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Introduction

Congestion games can be used to model, e.g.,
Traffic/routing games,
Scheduling games,
Broadcast games,
Cost-sharing games.

Studied extensively in the last twenty years in the area of AGT.
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Atomic selfish routing game (example)

Given is directed graph G = (V ,E) with origin o and destination d .

o
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w

d
e1

e 3

e4

e5e2

c1(x) = x

c 3
(x

)
=

0

c4(x) = 3

c5(x) = xc2(x) = 3

Symmetric strategy set of players in N are o,d-paths P in G.
Arcs e ∈ E have cost functions ce : R≥0 → R≥0.

We often write ci (x) instead of cei (x) for sake of readability.

Players need to route one unsplittable unit of flow from o to d.
Goal is to choose path with cost as small as possible.

For strategy profile s = (s1, s2, . . . , sn) ∈ Pn, with xe = xe(s) number of
players using e ∈ E ,

Ci(s) =
∑
e∈si

ce(xe).
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Atomic selfish routing game (cont’d)

Suppose we have n = 4 players and edges E = {e1, . . . ,e4}.
Remember that player places one unit of flow on a path.
Cost of player i in profile s is given by (with si ∈ {T ,B} = P)

Ci(s) =
∑
e∈si

ce(xe).
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d

4

0

C1(s) = 4 + 3 · 4 = 16
C2(s) = 4 + 3 · 4 = 16
C3(s) = 4 + 3 · 4 = 16
C3(s) = 4 + 3 · 4 = 16

s = (T ,T ,T ,T )
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Congestion games

(Atomic) congestion game Γ = (N,E , (Si)i∈N , (ce)e∈E ):
Set of players N = {1, . . . ,n}.
Set of resources E = {e1, . . . ,em}.
Strategy set Si ⊆ 2E = {X : X ⊆ E} for all i ∈ N.

(o,d)-paths in directed graph.
Cost function ce : R≥0 → R for e ∈ E .

Although the word ‘congestion’ hints at these functions being
non-decreasing, this is not required.

Player places one unit of unsplittable load on a strategy with goal of
minimizing her cost.

For strategy profile s = (s1, s2, . . . , sn) ∈ S1 × S2 × · · · × Sn = ×iSi ,

Ci(s) =
∑
e∈si

ce(xe),

where xe = xe(s) is the number of players using e ∈ E , i.e., the load.
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Broadcast game (example)

Given is undirected graph G = (V ,E).
Edges e ∈ E are resources with cost function ce.
Players place one unit of unsplittable load on spanning tree of G.

Spanning trees are the strategies of the players.

G

Example of base (graphic) matroid congestion game.
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Pure Nash equilibrium

We will focus on pure Nash equilibria in congestion games.

Definition (Pure Nash equilibrium (PNE))
A strategy profile s ∈ ×iSi is a pure Nash equilibrium if for every i ∈ N,

Ci(s1, . . . , si , . . . , sn) ≤ Ci(s1, . . . , s′i , . . . , sn)

for every s′i ∈ Si . In short, Ci(s) ≤ Ci(s′i , s−i).

PNE

MNE

CE

CCE

Why focus on PNE?
There always exists at least one!

Potential function method
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Potential function method

Show existence of potential function Φ : ×iSi → R tracking
improvements in player costs.

That is, Φ has the property that if, in strategy profile s = (s1, . . . , sn),
Player i has improving move by switching to s′i ∈ Si , i.e.,

Ci(s′i , s−i) < Ci(s).

Then also
Φ(s′i , s−i) < Φ(s).

ALGORITHM 1: Better response dynamics

Input : Strategy profile s0 ∈ ×iSi .
Output: Pure Nash equilibrium s∗.

k = 0.
while sk is not a pure Nash equilibrium do

Select player i ∈ N and s′i ∈ Si such that Ci (s′i , s−i ) < Ci (s).
sk+1 ← (s′i , s

k
−i ).

k ← k + 1.
end
return s∗ ← sk
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Better response dynamics always terminate (converge) in finite
number of steps, given the existence of the function Φ.

Why?
If player i makes improving move in step k , then Φ(sk+1) < Φ(sk ).

This means

· · · < Φ(sk+1) < Φ(sk ) < Φ(sk−1) < · · · < Φ(s1) < Φ(s0).

There are only finitely many strategy profiles.
Remember that we assume that Si is finite for every i ∈ N.

Theorem (Rosenthal, 1973)
Every (finite) congestion game possesses a pure Nash equilibrium. It
can be computed by better response dynamics.

What is the potential function Φ?
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Rosenthal’s potential

The Rosenthal (potential) function Φ : ×iSi → R is given by

Φ(s) =
∑
e∈E

xe(s)∑
k=1

ce(k).

Remember that Ci(s) =
∑

e∈si
ce(xe).

xe = xe(s) total number of players using resource e in s.

Lemma (Rosenthal’s potential)
Rosenthal’s potential satisfies, for every i ∈ N and s′i ∈ Si ,

Ci(s)− Ci(s′i , s−i) = Φ(s)− Φ(s′i , s−i).

Proof (sketch) on Slide 12 for symmetric singleton games.
Exercise: Generalize the proof to general congestion games.
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Rosenthal’s potential (example)

Remember, for strategy profile s,

Φ(s) =
∑
e∈E

xe(s)∑
k=1

ce(k).

o

v

w

d

4

0

C1(s) = 4 + 3 · 4 = 16
C2(s) = 4 + 3 · 4 = 16
C3(s) = 4 + 3 · 4 = 16
C3(s) = 4 + 3 · 4 = 16

Φ(s) = [c1(1) + c1(2) + c1(3) + c1(4)]
+ [c2(1) + c2(2) + c2(3) + c2(4)]
+ 0
+ 0
= 40
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Symmetric singleton game Γ = (N,E , (Si), (ce)) given by

Si = {{e1}, {e2}, . . . , {em}}
That is, every player has to choose one resource from the set E .

Remember Φ(s) =
∑

e∈E
∑xe(s)

k=1 ce(k) and Ci(s) =
∑

e∈si
ce(xe).

e1

a

b

e2

c

d

f

i

e3

g

e4

h

→

e1

a

b

i

e2

c

d

f

e3

g

e4

h

Ci (s)− Ci (s′i , s−i ) = c2(4)− c1(3)
= c2(x2(s))− c1(x1(s) + 1)

Φ(s)− Φ(s′i , s−i ) = [c1(1) + c1(2)] + [c2(1) + c2(2) + c2(3) + c2(4)]
+ c3(1) + c4(1)
− [c1(1) + c1(2) + c1(3)]− [c2(1) + c2(2) + c2(3)]
− c3(1)− c4(1)
= c2(4)− c1(3)
= c2(x2(s))− c1(x1(s) + 1)
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Brief overview

PNE always exists and can be computed by better response dynamics.

In fact, we showed that congestion games are exact potential games.

Definition (Exact potential game)
Finite game Γ = (N, (Si), (Ci)) is exact potential game if there exists
function Φ : ×iSi → R such that

Ci(s)− Ci(s′i , s−i) = Φ(s)− Φ(s′i , s−i)

for every i ∈ N and s′i ∈ Si .

Theorem
The class of congestion games is ‘isomorphic’ to the class of exact
potential games.
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Algorithmic questions

Of interest to the computer scientist:
Do better response dynamics converge in poly-time to PNE?
If not, can we compute PNE in polynomial time by other means?

For both questions: In general NO, but in certain special cases YES.

Polynomial in parameters needed to specify player costs in game.
In general nkn numbers are needed for this where k = maxi |Si |.
Many special cases can be represented more compactly.

For positive answers to the above questions, we usually get
poly(n,m, |c|)-running time.

How to study computational complexity of PNE in congestion games?
Interpret it as local search problem w.r.t. Rosenthal’s potential.
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Remark (for Homework 1)

In all statements on previous slides, we can replace ‘better’ by ‘best’.

Best response dynamics
In better response dynamics algorithm, always choose strategy
yielding best improvement in cost.

ALGORITHM 2: Best response dynamics

Input : Strategy profile s0 ∈ ×iSi .
Output: Pure Nash equilibrium s∗.

k = 0.
while sk is not a pure Nash equilibrium do

Select player i ∈ N and s′i ∈ Si such that

Ci (s′i , s−i ) = min
ti∈Si

Ci (ti , s−i ).

sk+1 ← (s′i , s
k
−i ).

k ← k + 1.
end
return s∗ ← sk
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Some positive results to algorithmic questions

1 Special cases where response dynamics converge quickly:
Better response dynamics in singleton congestion games.
Best response dynamics in base matroid congestion games.

Homework 1.

2 Special case where PNE can be computed by other means:
Symmetric network congestion games.
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Singleton congestion games

Definition
A singleton congestion game Γ = (N,E , (Si), (ce)) has the property
that Si ⊆ {{e1, }, {e2}, . . . , {em}}, i.e., every possible strategy consists
of a single resource.

Theorem (Ieong et al., 2005)
For singleton congestion games, better response dynamics (BRD)
terminate in at most n2m steps (with n #players and m #resources).

Proof on next slide. Remember that Φ(s) =
∑

e∈E
∑xe(s)

k=1 ce(k).

Lemma
If cost functions (ce) are integer-valued, then Rosenthal’s potential Φ is
integer-valued, and BRD converge in at most Φmax − Φmin steps.

Φmax,Φmin are max. and min. attained by Φ, respectively.
For any strategy profile s, it holds that Φmin ≤ Φ(s) ≤ Φmax.
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Proof idea: Show that cost functions can be replaced by ‘nice’
(polynomially bounded, integer) cost functions while preserving
improving moves. Then apply lemma from previous slide.

Step 1: Defining the ‘nice’ cost functions.
Consider C =

⋃
e∈E{ce(1), . . . , ce(n)}. Note that |C| ≤ nm.

Costs of resources for given loads xe ∈ {1, . . . ,n}.

For e ∈ E , define c̃e : {1, . . . ,n} → {1, . . . ,nm} by

c̃e(i) = r ⇔ r − 1 distinct values cf (j) ∈ C for which cf (j) < ce(i).

That is, ce(i) is the r -th smallest number in C.

Example (n = 3 and m = 2):
c1(1) = 3, c1(2) = 10, c1(3) = 1000, c2(1) = 5, c2(2) = 1000,
c2(3) = 1004. We have C = {3,5,10,1000,1004}.
Then c̃1(1) = 1, c̃1(2) = 3, c̃1(3) = 4, c̃2(1) = 2, c̃2(2) = 4,
c̃2(3) = 5. We have C̃ = {1,2,3,4,5}.
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Improving moves are preserved under this transformation from ce to c̃e.

e1

a

b

e2

c

d

f

i

→

e1

a

b

i

e2

c

d

f

In example above, for strategy profile s (on the left),

Ci(s′i , s−i) < Ci(s) ⇔ C̃i(s′i , s−i) < C̃i(s) (1)

which here means,

c1(x1(s) + 1) < c2(x2(s)) ⇔ c̃1(x1(s) + 1) < c̃2(x2(s)).

Player i has improving move from resource e2 to e1 under cost
functions (ce) if and only if it is an improving move under the (c̃e).

Exercise: Show that this transformation fails for non-singleton
congestion games (i.e., in general (1) is not true).
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Step 2: BRD analysis in ‘nice’ game.
Rosenthal’s potential

Φ̃(s) =
∑
e∈E

xe(s)∑
k=1

c̃e(xe)

is integer-valued and satisfies

0 ≤ Φ̃ ≤ n2m.

Why?
First note that c̃e(xe) ≤ nm for any load xe ∈ {1, . . . ,n}.

Because |C| ≤ nm.

Also, Φ̃ is sum of at most n values in C̃ =
⋃

e∈E{c̃e(1), . . . , c̃e(n)}.
E.g., Φ̃(s) = [c̃1(1) + c̃1(2)] + [c̃2(1) + c̃2(2) + c̃2(3) + c̃2(4)].

Sum of n = 6 terms.

That is, in singleton games, we have
∑

e xe(s) = n.

Then apply lemma from Slide 17.
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Symmetric network congestion games

I.e., the “atomic selfish routing game” example from earlier.
Resources are edges of given directed graph G = (V ,E).
Common strategy set of players is set of all o,d-paths in G.

Theorem (Best response dynamics)
Best response dynamics might take an exponential (in n) number of
steps to terminate (i.e, to converge to a PNE).

Is there another way to compute a PNE?

Theorem (Fabrikant et al., 2004)
There exists a poly(n,m)-time algorithm for computing a PNE in a
symmetric network congestion game when the cost functions are
non-negative and non-decreasing.

Idea: Compute strategy profile s minimizing Rosenthal’s potential.
Convince yourself this is indeed a pure Nash equilibrium.
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Reduction to flow problem

If every player chooses o,d-path, resulting in strategy profile s, we
obtain a so-called o,d-flow of size n.

Every player routes one unit of flow over some path.

o

v

y

d

Resulting loads xe(s) = fe satisfy the linear (in)equalities

F =
{

f ∈ R|E|≥0 :
∑

w :(w,v)∈E

fwv =
∑

w :(v,w)∈E

fvw ∀v ∈ V \ {o, d}∑
w :(o,w)∈E

fow = n∑
w :(w,d)∈E

fwd = n

fvw ≥ 0 ∀(v ,w) ∈ E
}
.
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High-level idea: Instead of computing a strategy profile s∗ ∈ ×iSi
minimizing

Φ(s) =
∑
e∈E

xe(s)∑
k=1

ce(k),

compute an integral o,d-flow (or load profile) f ∗ ∈ F that minimizes

Φ̄(f ) =
∑
e∈E

fe∑
k=1

ce(k).

Map o,d-flow f ∗ to strategy profile s∗ minimizing Φ. Can we always do this?

Lemma
Every integral f ∈ F can be decomposed into n (one for each player)
o,d-paths that each contain one unit of flow.

(For simplicity, we assume here that G = (V ,E) is acyclic.)

Assign resulting paths to players. This gives the desired profile s∗.

Does not matter which path is assigned to which player.

Symmetry assumption is crucial here! (Think about it.)
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Computing profile s∗ minimizing Rosenthal’s potential Φ:
Compute integral f ∗ ∈ F that minimizes

Φ̄(f ) =
∑
e∈E

fe∑
k=1

ce(k).

Decompose f ∗ into n paths, and assign those to players.
This gives desired strategy profile s (with xe(s) = f ∗e ∀e ∈ E)

How to compute minimizer of Φ̄?
Reduction to min-cost flow problem.
Can be solved in poly(n,m) time.

Remark
This high-level approach also works for other congestion games with
some ‘combinatorial’ structure, e.g., (Del Pia-Michini-Ferris, 2015).
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Minimum cost flow problem

Directed graph G = (V ,A) with origin o and destination d ; flow size
n ∈ Q.

Edge e = (v ,w) ∈ E has capacity uvw and cost kvw .

o

v

w

d

min
∑

e=(v ,w)∈E

kvw fvw

subject to f ∈ F
fvw ≤ uvw ∀(u, v) ∈ E

Integral flow can be found in poly-time, when capacities are integral.
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Reduction to min-cost flow problem (try yourself!)

Problem is that

Φ̄(f ) =
∑
e∈E

fe∑
k=1

ce(k)

is not linear in the variables fe.

Edge-doubling trick (n = 5):
Introduce copies with capacity 1 and cost ce(1), ce(2), . . . , ce(n).

Remember costs are non-decreasing and non-negative.

v w v w
ce(x)

(ce(1),1)

(ce(2),1)

(ce(3),1)

(ce(4),1)

(ce(5),1)

3

Every integral min-cost flow of size n in graph with copied edges
corresponds to flow minimizing Φ̄. 26 / 40



Local search
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High-level idea

Given function f : S → R, where S is a finite set.
Can we find ‘local’ improvement in objective value f (x)?

x S

Recall better response dynamics.
Essentially tries to find local improvement for Rosenthal’s potential.
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Local search problems

Definition
A local search problem Π is given by:

Set of instances I;
For every instance I ∈ I:

Set F (I) of feasible solutions;
An objective function Φ : F (I)→ Z;
For every S ∈ F (I), a neighborhood N (S, I) ⊆ F (I) of S.

Goal: Find a feasible solution S ∈ F (I) that is a local minimum:

Φ(S) ≤ Φ(S′), ∀S′ ∈ N (S, I).

We are interested in "unilateral deviations" as neighborhood, and
Rosenthal’s potential as objective function. PNEs are then precisely
the local minima.

29 / 40



Complexity Class PLS

Definition
A local search problem Π belongs to the complexity class PLS
(polynomial local search) if for every instance I ∈ I the following can
be done in polynomial time:

Compute an initial feasible solution S ∈ F (I);
For a given solution S ∈ F (I):

Compute Φ(S);
Determine whether S is a local minimum;
If S is not a local minimum, find a better solution S′ in the
neighborhood of S, i.e., S′ ∈ N (S, I) with Φ(S′) < Φ(S).

The procedure in which one repeatedly tries to find a better solution in
the neighborhood is known as local search.
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Maximum cut

Max-cut
Given undirected graph G = (V ,E) and weight function w : E → R≥0,
find partition V = S ∪ S̄ that maximizes

α(S, S̄) =
∑

e={i,j}:i∈S,j∈S̄

wij .

Local Search: FLIP neighborhood

For cut (S, S̄) its neighbourhood is given by all (T , T̄ ) that can be
obtained by flipping precisely one node to its other side in (S, S̄).

α(T , T̄ ) = 4T̄T
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PLS-reduction

“Problem Π1 can be reduced to Π2” means that Π1 can be modeled as
a special case of Π2, Hence, Π2 is the "more difficult" problem of the

two (i.e., not easier than the other).

Definition

Let Π1 = (I1,F1,Φ1,N1) and Π2 = (I2,F2,Φ2,N2) be two local search
problems in PLS. Π1 is PLS-reducible to Π2 if there are two polynomial
time computable functions f and g such that

f maps every instance I ∈ I1 of Π1 to an instance f (I) ∈ I2 of Π2;
g maps every tuple (S2, I) with S2 ∈ F2(f (I)) to a solution
S1 ∈ F1(I); (Feasible solutions map to feasible solutions.)
for all I ∈ I1: if S2 is a local minimum of f (I), then g(S2, I) is a
local minimum of I. (Local minima map to local minima.)
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PLS-completeness

Definition
A local search problem Π is PLS-complete if

Π belongs to the complexity class PLS;
every problem in PLS is PLS-reducible to Π.

Implication: If there is a polynomial time algorithm that computes a
local optimum for a PLS-complete problem Π, then there exists a
polynomial time algorithm for finding a local optimum for every problem
in PLS.

Remark
The definition of PLS does not require you to solve a PLS(-complete)
problem with local search.
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From max-cut to PNE in congestion games

Theorem
Maximum cut with FLIP neighborhood is PLS-complete.

In particular, local search might take an exponential long time to
converge to a local optimum.

Theorem
Computing PNE with “unilateral deviation” neighborhood and,
Rosenthal’s potential as objective function, is PLS-complete.

Unilateral deviation neighborhood of s ∈ ×iSi is given by

N (s) =
⋃

i

{(s′i , s−i) : s′i ∈ Si}

i.e., all profiles that can be obtained by letting at most one player
deviate to another strategy.
Reduction from Max-cut with FLIP neighborhoods.
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Sketch of reduction

Let I = (G,w) be an instance of max-cut with FLIP neighborhood on
graph G = (V ,E), with edge-weight function w .

Maximizing weight of cut edges is equivalent to minimizing weight of
non-cut edges (also locally).

Minimum uncut
Given undirected graph G = (V ,E) and weight function w : E → R≥0,
find partition V = S ∪ S̄ that minimizes

∑
{i,j}∈E :i,j∈S or i,j∈S̄ we.

Why? For every cut (T , T̄ ) it holds that∑
{i,j}∈E :i∈T ,j∈T̄

we +
∑

{i,j}∈E :i,j∈T or i,j∈T̄

we =
∑
e∈E

we

T̄T
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We make a congestion games Γ = (N,R, (Si), (ce)) as follows:
Nodes in V are the players N.
For e ∈ E , create two resources re and r̄e.

Let R = e ∪e∈E {re, r̄e}.

a cb

rab

r̄ab

rbc

r̄bc
T = {a, c}, T̄ = {b}

Player i ∈ V has two strategies (Si = {ti , t̄ i}):

ti = {re}e∈δ(i) and t̄ i = {r̄e}e∈δ(i)

where δ(i) is the set of all edges incident to i in G.
These roughly model the choice between T and T̄ for a node in V .
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a cb

rab

r̄ab

rbc

r̄bc
T = {a, c}, T̄ = {b}

Cost function for re (and r̄e) given by cre (1) = 0 and cre (2) = we
2 .

This is enough as at most two players can use the same resource.
For strategy profile s = (s1, . . . , sn),

Ci (ti , s−i ) =
1
2

∑
j∈δ(i):sj =tj

wij and Ci (t̄ i , s−i ) =
1
2

∑
j∈δ(i):sj =t̄ j

wij .

Rosenthal’s potential here is given by

Φ(s) =
∑

i∈V Ci(s)

Precisely the sum of non-cut edge weights!

PNEs of game are precisely locally min-uncuts/max-cuts!
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Smoothed analysis (extra)
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Smoothed analysis for local search

Smoothed analysis studies algorithmic problems under (small)
perturbations of the input.

Roughly speaking, to study if worst-case instances are rare or not.

Max-cut with FLIP local search (informal)
For every e ∈ E , we introduce an (independent) random perturbation

σe ∼ U[0, φ],

where φ is a parameter, and focus on instance with perturbed weights

w ′e = we + σe.

Goal: Show that every sequence of local improvements converges to
a local optimum in time polynomial in n and φ (in perturbed instance).

If φ→∞, we get completely random instance.
If φ→ 0, we get back (original) instance with weights we.
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Smoothed analysis essentially interpolates between
Average-case analysis (φ→∞);
Worst-case analysis (φ→ 0).

What is known for max-cut in the literature?

Theorem
Local search converges to a local optimum in at most

φnO(log(n)) steps for general graphs G;
poly(φ,n) steps for complete graphs G;
poly(φ,n) steps for graphs with ∆(G) = O(log(n)).

Big open question: Does (smoothed) local search for max-cut always
converge in polynomial number of steps, for any graph G?
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