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Generalization of linear independence of vectors in, e.g., R".

Let E = {v4,..., v} be collection of vectors v; € R" for all /.
@ Assume that kK > nand span(E) = R".

Subset of vectors X C E is called linearly independent if, for 4; € R,
Zv,-eX’Yi' Vi = 0 = Yi = 0 Vi.

@ No v; € X can be written as linear combination of other vectors.

=t -{(2). (). (). (D)

Is X = {v1, vo, v3} independent? NO, because v3 = 3vq + 4Vvs.

@ Maximal independent sets are bases (of R").
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Matroid secretary problem: Select (online) independent set
X € T of maximum weight.

@ In the offline setting, X is maximum weight base of the matroid.
@ Generalization of the secretary problem.

@ Corresponds to the so-called 1-uniform matroid.
@ In k-uniform matroid, X € Z if and only if | X| < k.
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o First by Lachish (2014).
e Simpler algorithm by Feldman, Svensson and Zenklusen (2015).
@ Constant factor approximations known for various special cases

e Graphic matroids, k-uniform matroids, laminar matroids, transversal
matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a con-
stant factor approximation?

@ Stronger question: Does there exist a %—approximation?

@ Would yield (another) generalization of secretary problem.
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Matroid secretary problem

Q (bQT) -approximation
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Consider (given) matroid M = (E,Z) of rank r with |E| = m.

Random threshold algorithm for arrival order o

Set X = 0.
Phase | (Observation).
@ Fori=1,...,7: Reject o(i).

Phase Il (Selection).
@ Let w = maxj_q, _m/2 W,(, and choose j € {0,1..., [log(r)]}
uniformly at random.
@ Set threshold

t = Zii.

@ Fori=7+1,...,m: Select o(i) if w,;) > tand X + o(i) € Z.
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o It might be rejected still based on the independence criterium.

For given ordering o, let Y be cardinality of maximal size independent
set of threshold-exceeding elements that appear in Phase II.

@ Because the set {x», ..., X;} is independent, it follows that

i1 i
> — > —
B Y| AlZ 52

as every x; appears in Phase Il with prob. 1/2.

@ Here we use the fact that we are considering a matroid!
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One might interpret Phase Il as just greedily selecting elements that
exceed the threshold t.

@ Greedy algorithm (with weights equal to 1 for every element)
implies that the size of the set chosen is at least Y.

@ (Might also argue directly through the augmentation property.)
To conclude,

1

Ea[mi(X)] = EO’[Y ’ A] 'P(A) > W

.
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g 32([log(n)] + 1) PP
where r is the rank of the matroid M = (E,I).

@ Algorithm can be adjusted to the setting where the rank of the
matroid is unknown.

e This makes analysis more complicated.

@ “Single-threshold” algorithms can never give constant-factor
approximation.

o As shown by Babaioff et al. (2018).

@ Problem can be turned into a randomized strategyproof
mechanism.

@ Elements are bidders that each can receive one "unit of stuff".

@ Matroid constraint on which combination of bidders can be
allocated a unit.
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@ Upon arrival of e € E, its weight we > 0 is revealed.
@ Decide irrevocably whether to accept or reject it.
o Acceptance is only allowed if X + e € F.

[ Goal: Select (online) independent set X € F of max. weight.
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@ Decide irrevocably whether to accept or reject it.
o Acceptance is only allowed if X + e € F.

[ Goal: Select (online) independent set X € F of max. weight.

In general, for arbitrary downward-closed set systems, no
constant-factor approximation exists.
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Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set

system F = (E,Z) with m elements and (random) weights in {0, 1},
obtains an approximation guarantee better than O(InIn(n)/In(n)).
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S S S3
@ X C Eindependent (i.e., X € F) < X C S;forsomei=1,... k.
This set system is (structurally) very “far away” from a matroid.
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@ As soon as A selects an element e € S;- (for some i*), it can only

pick subsequent elements from the same S;-.

@ Elements from S;. that have not yet arrive, have total expected

weight at most 1. (By definition of weights.)

@ Therefore, set selected by A has weight at most 2 in expectation, ..
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What can we achieve offline (sketch):

@ Balls-in-bins calculation shows that, in expectation, there will be
always at least one S; that has Q(In(n)/InIn(n)) elements with
weight 1.

@ Offline optimum OPT = Q(In(n)/InIn(n)) in expectation.

Final remark:

Theorem (Rubinstein, 2016)

There exists an Q(1/ log(n))-approximation w.r.t. the offline optimum
for general downward-closed set system with weights in {0, 1}.

@ This is then tight up to a factor log log(n).
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Graphic matroid
Korula-Pal algorithm
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Graphic matroid secretary problem

For many special matroids, there exists a constant-factor
approximation (often based on a reduction to secretary problems).
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Assume that V = {1,...,n}.

Graphic matroid secretary algorithm for graph G = (V, E)
Before the edges arrive:
@ With prob. % replace every edge {i,j} (i < j) with arc (i,j), or
@ with prob. % replace every edge {i,j} (i < j) with arc (j, ).
Let A be the resulting (random) set of directed arcs, and

A, ={(u,z) e A:{u,z} e E}forze V.

When the edges arrive:
@ Run (in parallel) the secretary algorithm on every A;. )

@ We either orient every edge to its node with highest index, or
every edge to its node with lowest index.
@ A;is set of all arcs that are oriented into z.

@ For every z € V at most one arc from every A; is selected.
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Graphic matroid secretary algorithm for graph G = (V, E)

Before the edges arrive:
@ With prob. % replace every edge {i,j} (i < j) with arc (/,j), or
@ with prob. § replace every edge {i,j} (i < j) with arc (j, /).
Let A be the resulting (random) set of directed arcs, and
A; ={(u,z) e A:{u,z} e E} forze V.
When the edges arrive:
@ Run (in parallel) the secretary algorithm on every A,.
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@ With prob. % replace every edge {i,j} (i < j) with arc (/,j), or
@ with prob. § replace every edge {i,j} (i < j) with arc (j, /).
Let A be the resulting (random) set of directed arcs, and

A; ={(u,z) e A:{u,z} e E} forze V.

When the edges arrive:
@ Run (in parallel) the secretary algorithm on every A,.

High-level steps to show it is zie-approximation:
@ First show that indeed forest is outputted.
e That is, an independent set of the graphic matroid.
@ Then compare to (oriented) offline max. weight spanning tree.
@ Give bound on expected contribution per node:
e Factor 1§ is result of (randomly) orienting edges.
o Factor ‘5 is result of running (parallel) secretary algorithms.
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@ Proof uses similar algorithm and analysis as that of Kesselheim et
al. (2013) for online bipartite matching.

@ Technique also applies to other special cases of matroids.

Is there j—a-approximation for graphic matroid secretary problem?
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