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Online selection

Consider
Finite set of elements E = {e1, . . . ,em}.
Weight function w : E → R≥0.
Collection of feasible subsets F ⊆ 2E = {S : S ⊆ E}.

Elements arrive one by one in unknown order σ = (σ(1), . . . , σ(m)).

Online selection problem with initial S = ∅
For i = 1, . . . ,m, upon arrival of element σ(i):

Weight wσ(i) is revealed.
Decide (irrevocably) whether to select or reject σ(i), where
selecting is only allowed if S + σ(i) ∈ F .

Goal: Select subset S ∈ F maximizing w(S) =
∑

e∈S w(e).
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Bayesian setting
With adversarial arrival order
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Bayesian setting

Instead of making assumption on arrival order (uniform random), we make
assumption on the (unknown) weights of the elements.

In Bayesian setting, we have for every element i a (non-negative)
probability distribution Xi : R≥0 → [0,1].

Distributions Xi are independent from each other.
Weight wi of element ei is sample from Xi .

Online procedure for set system F = (E , I):
Set S = ∅.

For every i , a realization wi ∼ Xi is generated.
All realizations wi are shown to the adversary.

For i = 1, . . . ,m:
Adversary chooses σ(i) ∈ E , and reveals it and its weight wi .
Online algorithm A decides whether to accept or reject σ(i),
where acceptance is only allowed if S + σ(i) ∈ F .
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Probability distributions

Very roughly speaking, there are two main types of probability
distributions: continuous and discrete.

A non-negative discrete random variable X is given by function
g : N→ [0,1] with

∞∑
i=0

g(i) = 1.

Example

Suppose we have a fair die with six sides. Then g(i) = 1
6 for

i = 1, . . . ,6 and g(i) = 0 otherwise.

A non-negative continuous random variable X is given by density
function f : R≥0 → R≥0 with∫ ∞

0
f (x)dx = 1.

It then holds that P(X ≤ z) =

∫ z

0
f (x)dx .
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P(X ≤ z) =

∫ z

0
f (x)dx

The function f (x) models how the probability mass is spread out.

x

f (x)

0

Example
Consider the uniform distribution over the interval [a,b] with 0 ≤ a < b.
Then f (x) = 1

b−a .

Remark
All the results we discuss today hold for both continuous and discrete
distributions, but sometimes need slightly different arguments.
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Online procedure for set system F = (E , I):
Set S = ∅.

For every i , a realization wi ∼ Xi is generated.
All realizations wi are shown to the adversary.

For i = 1, . . . ,m:
Adversary chooses σ(i) ∈ E , and reveals it and its weight wi .
Online algorithm A decides whether to accept or reject σ(i),
where acceptance is only allowed if S + σ(i) ∈ F .

Algorithm A may use (in step i) information revealed so far, as
well as the distributions Xi of all elements.

About the adversary
In general, we assume to have an all-knowing, adaptive adversary

Can choose which element to present in step i , based on
Choices of online algorithm in steps 1, . . . , i − 1.
Realizations of all elements (including those that have not arrived).

Adversary is non-adaptive if order is fixed after seeing all realizations.
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Example
Let E = {e1,e2} of which we may select at most one element.
Let 1 > ε, δ > 0, and assume that 1

ε > 1 + δ. Distributions are given by:

w1 ∼ X1 =

{ 1
ε with probability ε
0 with probability 1− ε (1)

w2 ∼ X2 =
{

1 + δ with probability 1. (2)

Note that E[X1] = 1
ε × ε+ 0× (1− ε) = 1 and E[X2] = 1 + δ.

If arrival order would be (e1,e2), simply observe realization w1.
If w1 = 1/ε, then select e1 (as 1

ε > 1 + δ).
If w1 = 0, reject e1 and select e2.

Worst-case arrival order is (e2,e1).
We don’t know realization w1, when deciding on element e2.
Nevertheless, it is (intuitively) optimal to select e2.
Why? Deterministic value w2 = 1 + δ > E[X1].

In expectation (of X1), we cannot do better if we reject e2.

Performance objective is formalized next.
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Performance of online algorithm

Performance is measured against that of the prophet.
Prophet gets to see all realizations wi ∼ Xi after they are sampled.
Computes (offline) subset S∗ with max. weight

OPT(w1, . . . ,wm) := w(S∗) = maxS∈F
∑

e∈S we.

Expected weight for prophet is

OPT = E(y1,...,ym)∼X1×···×Xm [OPT(y1, . . . ,ym)] .

Expected weight of (deterministic) algorithm A is

ALG = E(y1,...,ym)∼X1×···×Xm [minσ w(A(σ, y1, . . . ,ym))] .

With w(A(σ, y1, . . . , ym)) weight of set outputted by A.
We assume to have a worst-case arrival order here.

For 0 < α < 1, algorithm A is α-approximation if

ALG ≥ α ·OPT.

This is called a prophet inequality.
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Example (cont’d)
E = {e1,e2} with following distributions. Let 1 > ε, δ > 0, and assume
that 1

ε > 1 + δ. Let

w1 ∼ X1 =

{ 1
ε with probability ε
0 with probability 1− ε (3)

w2 ∼ X2 =
{

1 + δ with probability 1. (4)

What can prophet get?

OPT(w1,w2) = max{w1,w2} =

{ 1
ε with probability ε
1 + δ with probability 1− ε .

Then EOPT(y1,y2)[maxi yi ] = 1
ε × ε+ (1 + δ)× (1− ε)→ 2 as ε, δ → 0.

Optimal algorithm A is to select e2 (again, think about it).
Worst-case order is (e2,e1) with E(y1,y2)[w(A(σ, y1, y2))] = 1.

I.e., optimal algorithm only half as bad as prophet (α = 1
2 ).

Also shows that, in general, we cannot hope for A with α > 1
2 ,

already in setting where we can select at most one (out of two)
elements. 10 / 1



Selecting single element
Prophet Inequality with α = 1

2
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Selecting single item

Krengel, Sucheston and Garling (1978) show there is a prophet
inequality with α = 1

2 .
Simple algorithm was given by Samuel-Cahn (1984):

Set threshold T to be the median of distribution Xmax = maxi Xi .
Select first element ei whose realized wi ∼ Xi exceeds threshold.

Median of distribution X is value m such that

P(X < m) ≤ 1
2

and P(X > m) ≤ 1
2
.

For continuous distributions, the median is the “middle value” of
the distribution.

Example
Suppose we have uniform distribution over (continuous) interval [a,b].
Then m = a+b

2 .
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Kleinberg-Weinberg algorithm

As an alternative to Samuel-Cahn’s median-based threshold, Kleinberg
and Weinberg (2012) gave another threshold-based algorithm.

Extends to case where multiple elements may be selected under
matroid constraint.

KW-algorithm for (unknown) arrival order σ
Let Xi be the distribution from which element ei ’s weight is drawn.

Set threshold

T =
E[maxj Xj ]

2
.

For i = 1, . . . ,m: If wσ(i) ≥ T , select σ(i) and STOP.

Theorem (Kleinberg and Weinberg, 2012)
The KW-algorithm selects an element e∗ with the property that

EX1,...,Xm [w(e∗)] ≥ 1
2
· E[max

j
Xj ].
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EX1,...,Xm [w(e∗)] ≥
E[maxj Xj ]

2
(= T )

Proof: Let τ ∈ {1, . . . ,m} be (random) step in which element is select,
and let Xτ be the (random) weight of the selected element, i.e., it holds
that

E[Xτ ] = EX1,...,Xm [w(e∗)]

Assume w.l.o.g. that σ = (e1, . . . ,em).
It holds that

E[Xτ ] =

∫ T

0
P[Xτ > x ]dx +

∫ ∞
T

P[Xτ > x ]dx

when all distributions Xi are continuous.
See background material for discrete version of this claim:

E[X ] =
∞∑

k=0

P[X ≥ k ].
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E[Xτ ] =

∫ T

0
P[Xτ > x ]dx +

∫ ∞
T

P[Xτ > x ]dx , T =
E[maxj Xj ]

2

Let p = P[maxj Xj ≥ T ].
1− p is probability that we do not select anything.
For any i = 1, . . . ,m, probability that we have not selected an
element in step i is then at least 1− p.

It is not hard to see that∫ T

0
P[Xτ > x ]dx ≥

∫ T

0
P[Xτ > T ]dx ≥

∫ T

0
p · dx = pT . (5)

Furthermore, for x ≥ T it holds that

P[Xτ > x ] =
m∑

j=1

P[Xτ > x | τ = j]P[τ = j]

≥ (1− p)
m∑

j=1

P[Xj > x ]

≥ (1− p)P[maxj Xj > x ] (union bound)
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E[Xτ ] ≥ pT + (1− p)

∫ ∞
T

P[max
j

Xj > x ]dx , T =
E[maxj Xj ]

2

Note that

E[max
j

Xj ] =

∫ T

0
P[max

j
Xj > x ]dx +

∫ ∞
T

P[max
j

Xj > x ]dx = 2T

by definition of T . Since
∫ T

0 P[maxj Xj > x ]dx ≤ T , it holds that∫ ∞
T

P[max
j

Xj > x ]dx ≥ T .

Plugging this into the main inequality above gives

E[Xτ ] ≥ pT + (1− p)T = T =
E[maxj Xj ]

2
.

This completes the proof.
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Some remarks

Theorem (Kleinberg and Weinberg, 2012)
The KW-algorithm selects an element e∗ with the property that

EX1,...,Xm [w(e∗)] ≥ 1
2
· E[max

j
Xj ].

Algorithm is optimal trade-off between weight of selected
elements and probability of selecting an element.

Higher threshold would give better weight of selected element, but
prob. that we can select one gets smaller.
Lower threshold would increase prob. of selecting element, but
weight will be lower.

Yields strategy proof online mechanism (in appropriate model).
Give item to first bidder exceeding threshold, and charge price T .
Similar to what we saw for secretary problem.
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Matroid prophet inequality
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Matroid prophet inequality

Selecting indep. set from matroidM = (E , I) with arrival order σ.

Set S = ∅.
For i = 1, . . . ,m, a realization wi ∼ Xi is generated.

All realizations wi are shown to the adversary.
For i = 1, . . . ,m:

Adversary chooses σ(i) ∈ E , and reveals it and its weight wi .
Online algorithm A decides whether to accept or reject σ(i),
where acceptance is only allowed if S + σ(i) ∈ I.

Theorem (Kleinberg-Weinberg, 2012)
There is an online algorithm A for selecting multiple elements subject
to a matroid constraint (under adversarial arrival order), with

ALG(A) ≥ 1
2 ·OPT,

where OPT = E(y1,...,ym)∼X1×···×Xm [OPT(y1, . . . , ym)] is offline optimum.
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KW-algorithm for matroid constraint

Algorithm sets threshold in step i based on marginal contribution of σ(i).

Let y ′ = (y ′1, . . . , y
′
m) ≥ 0 be given weights, and let B′ be a max.

weight base under y ′.
For given independent set S ∈ I, we can augment S with
elements R(S) ⊆ B′ so that S ∪ R(S) is base ofM.

Choose R so that y ′(R) is maximized (among all choices for R).

Example (Graphic matroid)

a b

c

de

f R(S) ∪ S

1

2 = y ′i

4

6

5

8

3

7 9
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Assume that σ = (e1, . . . ,em).

KW-algorithm with initial S = ∅
For i = 1, . . . ,m: If S ∪ {ei} ∈ I do the following.

Set threshold
Ti = Ey ′∼X1×···×Xm [y ′(R(S))− y ′(R(S ∪ {ei}))].

Set S ← S ∪ {ei} if wi ≥ Ti .

Roughly speaking, Ti is expected gain of adding ei to S.
If revealed realization wi exceeds expected gain, add it to S.

In order to determine Ti , we take expectation over all elements (and
not just those that have not yet arrived).

Ti does not use realized weights w1, . . . ,wi−1 revealed so far.

Computational remark: If the Xi are discrete (with finite support), Ti can
be computed exactly (in possibly exponential time). For continuous
distributions, usually approximation is needed (by means of repeatedly
sampling vectors y ′ from ×iXi and computing average).
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Remarks

Theorem (Kleinberg and Weinberg, 2012)

KW-algorithm for matroids gives prophet inequality with α = 1
2 .

Result also extends to intersection of p matroid constraints, where
one then gets α = 1/(4p − 2).
Can be used to model, e.g., setting where edges of bipartite graph
arrive online (with known distributions).

Strategyproof mechanism?
For single element setting, conversion of respective KW-algorithm
into strategyproof mechanism is easy.
This is not the case for the matroid setting.

Adaptive vs. non-adaptive threshold-based algorithms.
KW-algorithm is adaptive in the sense that threshold Ti in step i
depends on arrival order σ and elements S selected so far.

Does not necessarily yield strategyproof (online) mechanism.
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Non-adaptive threshold-based algorithms

A non-adaptive threshold-based algorithm sets threshold T (e) for
every e ∈ E before start of the algorithm (independent of i).

It then selects every element whose weight exceeds the threshold
(and that preserves independence).

Gives rise to so-called order-oblivious posted price mechanisms.
See Chawla, Goldner, Karlin and Miller (2020) for a (recent)
algorithm for graphic matroids.

Interestingly, there exist matroid constraints for which no non-adaptive
threshold-based algorithm can exist.

Feldman, Svensson and Zenklusen (2020) give such an example
for so-called gammoids.
They show that one can hope at best for a prophet inequality with

α = Ω

(
log log(m)

log(m)

)
.
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Beyond matroids
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Beyond matroids

For general downward-closed set systems, lower bound from last week
also applies to Bayesian setting (with adversarial arrivals).

Theorem (Babaioff et al. (2007), Rubinstein (2016))
There is no randomized algorithm that, for every downward-closed set
system F = (E , I) with m elements having known weight distribution,
obtains a prophet inequality with α better than

α = Ω
(
log log(m)
log(m)

)
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Selecting single element
Sample-based threshold
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What prior information is needed?

Remember that the KW-algorithm for selecting a single item uses the
threshold

T =
E[maxj Xj ]

2
.

Computing threshold requires full knowledge of the distributions Xi .
Can be non-trivial depending on what the distributions look like.

Does there exist an algorithm using less information?

Turns out that it suffices to have one sample xi from every Xi .

Theorem (Rubinstein, Wang and Weinberg, 2020)
Suppose we have one sample xi form every Xi , and let T = maxj xj .
Selecting first element with wi ≥ T gives prophet inequality with α = 1

2 .

Same guarantee as KW-algorithm.
Algorithms only using single sample from every Xi will be called
single-sample algorithms.
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Single-sample algorithms for matroid constraints

Azar, Kleinberg and Weinberg (2014) give single sample algorithms
leading to constant-factor prophet inequalities for various matroid
constraints.

The high-level idea is to give a reduction to the secretary problem.
Samples are used to mimic “observation phase” (Phase I).

Slightly stronger, order-oblivious secretary algorithm is needed.
An example is the 1

4 -approximation we saw in Homework 3.

Theorem (Azar, Kleinberg and Weinberg, 2014 (informal))
Every order-oblivious α-approximation for the secretary problem (with
uniform random arrivals) gives rise to a single-sample prophet
inequality with factor α (for worst-case arrival order).

Reduction also works for graphic matroid algorithm from last week.

Corollary (AKW, 2014)

There is a single-sample α = 1
8 graphic matroid prophet inequality.
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From single-sample prophets to secretaries

An algorithm (for adversarial arrival order σ) with samples xi from Xi :
Preprocessing:

Set k = m
2 , and select uniformly at random k samples from

{x1, . . . , xm}. Call the set of k samples
{yj1 , . . . , yjk}.

Online:
For i = 1, . . . ,m, upon the arrival of σ(i):

If σ(i) ∈ {j1, . . . , jk}, do nothing.
Otherwise, select σ(i) if wi ≥ max{yj1 , . . . , yjk }.

Theorem (AKW, 2014)
The above algorithm gives a single-sample prophet inequality with
α = 1

4 for selecting one element.

Proof uses the fact that both (offline) sample xi and (online)
realization wi come from the same distribution Xi .
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Prophet inequalities for I.I.D. distributions
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When all distributions Xi are the same

Better prophet inequalities (than α = 1
2 ) are possible when all

distributions Xi are the same.
The Xi are independent and identically distributed (I.I.D.).

Theorem (Correa et al., 2017)
In case all the Xi are I.I.D. there exists a prophet inequality with
α ≈ 0.745 and this is best possible.

The algorithm has access to the weights revealed so far, and the
common distribution X . What is possible when X is unknown?

Theorem (Correa et al., 2018)
In case the online algorithm only has access to weights revealed so far
(but not to common distribution X), there is a prophet inequality with
α = 1

e and this is best possible.
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Secretary prophet inequalities
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Prophet secretary problems

In the prophet secretary model, the elements in {e1, . . . ,em}
arrive in uniform random order
with weight wi drawn from known distribution Xi for i = 1, . . . ,m.

In this case, it is possible to obtain better results.
These results apply to the general setting with possibly non-I.I.D.
distributions

Theorem (Ehsani et al., 2018 (informal))

There is a secretary prophet inequality with α = 1− 1
e ≈ 0.63 for

selecting multiple elements under a matroid constraint.

Theorem (Correa, Saona and Ziliotto, 2019)

There is a secretary prophet inequality with α = 1− 1
e + 1

27 ≈ 0.669 for
selecting a single element.
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Overview
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Overview second part of course

Have seen various online selection problems and models.

Elements with unknown weights, but assumption on arrival order.
Secretary problem

1
e -approximation.

Online bipartite matching (nodes on one side arriving online).
1
e -approximation.

Matroid secretary problem.
Open whether there is constant-factor approximation,
or possibly 1

e -approximation.

Most algorithms can be turned into online strategyproof
mechanisms for selling items to (unit-)demand bidders.

Known weight distributions of elements, but adversarial arrival order.
Prophet inequality with α = 1

2 for selecting single element.
Prophet inequality with α = 1

2 for matroid constraint.
Also saw some other models (e.g., single-sample settings).
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