Kleinberg (2007).
 - They gave $\Omega\left(\frac{1}{\log(r)}\right)$ -approximation.
 - Remember that r is rank of the matroid.
- State of the art: $\Omega\left(\frac{1}{\log\log(r)}\right)$ -approximation.

- Problem introduced by Babaioff, Immorlica and Kleinberg (2007).
 - They gave $\Omega\left(\frac{1}{\log(r)}\right)$ -approximation.
 - Remember that *r* is rank of the matroid.
- State of the art: $\Omega\left(\frac{1}{\log\log(r)}\right)$ -approximation.
 - First by Lachish (2014).

- Problem introduced by Babaioff, Immorlica and Kleinberg (2007).
 - They gave $\Omega\left(\frac{1}{\log(r)}\right)$ -approximation.
 - Remember that r is rank of the matroid.
- State of the art: $\Omega\left(\frac{1}{\log\log(r)}\right)$ -approximation.
 - First by Lachish (2014).
 - Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

- Problem introduced by Babaioff, Immorlica and Kleinberg (2007).
 - They gave $\Omega\left(\frac{1}{\log(r)}\right)$ -approximation.
 - Remember that *r* is rank of the matroid.
- State of the art: $\Omega\left(\frac{1}{\log\log(r)}\right)$ -approximation.
 - First by Lachish (2014).
 - Simpler algorithm by Feldman, Svensson and Zenklusen (2015).
- Constant factor approximations known for various special cases

- Problem introduced by Babaioff, Immorlica and Kleinberg (2007).
 - They gave $\Omega\left(\frac{1}{\log(r)}\right)$ -approximation.
 - Remember that r is rank of the matroid.
- State of the art: $\Omega\left(\frac{1}{\log\log(r)}\right)$ -approximation.
 - First by Lachish (2014).
 - Simpler algorithm by Feldman, Svensson and Zenklusen (2015).
- Constant factor approximations known for various special cases
 - Graphic matroids, *k*-uniform matroids, laminar matroids, transversal matroids, and more.

About the matroid secretary problem:

- Problem introduced by Babaioff, Immorlica and Kleinberg (2007).
 - They gave $\Omega\left(\frac{1}{\log(r)}\right)$ -approximation.
 - Remember that *r* is rank of the matroid.
- State of the art: $\Omega\left(\frac{1}{\log\log(r)}\right)$ -approximation.
 - First by Lachish (2014).
 - Simpler algorithm by Feldman, Svensson and Zenklusen (2015).
- Constant factor approximations known for various special cases
 - Graphic matroids, *k*-uniform matroids, laminar matroids, transversal matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a constant factor approximation?

About the matroid secretary problem:

- Problem introduced by Babaioff, Immorlica and Kleinberg (2007).
 - They gave $\Omega\left(\frac{1}{\log(r)}\right)$ -approximation.
 - Remember that r is rank of the matroid.
- State of the art: $\Omega\left(\frac{1}{\log\log(r)}\right)$ -approximation.
 - First by Lachish (2014).
 - Simpler algorithm by Feldman, Svensson and Zenklusen (2015).
- Constant factor approximations known for various special cases
 - Graphic matroids, *k*-uniform matroids, laminar matroids, transversal matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a constant factor approximation?

• Stronger question: Does there exist a $\frac{1}{e}$ -approximation?

About the matroid secretary problem:

- Problem introduced by Babaioff, Immorlica and Kleinberg (2007).
 - They gave $\Omega\left(\frac{1}{\log(r)}\right)$ -approximation.
 - Remember that r is rank of the matroid.
- State of the art: $\Omega\left(\frac{1}{\log\log(r)}\right)$ -approximation.
 - First by Lachish (2014).
 - Simpler algorithm by Feldman, Svensson and Zenklusen (2015).
- Constant factor approximations known for various special cases
 - Graphic matroids, *k*-uniform matroids, laminar matroids, transversal matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a constant factor approximation?

- Stronger question: Does there exist a $\frac{1}{e}$ -approximation?
- Would yield (another) generalization of secretary problem.

Matroid secretary problem $\Omega\left(\frac{1}{\log(r)}\right)$ -approximation

$$\Omega\left(\frac{1}{\log(r)}\right)$$
-approximation

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with |E| = m.

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with |E| = m.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with |E| = m.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).

• For $i = 1, ..., \frac{m}{2}$:

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with |E| = m.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).

• For $i = 1, \ldots, \frac{m}{2}$: Reject $\sigma(i)$.

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with |E| = m.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).

• For $i = 1, \ldots, \frac{m}{2}$: Reject $\sigma(i)$.

Phase II (Selection).

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with |E| = m.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).

• For $i = 1, \ldots, \frac{m}{2}$: Reject $\sigma(i)$.

Phase II (Selection).

• Let $w = \max_{i=1,\dots,m/2} w_{\sigma(i)}$,

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with |E| = m.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).

• For $i = 1, \ldots, \frac{m}{2}$: Reject $\sigma(i)$.

Phase II (Selection).

• Let $w = \max_{i=1,...,m/2} w_{\sigma(i)}$, and choose $j \in \{0,1,...,\lceil \log(r) \rceil \}$ uniformly at random.

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with |E| = m.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).

• For $i = 1, \ldots, \frac{m}{2}$: Reject $\sigma(i)$.

Phase II (Selection).

- Let $w = \max_{i=1,...,m/2} w_{\sigma(i)}$, and choose $j \in \{0, 1,..., \lceil \log(r) \rceil \}$ uniformly at random.
- Set threshold

$$t=rac{w}{2^{j}}.$$

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with |E| = m.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).

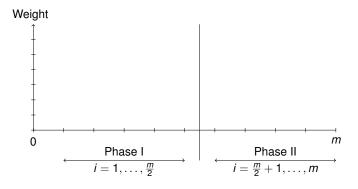
• For $i = 1, \ldots, \frac{m}{2}$: Reject $\sigma(i)$.

Phase II (Selection).

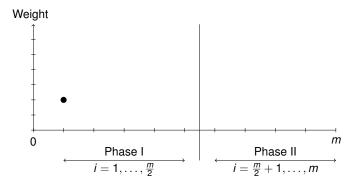
- Let $w = \max_{i=1,...,m/2} w_{\sigma(i)}$, and choose $j \in \{0, 1,..., \lceil \log(r) \rceil \}$ uniformly at random.
- Set threshold

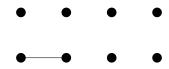
$$t=\frac{w}{2^{j}}.$$

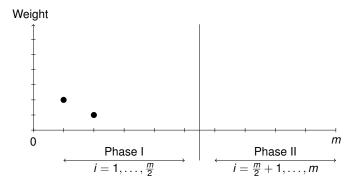
• For $i = \frac{m}{2} + 1, \dots, m$: Select $\sigma(i)$ if $w_{\sigma(i)} \ge t$ and $X + \sigma(i) \in \mathcal{I}$.

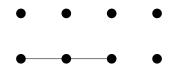


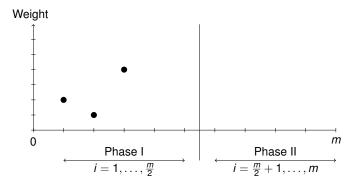
• • • •

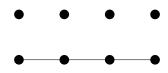


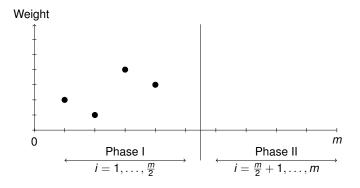


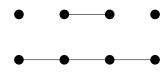


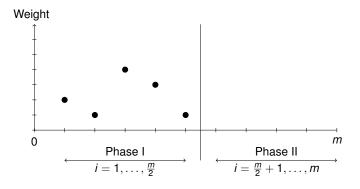




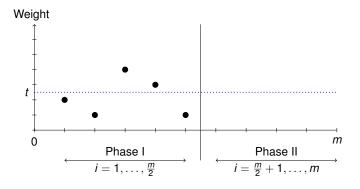


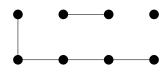


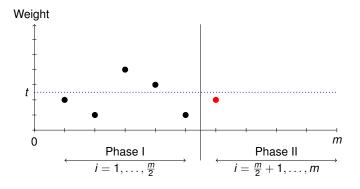


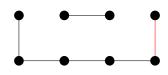


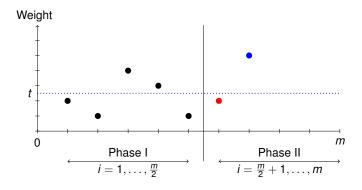


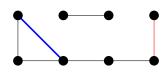


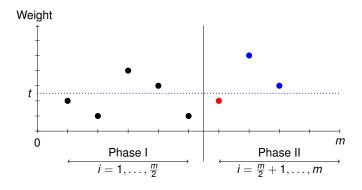


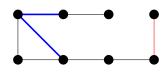


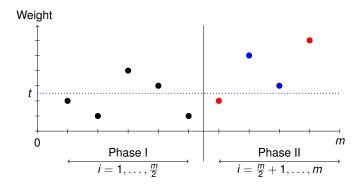


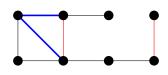


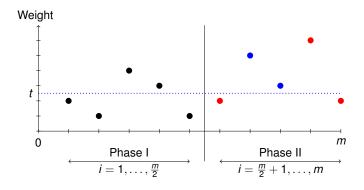


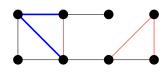












Theorem

The random threshold algorithm is a $\frac{1}{32(\lceil \log(r) \rceil + 1)}$ -approximation, where r is the rank of the matroid.

Theorem

The random threshold algorithm is a $\frac{1}{32(\lceil \log(r) \rceil + 1)}$ -approximation, where r is the rank of the matroid.

Proof: Consider an optimal base $B^* = \{x_1, \dots, x_r\}$.

Theorem

The random threshold algorithm is a $\frac{1}{32(\lceil \log(r) \rceil + 1)}$ -approximation, where r is the rank of the matroid.

Proof: Consider an optimal base $B^* = \{x_1, \dots, x_r\}$.

• Assume that $w(x_1) > w(x_2) > \cdots > w(x_r)$.

Theorem

The random threshold algorithm is a $\frac{1}{32(\lceil \log(r) \rceil + 1)}$ -approximation, where r is the rank of the matroid.

Proof: Consider an optimal base $B^* = \{x_1, \dots, x_r\}$.

- Assume that $w(x_1) > w(x_2) > \cdots > w(x_r)$.
- Let $1 \le q \le r$ be the largest number for which $w(x_q) \ge w(x_1)/r$.

Theorem

The random threshold algorithm is a $\frac{1}{32(\lceil \log(r) \rceil + 1)}$ -approximation, where r is the rank of the matroid.

Proof: Consider an optimal base $B^* = \{x_1, \dots, x_r\}$.

- Assume that $w(x_1) > w(x_2) > \cdots > w(x_r)$.
- Let $1 \le q \le r$ be the largest number for which $w(x_q) \ge w(x_1)/r$.

Let w = (35, 14, 8, 6, 3, 2, 1), so that r = 7. Then $\frac{w(x_1)}{r} = 5$ and q = 4.

Theorem

The random threshold algorithm is a $\frac{1}{32(\lceil \log(r) \rceil + 1)}$ -approximation, where r is the rank of the matroid.

Proof: Consider an optimal base $B^* = \{x_1, \dots, x_r\}$.

- Assume that $w(x_1) > w(x_2) > \cdots > w(x_r)$.
- Let $1 \le q \le r$ be the largest number for which $w(x_q) \ge w(x_1)/r$.

Let
$$w = (35, 14, 8, 6, 3, 2, 1)$$
, so that $r = 7$. Then $\frac{w(x_1)}{r} = 5$ and $q = 4$.

Then it holds that

$$\sum_{i=1}^q w(x_i) \geq \frac{1}{2} \cdot w(B^*).$$

Theorem

The random threshold algorithm is a $\frac{1}{32(\lceil \log(r) \rceil + 1)}$ -approximation, where r is the rank of the matroid.

Proof: Consider an optimal base $B^* = \{x_1, \dots, x_r\}$.

- Assume that $w(x_1) > w(x_2) > \cdots > w(x_r)$.
- Let $1 \le q \le r$ be the largest number for which $w(x_q) \ge w(x_1)/r$.

Let
$$w = (35, 14, 8, 6, 3, 2, 1)$$
, so that $r = 7$. Then $\frac{w(x_1)}{r} = 5$ and $q = 4$.

Then it holds that

$$\sum_{i=1}^{q} w(x_i) \geq \frac{1}{2} \cdot w(B^*).$$

Why?

Theorem

The random threshold algorithm is a $\frac{1}{32(\lceil \log(r) \rceil + 1)}$ -approximation, where r is the rank of the matroid.

Proof: Consider an optimal base $B^* = \{x_1, \dots, x_r\}$.

- Assume that $w(x_1) > w(x_2) > \cdots > w(x_r)$.
- Let $1 \le q \le r$ be the largest number for which $w(x_q) \ge w(x_1)/r$.

Let
$$w = (35, 14, 8, 6, 3, 2, 1)$$
, so that $r = 7$. Then $\frac{w(x_1)}{r} = 5$ and $q = 4$.

Then it holds that

$$\sum^{q} w(x_i) \geq \frac{1}{2} \cdot w(B^*).$$

Why?

$$\sum_{i=a+1}^{r} w(x_i) \leq \sum_{i=a+1}^{r} \frac{w(x_1)}{r} \leq w(x_1).$$

Some notation for (random) set T:

Some notation for (random) set T:

• Let $n_i(T)$ be the number of elements whose weight is at least $w(x_i)$.

Some notation for (random) set T:

- Let $n_i(T)$ be the number of elements whose weight is at least $w(x_i)$.
 - Note that $n_i(B^*) = i$.

Some notation for (random) set *T*:

- Let $n_i(T)$ be the number of elements whose weight is at least $w(x_i)$.
 - Note that $n_i(B^*) = i$.
- Let $m_i(T)$ be the number of elements whose weight is at least $w(x_i)/2$.

Some notation for (random) set *T*:

- Let n_i(T) be the number of elements whose weight is at least w(x_i).
 - Note that $n_i(B^*) = i$.
- Let $m_i(T)$ be the number of elements whose weight is at least $w(x_i)/2$.

Lemma

Let X be the set outputted by the random threshold algorithm.

Some notation for (random) set *T*:

- Let n_i(T) be the number of elements whose weight is at least w(x_i).
 - Note that $n_i(B^*) = i$.
- Let $m_i(T)$ be the number of elements whose weight is at least $w(x_i)/2$.

Lemma

Let X be the set outputted by the random threshold algorithm. For i = 1, ..., q, we have (remember $n_i(B^*) = i$)

Some notation for (random) set *T*:

- Let n_i(T) be the number of elements whose weight is at least w(x_i).
 - Note that $n_i(B^*) = i$.
- Let $m_i(T)$ be the number of elements whose weight is at least $w(x_i)/2$.

Lemma

Let X be the set outputted by the random threshold algorithm. For i = 1, ..., q, we have (remember $n_i(B^*) = i$)

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i.$$

Some notation for (random) set *T*:

- Let $n_i(T)$ be the number of elements whose weight is at least $w(x_i)$.
 - Note that $n_i(B^*) = i$.
- Let $m_i(T)$ be the number of elements whose weight is at least $w(x_i)/2$.

Lemma

Let X be the set outputted by the random threshold algorithm. For i = 1, ..., q, we have (remember $n_i(B^*) = i$)

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i.$$

We first show how lemma leads to desired approximation guarantee.

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i.$$

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i.$$

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i.$$

First note that (remember $n_i(B^*) = i$)

$$\sum_{i=1}^{q} w(x_i) = \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) n_i(B^*)\right] + w(x_q) n_q(B^*)$$

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i.$$

First note that (remember $n_i(B^*) = i$)

$$\sum_{i=1}^{q} w(x_i) = \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) n_i(B^*)\right] + w(x_q) n_q(B^*)$$

$$w(X) \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) m_i(X)\right] + \frac{1}{2} w(x_q) m_q(X)$$

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i.$$

First note that (remember $n_i(B^*) = i$)

$$\sum_{i=1}^{q} w(x_i) = \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) n_i(B^*)\right] + w(x_q) n_q(B^*)$$

$$w(X) \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) m_i(X)\right] + \frac{1}{2} w(x_q) m_q(X)$$

$$\mathbb{E}_{\sigma}[w(X)] \geq$$

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i.$$

First note that (remember $n_i(B^*) = i$)

$$\sum_{i=1}^{q} w(x_i) = \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) n_i(B^*)\right] + w(x_q) n_q(B^*)$$

$$w(X) \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) m_i(X)\right] + \frac{1}{2} w(x_q) m_q(X)$$

$$\mathbb{E}_{\sigma}[w(X)] \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) \mathbb{E}_{\sigma}[m_i(X)] \right] + \frac{1}{2} w(x_q) \mathbb{E}_{\sigma}[m_q(X)]$$

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i.$$

First note that (remember $n_i(B^*) = i$)

$$\sum_{i=1}^{q} w(x_i) = \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) n_i(B^*)\right] + w(x_q) n_q(B^*)$$

$$w(X) \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) m_i(X)\right] + \frac{1}{2} w(x_q) m_q(X)$$

$$\mathbb{E}_{\sigma}[w(X)] \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) \mathbb{E}_{\sigma}[m_i(X)] \right] + \frac{1}{2} w(x_q) \mathbb{E}_{\sigma}[m_q(X)]$$

$$\geq \frac{1}{16(\lceil \log(r) \rceil + 1)} \left(\left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1}))i \right] + w(x_q)q \right)$$

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i.$$

First note that (remember $n_i(B^*) = i$)

$$\sum_{i=1}^{q} w(x_i) = \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) n_i(B^*)\right] + w(x_q) n_q(B^*)$$

$$w(X) \ge \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) m_i(X)\right] + \frac{1}{2} w(x_q) m_q(X)$$

$$\mathbb{E}_{\sigma}[w(X)] \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) \mathbb{E}_{\sigma}[m_i(X)] \right] + \frac{1}{2} w(x_q) \mathbb{E}_{\sigma}[m_q(X)]$$

$$\geq \frac{1}{16(\lceil \log(r) \rceil + 1)} \left(\left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1}))i \right] + w(x_q)q \right)$$

$$= \frac{1}{16(\lceil \log(r) \rceil + 1)} \sum_{i=1}^{q} w(x_i) \geq \frac{1}{32(\lceil \log(r) \rceil + 1)} w(B^*).$$

Let X be set outputted by algorithm. For i = 1, ..., q,

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Let X be set outputted by algorithm. For i = 1, ..., q,

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix *i* and let *A* be the event that (both)

Let X be set outputted by algorithm. For i = 1, ..., q,

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix *i* and let *A* be the event that (both)

• The max. weight element x_1 in B^* appears in Phase I, and

Let X be set outputted by algorithm. For i = 1, ..., q,

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix *i* and let *A* be the event that (both)

- The max. weight element x_1 in B^* appears in Phase I, and
- The chosen $j \in \{0, \dots, \lceil \log(r) \rceil \}$ has the property that

$$w(x_i) \ge t := \frac{w(x_1)}{2^j} \ge \frac{w(x_i)}{2}.$$
 (1)

Let X be set outputted by algorithm. For i = 1, ..., q,

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix *i* and let *A* be the event that (both)

- The max. weight element x_1 in B^* appears in Phase I, and
- The chosen $j \in \{0, \dots, \lceil \log(r) \rceil\}$ has the property that

$$w(x_i) \ge t := \frac{w(x_1)}{2^j} \ge \frac{w(x_i)}{2}.$$
 (1)

R

Let X be set outputted by algorithm. For i = 1, ..., q,

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix *i* and let *A* be the event that (both)

- The max. weight element x_1 in B^* appears in Phase I, and
- The chosen $j \in \{0, \dots, \lceil \log(r) \rceil \}$ has the property that

$$w(x_i) \ge t := \frac{w(x_1)}{2^j} \ge \frac{w(x_i)}{2}.$$

$$w(x_i)/r \qquad w(x_i)/2 \qquad t \qquad w(x_i) \qquad w(x_1) \quad \mathbb{R}$$

$$(1)$$

Let X be set outputted by algorithm. For i = 1, ..., q,

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix *i* and let *A* be the event that (both)

- The max. weight element x_1 in B^* appears in Phase I, and
- The chosen $j \in \{0, \dots, \lceil \log(r) \rceil \}$ has the property that

$$w(x_i) \ge t := \frac{w(x_1)}{2^j} \ge \frac{w(x_i)}{2}.$$

$$w(x_i)/r \qquad w(x_i)/2 \qquad t \qquad w(x_i) \qquad w(x_1) \quad \mathbb{R}$$

$$(1)$$

• (In the example, it could also be that $w(x_1)/r \ge w(x_i)/2$.)

Let X be set outputted by algorithm. For i = 1, ..., q,

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix *i* and let *A* be the event that (both)

- The max. weight element x_1 in B^* appears in Phase I, and
- The chosen $j \in \{0, \dots, \lceil \log(r) \rceil\}$ has the property that

$$w(x_i) \ge t := \frac{w(x_1)}{2^j} \ge \frac{w(x_i)}{2}.$$

$$w(x_i)/r \qquad w(x_i)/2 \qquad t \qquad w(x_i) \qquad w(x_1) \quad \mathbb{R}$$

$$(1)$$

• (In the example, it could also be that $w(x_1)/r \ge w(x_i)/2$.)

Choice of q guarantees $w(x_i) \ge w(x_1)/r$, so at least one j satisfies (1):

Let X be set outputted by algorithm. For i = 1, ..., q,

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix *i* and let *A* be the event that (both)

- The max. weight element x_1 in B^* appears in Phase I, and
 - The chosen $j \in \{0, ..., \lceil \log(r) \rceil \}$ has the property that

$$w(x_i) \ge t := \frac{w(x_1)}{2^j} \ge \frac{w(x_i)}{2}.$$

$$w(x_i)/r \qquad w(x_i)/2 \qquad t \qquad w(x_i) \qquad w(x_i) \quad \mathbb{R}$$
(1)

• (In the example, it could also be that $w(x_1)/r \ge w(x_i)/2$.)

Choice of q guarantees $w(x_i) \ge w(x_1)/r$, so at least one j satisfies (1):

$$\mathbb{P}(A) \geq \frac{1}{2(\lceil \log(r) \rceil + 1)}.$$

With probability $\mathbb{P}(A) \ge 1/(2(\lceil \log(r) \rceil + 1))$, chosen j is such that

$$w(x_i) \geq t = \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$

With probability $\mathbb{P}(A) \ge 1/(2(\lceil \log(r) \rceil + 1))$, chosen *j* is such that

$$w(x_i) \geq t = \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$

For any $1 \le j < i$, it holds that $w(x_j) \ge w(x_i) \ge t$.

With probability $\mathbb{P}(A) \geq 1/(2(\lceil \log(r) \rceil + 1))$, chosen *j* is such that

$$w(x_i) \geq t = \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$

For any $1 \le j < i$, it holds that $w(x_i) \ge w(x_i) \ge t$.

 Every such x_j can potentially be chosen in Phase II as it exceeds the threshold. With probability $\mathbb{P}(A) \geq 1/(2(\lceil \log(r) \rceil + 1))$, chosen *j* is such that

$$w(x_i) \geq t = \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$

For any $1 \le j < i$, it holds that $w(x_i) \ge w(x_i) \ge t$.

- Every such x_j can potentially be chosen in Phase II as it exceeds the threshold.
 - It might be rejected still based on the independence criterium.

With probability $\mathbb{P}(A) \ge 1/(2(\lceil \log(r) \rceil + 1))$, chosen *j* is such that

$$w(x_i) \geq t = \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$

For any $1 \le j < i$, it holds that $w(x_i) \ge w(x_i) \ge t$.

- Every such x_j can potentially be chosen in Phase II as it exceeds the threshold.
 - It might be rejected still based on the independence criterium.

For given ordering σ , let Y be cardinality of maximal size independent set of threshold-exceeding elements that appear in Phase II.

With probability $\mathbb{P}(A) \ge 1/(2(\lceil \log(r) \rceil + 1))$, chosen *j* is such that

$$w(x_i) \geq t = \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$

For any $1 \le j < i$, it holds that $w(x_i) \ge w(x_i) \ge t$.

- Every such x_j can potentially be chosen in Phase II as it exceeds the threshold.
 - It might be rejected still based on the independence criterium.

For given ordering σ , let Y be cardinality of maximal size independent set of threshold-exceeding elements that appear in Phase II.

• Because the set $\{x_2, \dots, x_i\}$ is independent, it follows that

$$\mathbb{E}_{\sigma}[Y\mid A]\geq \frac{i-1}{2}\geq \frac{i}{4}$$

as every x_i appears in Phase II with prob. 1/2.

With probability $\mathbb{P}(A) \geq 1/(2(\lceil \log(r) \rceil + 1))$, chosen *j* is such that

$$w(x_i) \geq t = \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$

For any $1 \le j < i$, it holds that $w(x_i) \ge w(x_i) \ge t$.

- Every such x_j can potentially be chosen in Phase II as it exceeds the threshold.
 - It might be rejected still based on the independence criterium.

For given ordering σ , let Y be cardinality of maximal size independent set of threshold-exceeding elements that appear in Phase II.

• Because the set $\{x_2, \dots, x_i\}$ is independent, it follows that

$$\mathbb{E}_{\sigma}[Y\mid A]\geq \frac{i-1}{2}\geq \frac{i}{4}$$

as every x_i appears in Phase II with prob. 1/2.

• Here we use the fact that we are considering a matroid!

$\mathbb{E}_{\sigma}[Y \mid A] \geq \frac{i-1}{2} \geq \frac{i}{4}$

$$\mathbb{E}_{\sigma}[Y \mid A] \geq \frac{i-1}{2} \geq \frac{i}{4}$$

$$\mathbb{E}_{\sigma}[Y \mid A] \geq \frac{i-1}{2} \geq \frac{i}{4}$$

• Greedy algorithm (with weights equal to 1 for every element) implies that the size of the set chosen is at least *Y*.

$$\mathbb{E}_{\sigma}[Y \mid A] \geq \frac{i-1}{2} \geq \frac{i}{4}$$

- Greedy algorithm (with weights equal to 1 for every element) implies that the size of the set chosen is at least Y.
- (Might also argue directly through the augmentation property.)

$$\mathbb{E}_{\sigma}[Y \mid A] \geq \frac{i-1}{2} \geq \frac{i}{4}$$

- Greedy algorithm (with weights equal to 1 for every element) implies that the size of the set chosen is at least Y.
- (Might also argue directly through the augmentation property.)

To conclude,

$$\mathbb{E}_{\sigma}[Y \mid A] \geq \frac{i-1}{2} \geq \frac{i}{4}$$

- Greedy algorithm (with weights equal to 1 for every element) implies that the size of the set chosen is at least Y.
- (Might also argue directly through the augmentation property.)

To conclude,

$$\mathbb{E}_{\sigma}[m_i(X)] = \mathbb{E}_{\sigma}[Y \mid A] \cdot \mathbb{P}(A) \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i.$$

Comments

Comments

Theorem

The random threshold algorithm is $\frac{1}{32(\lceil \log(r) \rceil + 1)}$ -approximation, where r is the rank of the matroid $\mathcal{M} = (E, \mathcal{I})$.

Theorem

The random threshold algorithm is $\frac{1}{32(\lceil \log(r) \rceil + 1)}$ -approximation, where r is the rank of the matroid $\mathcal{M} = (E, \mathcal{I})$.

 Algorithm can be adjusted to the setting where the rank of the matroid is unknown.

Theorem

- Algorithm can be adjusted to the setting where the rank of the matroid is unknown.
 - This makes analysis more complicated.

Theorem

- Algorithm can be adjusted to the setting where the rank of the matroid is unknown.
 - This makes analysis more complicated.
- "Single-threshold" algorithms can never give constant-factor approximation.

Theorem

- Algorithm can be adjusted to the setting where the rank of the matroid is unknown.
 - This makes analysis more complicated.
- "Single-threshold" algorithms can never give constant-factor approximation.
 - As shown by Babaioff et al. (2018).

Theorem

- Algorithm can be adjusted to the setting where the rank of the matroid is unknown.
 - This makes analysis more complicated.
- "Single-threshold" algorithms can never give constant-factor approximation.
 - As shown by Babaioff et al. (2018).
- Problem can be turned into a randomized strategyproof mechanism.

Theorem

- Algorithm can be adjusted to the setting where the rank of the matroid is unknown.
 - This makes analysis more complicated.
- "Single-threshold" algorithms can never give constant-factor approximation.
 - As shown by Babaioff et al. (2018).
- Problem can be turned into a randomized strategyproof mechanism.
 - Elements are bidders that each can receive one "unit of stuff".

Theorem

- Algorithm can be adjusted to the setting where the rank of the matroid is unknown.
 - This makes analysis more complicated.
- "Single-threshold" algorithms can never give constant-factor approximation.
 - As shown by Babaioff et al. (2018).
- Problem can be turned into a randomized strategyproof mechanism.
 - Elements are bidders that each can receive one "unit of stuff".
 - Matroid constraint on which combination of bidders can be allocated a unit.

Beyond matroids

Consider

- Finite set of elements $E = \{e_1, \dots, e_m\}$.
- Weight function $w: E \to \mathbb{R}_{>0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$
 - Matroid set system (possibly) without augmentation property.

Consider

- Finite set of elements $E = \{e_1, \dots, e_m\}$.
- Weight function $w: E \to \mathbb{R}_{>0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^{\mathcal{E}} = \{X : X \subseteq \mathcal{E}\}.$
 - Matroid set system (possibly) without augmentation property.

Consider

- Finite set of elements $E = \{e_1, \dots, e_m\}$.
- Weight function $w: E \to \mathbb{R}_{>0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}$.
 - Matroid set system (possibly) without augmentation property.

Online selection:

• Elements in E arrive in unknown uniform random arrival order σ .

Consider

- Finite set of elements $E = \{e_1, \dots, e_m\}$.
- Weight function $w: E \to \mathbb{R}_{>0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}$.
 - Matroid set system (possibly) without augmentation property.

- Elements in E arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.

Consider

- Finite set of elements $E = \{e_1, \dots, e_m\}$.
- Weight function $w: E \to \mathbb{R}_{>0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}$.
 - Matroid set system (possibly) without augmentation property.

- Elements in E arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.

Consider

- Finite set of elements $E = \{e_1, \dots, e_m\}$.
- Weight function $w: E \to \mathbb{R}_{>0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}$.
 - Matroid set system (possibly) without augmentation property.

- Elements in E arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e \in \mathcal{F}$.

Consider

- Finite set of elements $E = \{e_1, \dots, e_m\}$.
- Weight function $w: E \to \mathbb{R}_{>0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$
 - Matroid set system (possibly) without augmentation property.

Online selection:

- Elements in E arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e \in \mathcal{F}$.

Goal: Select (online) independent set $X \in \mathcal{F}$ of max. weight.

Consider

- Finite set of elements $E = \{e_1, \dots, e_m\}$.
- Weight function $w: E \to \mathbb{R}_{>0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}$.
 - Matroid set system (possibly) without augmentation property.

Online selection:

- Elements in E arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e \in \mathcal{F}$.

Goal: Select (online) independent set $X \in \mathcal{F}$ of max. weight.

In general, for arbitrary downward-closed set systems, no constant-factor approximation exists.

Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system $\mathcal{F}=(E,\mathcal{I})$ with m elements and (random) weights in $\{0,1\}$, obtains an approximation guarantee better than $O(\ln \ln(n)/\ln(n))$.

Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system $\mathcal{F}=(E,\mathcal{I})$ with m elements and (random) weights in $\{0,1\}$, obtains an approximation guarantee better than $O(\ln \ln(n)/\ln(n))$.

Proof (very informal): Let $n \ge 0$ be an integer and set $r = \ln(n)$.

Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system $\mathcal{F}=(E,\mathcal{I})$ with m elements and (random) weights in $\{0,1\}$, obtains an approximation guarantee better than $O(\ln \ln(n)/\ln(n))$.

Proof (very informal): Let $n \ge 0$ be an integer and set $r = \ln(n)$.

• $E = S_1 \cup S_2 \cup \cdots \cup S_k$ is disjoint union of sets S_i with $k = \lceil \frac{n}{r} \rceil$.

Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system $\mathcal{F}=(E,\mathcal{I})$ with m elements and (random) weights in $\{0,1\}$, obtains an approximation guarantee better than $O(\ln \ln(n)/\ln(n))$.

Proof (very informal): Let $n \ge 0$ be an integer and set $r = \ln(n)$.

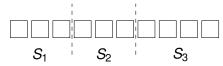
- $E = S_1 \cup S_2 \cup \cdots \cup S_k$ is disjoint union of sets S_i with $k = \lceil \frac{n}{r} \rceil$.
- Every S_i either has r or r-1 elements.

Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system $\mathcal{F}=(E,\mathcal{I})$ with m elements and (random) weights in $\{0,1\}$, obtains an approximation guarantee better than $O(\ln \ln(n)/\ln(n))$.

Proof (very informal): Let $n \ge 0$ be an integer and set $r = \ln(n)$.

- $E = S_1 \cup S_2 \cup \cdots \cup S_k$ is disjoint union of sets S_i with $k = \lceil \frac{n}{r} \rceil$.
- Every S_i either has r or r-1 elements.

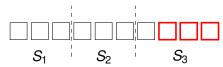


Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system $\mathcal{F}=(E,\mathcal{I})$ with m elements and (random) weights in $\{0,1\}$, obtains an approximation guarantee better than $O(\ln \ln(n)/\ln(n))$.

Proof (very informal): Let $n \ge 0$ be an integer and set $r = \ln(n)$.

- $E = S_1 \cup S_2 \cup \cdots \cup S_k$ is disjoint union of sets S_i with $k = \lceil \frac{n}{r} \rceil$.
- Every S_i either has r or r-1 elements.



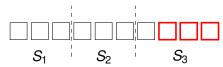
• $X \subseteq E$ independent (i.e., $X \in \mathcal{F}$) $\Leftrightarrow X \subseteq S_i$ for some i = 1, ..., k.

Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system $\mathcal{F}=(E,\mathcal{I})$ with m elements and (random) weights in $\{0,1\}$, obtains an approximation guarantee better than $O(\ln \ln(n)/\ln(n))$.

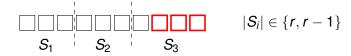
Proof (very informal): Let $n \ge 0$ be an integer and set $r = \ln(n)$.

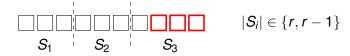
- $E = S_1 \cup S_2 \cup \cdots \cup S_k$ is disjoint union of sets S_i with $k = \lceil \frac{n}{r} \rceil$.
- Every S_i either has r or r-1 elements.



• $X \subseteq E$ independent (i.e., $X \in \mathcal{F}$) $\Leftrightarrow X \subseteq S_i$ for some i = 1, ..., k.

This set system is (structurally) very "far away" from a matroid.





The weights are generated independently for every $e \in E$:

The weights are generated independently for every $e \in E$:

$$w_{e} = \begin{cases} 1 & \text{with probability } \frac{1}{r} \\ 0 & \text{with probability } 1 - \frac{1}{r} \end{cases}.$$

The weights are generated independently for every $e \in E$:

$$w_e = \left\{ \begin{array}{ll} 1 & \text{with probability } \frac{1}{r} \\ 0 & \text{with probability } 1 - \frac{1}{r} \end{array} \right.$$

No (randomized) algorithm $\mathcal A$ can give constant-factor approximation.

The weights are generated independently for every $e \in E$:

$$w_e = \begin{cases} 1 & \text{with probability } \frac{1}{r} \\ 0 & \text{with probability } 1 - \frac{1}{r} \end{cases}.$$

No (randomized) algorithm A can give constant-factor approximation. What can we achieve online (sketch):

The weights are generated independently for every $e \in E$:

$$w_e = \begin{cases} 1 & \text{with probability } \frac{1}{r} \\ 0 & \text{with probability } 1 - \frac{1}{r} \end{cases}.$$

No (randomized) algorithm $\mathcal A$ can give constant-factor approximation.

What can we achieve online (sketch):

• As soon as A selects an element $e \in S_{i^*}$ (for some i^*), it can only pick subsequent elements from the same S_{i^*} .

The weights are generated independently for every $e \in E$:

$$w_e = \begin{cases} 1 & \text{with probability } \frac{1}{r} \\ 0 & \text{with probability } 1 - \frac{1}{r} \end{cases}.$$

No (randomized) algorithm $\mathcal A$ can give constant-factor approximation.

What can we achieve online (sketch):

- As soon as A selects an element $e \in S_{i^*}$ (for some i^*), it can only pick subsequent elements from the same S_{i^*} .
- Elements from S_{i^*} that have not yet arrive, have total expected weight at most 1.

The weights are generated independently for every $e \in E$:

$$w_e = \begin{cases} 1 & \text{with probability } \frac{1}{r} \\ 0 & \text{with probability } 1 - \frac{1}{r} \end{cases}.$$

No (randomized) algorithm $\mathcal A$ can give constant-factor approximation.

What can we achieve online (sketch):

- As soon as A selects an element $e \in S_{i^*}$ (for some i^*), it can only pick subsequent elements from the same S_{i^*} .
- Elements from S_{i^*} that have not yet arrive, have total expected weight at most 1. (By definition of weights.)

$$|S_i| \in \{r, r-1\}$$

The weights are generated independently for every $e \in E$:

$$w_e = \begin{cases} 1 & \text{with probability } \frac{1}{r} \\ 0 & \text{with probability } 1 - \frac{1}{r} \end{cases}.$$

No (randomized) algorithm $\mathcal A$ can give constant-factor approximation.

What can we achieve online (sketch):

- As soon as A selects an element $e \in S_{i^*}$ (for some i^*), it can only pick subsequent elements from the same S_{i^*} .
- Elements from S_{i^*} that have not yet arrive, have total expected weight at most 1. (By definition of weights.)
- Therefore, set selected by A has weight at most 2 in expectation,

What can we achieve offline (sketch):

• Balls-in-bins calculation shows that, in expectation, there will be always at least one S_i that has $\Omega(\ln(n)/\ln\ln(n))$ elements with weight 1.

- Balls-in-bins calculation shows that, in expectation, there will be always at least one S_i that has $\Omega(\ln(n)/\ln\ln(n))$ elements with weight 1.
- Offline optimum OPT = $\Omega(\ln(n)/\ln\ln(n))$ in expectation.

- Balls-in-bins calculation shows that, in expectation, there will be always at least one S_i that has $\Omega(\ln(n)/\ln\ln(n))$ elements with weight 1.
- Offline optimum OPT = $\Omega(\ln(n)/\ln\ln(n))$ in expectation.

Final remark:

- Balls-in-bins calculation shows that, in expectation, there will be always at least one S_i that has $\Omega(\ln(n)/\ln\ln(n))$ elements with weight 1.
- Offline optimum OPT = $\Omega(\ln(n)/\ln\ln(n))$ in expectation.

Final remark:

Theorem (Rubinstein, 2016)

There exists an $\Omega(1/\log(n))$ -approximation w.r.t. the offline optimum for general downward-closed set system with weights in $\{0,1\}$.

- Balls-in-bins calculation shows that, in expectation, there will be always at least one S_i that has $\Omega(\ln(n)/\ln\ln(n))$ elements with weight 1.
- Offline optimum OPT = $\Omega(\ln(n)/\ln\ln(n))$ in expectation.

Final remark:

Theorem (Rubinstein, 2016)

There exists an $\Omega(1/\log(n))$ -approximation w.r.t. the offline optimum for general downward-closed set system with weights in $\{0,1\}$.

• This is then tight up to a factor log log(n).

Graphic matroid

Korula-Pál algorithm

For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

• Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .

For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.

For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.

For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is forest of G.

For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is forest of G.
 - That is, *X* + *e* does not contain a cycle.

For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

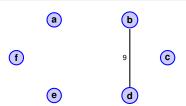
- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if *X* + *e* is forest of *G*.
 - That is, X + e does not contain a cycle.

For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if *X* + *e* is forest of *G*.
 - That is, X + e does not contain a cycle.

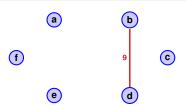
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is forest of G.
 - That is, X + e does not contain a cycle.



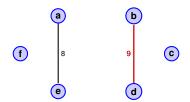
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is forest of G.
 - That is, X + e does not contain a cycle.



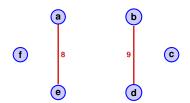
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if *X* + *e* is forest of *G*.
 - That is, X + e does not contain a cycle.



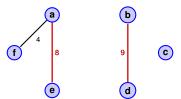
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is forest of G.
 - That is, X + e does not contain a cycle.



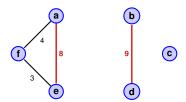
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is forest of G.
 - That is, X + e does not contain a cycle.



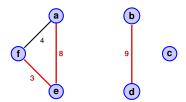
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is forest of G.
 - That is, X + e does not contain a cycle.



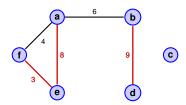
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if *X* + *e* is forest of *G*.
 - That is, X + e does not contain a cycle.



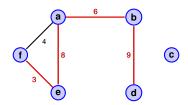
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is forest of G.
 - That is, X + e does not contain a cycle.



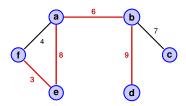
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is forest of G.
 - That is, X + e does not contain a cycle.



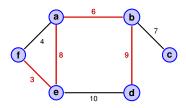
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is forest of G.
 - That is, *X* + *e* does not contain a cycle.



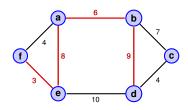
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is forest of G.
 - That is, X + e does not contain a cycle.



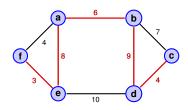
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is forest of G.
 - That is, X + e does not contain a cycle.



For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

- Edges of (known) graph G = (V, E) arrive in unknown uniform random arrival order σ .
- Upon arrival of $e \in E$, its weight $w_e \ge 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if X + e is forest of G.
 - That is, X + e does not contain a cycle.



Assume that $V = \{1, \dots, n\}$.

Assume that $V = \{1, \dots, n\}$.

Graphic matroid secretary algorithm for graph G = (V, E)

Before the edges arrive:

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph G = (V, E)

Before the edges arrive:

• With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph G = (V, E)

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph G = (V, E)

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph G = (V, E)

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph G = (V, E)

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph G = (V, E)

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

• Run (in parallel) the secretary algorithm on every A_z .

1/(2e)-approximation

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph G = (V, E)

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

- Run (in parallel) the secretary algorithm on every A_z .
- We either orient every edge to its node with highest index, or every edge to its node with lowest index.

1/(2e)-approximation

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph G = (V, E)

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

- Run (in parallel) the secretary algorithm on every A_z .
- We either orient every edge to its node with highest index, or every edge to its node with lowest index.
- A_z is set of all arcs that are oriented into z.

1/(2e)-approximation

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph G = (V, E)

Before the edges arrive:

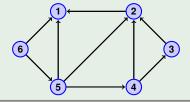
- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

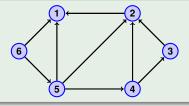
When the edges arrive:

- Run (in parallel) the secretary algorithm on every A_z .
- We either orient every edge to its node with highest index, or every edge to its node with lowest index.
- A_z is set of all arcs that are oriented into z.
- For every $z \in V$ at most one arc from every A_z is selected.



Preprocessing.

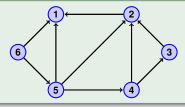
 Randomly orient every edge to highest index, or every edge to lowest index.



```
A_1 = \{(6,1),(5,1),(2,1)\}
A_2 = \{(5,2),(4,2),(3,2)\}
A_3 = \{(4,3)\}
A_4 = \{(5,4)\}
A_5 = \{(6,5)\}
A_6 = \emptyset
```

Preprocessing.

- Randomly orient every edge to highest index, or every edge to lowest index.
- Resulting arcs A are partitioned into sets A_z for $z \in V$.

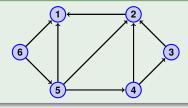


```
A_1 = \{(6,1), (5,1), (2,1)\}
A_2 = \{(5,2), (4,2), (3,2)\}
A_3 = \{(4,3)\}
A_4 = \{(5,4)\}
A_5 = \{(6,5)\}
A_6 = \emptyset
```

Preprocessing.

- Randomly orient every edge to highest index, or every edge to lowest index.
- Resulting arcs A are partitioned into sets A_z for $z \in V$.

Running secretary algorithms on the A_z .

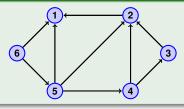


```
\begin{array}{l} A_1 = \{(6,1),(5,1),(2,1)\} \\ A_2 = \{(5,2),(4,2),(3,2)\} \\ A_3 = \{(4,3)\} \\ A_4 = \{(5,4)\} \\ A_5 = \{(6,5)\} \\ A_6 = \emptyset \end{array}
```

Preprocessing.

- Randomly orient every edge to highest index, or every edge to lowest index.
- Resulting arcs A are partitioned into sets A_z for $z \in V$.

Running secretary algorithms on the A_z **.** For all $z \in V$ (in parallel):



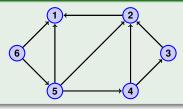
```
A_1 = \{(6,1),(5,1),(2,1)\}
A_2 = \{(5,2),(4,2),(3,2)\}
A_3 = \{(4,3)\}
A_4 = \{(5,4)\}
A_5 = \{(6,5)\}
A_6 = \emptyset
```

Preprocessing.

- Randomly orient every edge to highest index, or every edge to lowest index.
- Resulting arcs A are partitioned into sets A_z for $z \in V$.

Running secretary algorithms on the A_z **.** For all $z \in V$ (in parallel):

• Phase I: First observe $\lfloor \frac{|A_z|}{e} \rfloor$ of edges contained in A_z .



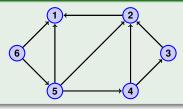
```
A_1 = \{(6,1), (5,1), (2,1)\}
A_2 = \{(5,2), (4,2), (3,2)\}
A_3 = \{(4,3)\}
A_4 = \{(5,4)\}
A_5 = \{(6,5)\}
A_6 = \emptyset
```

Preprocessing.

- Randomly orient every edge to highest index, or every edge to lowest index.
- Resulting arcs A are partitioned into sets A_z for $z \in V$.

Running secretary algorithms on the A_z **.** For all $z \in V$ (in parallel):

- Phase I: First observe $\lfloor \frac{|A_z|}{e} \rfloor$ of edges contained in A_z .
- Phase II: Select first edge whose weight exceeds best weight seen in Phase I.



```
A_1 = \{(6,1), (5,1), (2,1)\}
A_2 = \{(5,2), (4,2), (3,2)\}
A_3 = \{(4,3)\}
A_4 = \{(5,4)\}
A_5 = \{(6,5)\}
A_6 = \emptyset
```

Preprocessing.

- Randomly orient every edge to highest index, or every edge to lowest index.
- Resulting arcs A are partitioned into sets A_z for $z \in V$.

Running secretary algorithms on the A_z **.** For all $z \in V$ (in parallel):

- Phase I: First observe $\lfloor \frac{|A_z|}{e} \rfloor$ of edges contained in A_z .
- Phase II: Select first edge whose weight exceeds best weight seen in Phase I.

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

• Run (in parallel) the secretary algorithm on every A_z .

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

Run (in parallel) the secretary algorithm on every A_z.

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

Run (in parallel) the secretary algorithm on every Az.

High-level steps to show it is $\frac{1}{2e}$ -approximation:

First show that indeed forest is outputted.

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

• Run (in parallel) the secretary algorithm on every A_z .

- First show that indeed forest is outputted.
 - That is, an independent set of the graphic matroid.

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

• Run (in parallel) the secretary algorithm on every A_z .

- First show that indeed forest is outputted.
 - That is, an independent set of the graphic matroid.
- Then compare to (oriented) offline max. weight spanning tree.

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

• Run (in parallel) the secretary algorithm on every A_z .

- First show that indeed forest is outputted.
 - That is, an independent set of the graphic matroid.
- Then compare to (oriented) offline max. weight spanning tree.
- Give bound on expected contribution per node:

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

Run (in parallel) the secretary algorithm on every A_z.

- First show that indeed forest is outputted.
 - That is, an independent set of the graphic matroid.
- Then compare to (oriented) offline max. weight spanning tree.
- Give bound on expected contribution per node:
 - Factor $\frac{1}{2}$ is result of (randomly) orienting edges.

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (i,j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i,j\}$ (i < j) with arc (j,i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

• Run (in parallel) the secretary algorithm on every A_z .

- First show that indeed forest is outputted.
 - That is, an independent set of the graphic matroid.
- Then compare to (oriented) offline max. weight spanning tree.
- Give bound on expected contribution per node:
 - Factor ½ is result of (randomly) orienting edges.
 - Factor $\frac{1}{e}$ is result of running (parallel) secretary algorithms.

By now, $\frac{1}{4}$ -approximation for graphic matroid secretary problem is known.

By now, $\frac{1}{4}$ -approximation for graphic matroid secretary problem is known.

• See paper of Soto, Turkieltaub and Verdugo (2018).

By now, $\frac{1}{4}$ -approximation for graphic matroid secretary problem is known.

- See paper of Soto, Turkieltaub and Verdugo (2018).
- Proof uses similar algorithm and analysis as that of Kesselheim et al. (2013) for online bipartite matching.

By now, $\frac{1}{4}$ -approximation for graphic matroid secretary problem is known.

- See paper of Soto, Turkieltaub and Verdugo (2018).
- Proof uses similar algorithm and analysis as that of Kesselheim et al. (2013) for online bipartite matching.
- Technique also applies to other special cases of matroids.

By now, $\frac{1}{4}$ -approximation for graphic matroid secretary problem is known.

- See paper of Soto, Turkieltaub and Verdugo (2018).
- Proof uses similar algorithm and analysis as that of Kesselheim et al. (2013) for online bipartite matching.
- Technique also applies to other special cases of matroids.

Is there $\frac{1}{8}$ -approximation for graphic matroid secretary problem?