Topics in Algorithmic Game Theory and Economics

Pieter Kleer

Max Planck Institute for Informatics (D1) Saarland Informatics Campus

November 25, 2020

Lecture 3 Congestion games II - Inefficiency of PNE

Congestion game Γ:

• Set of players $N = \{1, \ldots, n\}$.

- Set of players $N = \{1, \ldots, n\}$.
- Set of resources $E = \{e_1, \ldots, e_m\}.$

- Set of players $N = \{1, \ldots, n\}$.
- Set of resources $E = \{e_1, \ldots, e_m\}.$
- Strategy set $\mathcal{S}_i \subseteq 2^E$ for all $i \in \mathcal{N}$.

- Set of players $N = \{1, \ldots, n\}.$
- Set of resources $E = \{e_1, \ldots, e_m\}.$
- Strategy set $\mathcal{S}_i \subseteq 2^E$ for all $i \in \mathcal{N}$.
	- (*s*, *t*)*-paths in directed graph.*

- Set of players $N = \{1, \ldots, n\}$.
- Set of resources $E = \{e_1, \ldots, e_m\}.$
- Strategy set $\mathcal{S}_i \subseteq 2^E$ for all $i \in \mathcal{N}$.
	- (*s*, *t*)*-paths in directed graph.*
- \bullet Cost function $c_e : \mathbb{R}_{\geq 0} \to \mathbb{R}$ for $e \in E$.

Congestion game Γ:

- Set of players $N = \{1, \ldots, n\}$.
- Set of resources $E = \{e_1, \ldots, e_m\}.$
- Strategy set $\mathcal{S}_i \subseteq 2^E$ for all $i \in \mathcal{N}$.
	- (*s*, *t*)*-paths in directed graph.*
- \bullet Cost function c_e : ℝ > ∩ → ℝ for $e \in E$.

Player places one unit of unsplittable load on a strategy with goal of minimizing her cost.

Congestion game Γ:

- Set of players $N = \{1, \ldots, n\}$.
- Set of resources $E = \{e_1, \ldots, e_m\}.$
- Strategy set $\mathcal{S}_i \subseteq 2^E$ for all $i \in \mathcal{N}$.
	- (*s*, *t*)*-paths in directed graph.*
- \bullet Cost function c_e : ℝ_{>0} → ℝ for $e \in E$.

Player places one unit of unsplittable load on a strategy with goal of minimizing her cost.

For strategy profile $\boldsymbol{s} = (\boldsymbol{s}_1, \dots, \boldsymbol{s}_n) \in \boldsymbol{S}_1 \times \boldsymbol{S}_2 \times \dots \times \boldsymbol{S}_n = \times_i \mathcal{S}_i,$

$$
C_i(s) = \sum_{e \in s_i} c_e(x_e),
$$

where $x_e = x_e(s)$ is the number of players using $e \in E$.

Congestion game Γ:

- Set of players $N = \{1, \ldots, n\}$.
- Set of resources $E = \{e_1, \ldots, e_m\}.$
- Strategy set $\mathcal{S}_i \subseteq 2^E$ for all $i \in \mathcal{N}$.
	- (*s*, *t*)*-paths in directed graph.*
- \bullet Cost function c_e : ℝ_{>0} → ℝ for $e \in E$.

Player places one unit of unsplittable load on a strategy with goal of minimizing her cost.

For strategy profile $\boldsymbol{s} = (\boldsymbol{s}_1, \dots, \boldsymbol{s}_n) \in \boldsymbol{S}_1 \times \boldsymbol{S}_2 \times \dots \times \boldsymbol{S}_n = \times_i \mathcal{S}_i,$

$$
C_i(s) = \sum_{e \in s_i} c_e(x_e),
$$

where $x_e = x_e(s)$ is the number of players using $e \in E$.

Pure Nash equilibrium

We will focus on pure Nash equilibria in congestion games.

Definition (Pure Nash equilibrium (PNE))

A strategy profile *s* ∈ ×*i*S*ⁱ* is a pure Nash equilibrium if for every *i* ∈ *N*,

$$
C_i(s_1,\ldots,s_i,\ldots,s_n)\leq C_i(s_1,\ldots,s'_i,\ldots,s_n)
$$

for every $s_i' \in S_i$.

Pure Nash equilibrium

We will focus on pure Nash equilibria in congestion games.

Definition (Pure Nash equilibrium (PNE))

A strategy profile *s* ∈ ×*i*S*ⁱ* is a pure Nash equilibrium if for every *i* ∈ *N*,

$$
C_i(s_1,\ldots,s_i,\ldots,s_n)\leq C_i(s_1,\ldots,s'_i,\ldots,s_n)
$$

for every $\boldsymbol{s}_i' \in \mathcal{S}_i$. In short, $C_i(\boldsymbol{s}) \leq C_i(\boldsymbol{s}_i', \boldsymbol{s}_{-i}).$

Pure Nash equilibrium

We will focus on pure Nash equilibria in congestion games.

Definition (Pure Nash equilibrium (PNE))

A strategy profile *s* ∈ ×*i*S*ⁱ* is a pure Nash equilibrium if for every *i* ∈ *N*,

$$
C_i(s_1,\ldots,s_i,\ldots,s_n)\leq C_i(s_1,\ldots,s'_i,\ldots,s_n)
$$

for every $\boldsymbol{s}_i' \in \mathcal{S}_i$. In short, $C_i(\boldsymbol{s}) \leq C_i(\boldsymbol{s}_i', \boldsymbol{s}_{-i}).$

From Lecture 2:

- *Computing PNE is PLS-complete problem in general.*
- *PNE can be computed efficiently in special case of symmetric network congestion games.*
- *Better response dynamics converge rapidly in singleton congestion games.*

Inefficiency of equilibria

Let $\Gamma = (N, (S_i), (C_i))$ be a finite game and

 $C: \times_i S_i \to \mathbb{R}_{>0}$

a social cost objective assigning cost to every strategy profile.

Let $\Gamma = (N, (S_i), (C_i))$ be a finite game and

 $C: \times_i S_i \to \mathbb{R}_{>0}$

a social cost objective assigning cost to every strategy profile. Unless specified otherwise, we consider total player cost

$$
C(s)=\sum_{i\in N}C_i(s).
$$

Let $\Gamma = (N, (S_i), (C_i))$ be a finite game and

 $C: \times_i S_i \to \mathbb{R}_{>0}$

a social cost objective assigning cost to every strategy profile.

Unless specified otherwise, we consider total player cost

$$
C(s)=\sum_{i\in N}C_i(s).
$$

Definition (Social optimum)

A social optimum *s* [∗] ∈ ×*i*S*ⁱ* is a strategy profile that minimizes *C*, i.e., $C(s^*) = \min\{C(s) : s \in \times_i S_i\}.$

Let $\Gamma = (N, (S_i), (C_i))$ be a finite game and

 $C: \times_i S_i \to \mathbb{R}_{>0}$

a social cost objective assigning cost to every strategy profile.

Unless specified otherwise, we consider total player cost

$$
C(s)=\sum_{i\in N}C_i(s).
$$

Definition (Social optimum)

A social optimum *s* [∗] ∈ ×*i*S*ⁱ* is a strategy profile that minimizes *C*, i.e., $C(s^*) = \min\{C(s) : s \in \times_i S_i\}.$

How close is social cost of (pure) Nash equilibrium to that of a social optimum?

Let $\Gamma = (N, (S_i), (C_i))$ be a finite game and

 $C: \times_i S_i \to \mathbb{R}_{>0}$

a social cost objective assigning cost to every strategy profile.

Unless specified otherwise, we consider total player cost

$$
C(s)=\sum_{i\in N}C_i(s).
$$

Definition (Social optimum)

A social optimum *s* [∗] ∈ ×*i*S*ⁱ* is a strategy profile that minimizes *C*, i.e., $C(s^*) = \min\{C(s) : s \in \times_i S_i\}.$

How close is social cost of (pure) Nash equilibrium to that of a social optimum? Multiple answers, as equilibrium is in general not unique.

Price of Anarchy (PoA) and Price of Stability (PoS) of finite game Γ are given by

Price of Anarchy (PoA) and Price of Stability (PoS) of finite game Γ are given by

$$
\mathsf{PoA}(\Gamma) = \frac{\max_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)} \quad \text{and} \quad \mathsf{PoS}(\Gamma) = \frac{\min_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)},
$$

where PNE = PNE(Γ) is the set of **pure** Nash equilibria of Γ.

Price of Anarchy (PoA) and Price of Stability (PoS) of finite game Γ are given by

$$
\mathsf{PoA}(\Gamma) = \frac{\max_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)} \quad \text{and} \quad \mathsf{PoS}(\Gamma) = \frac{\min_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)},
$$

where PNE = PNE(Γ) is the set of **pure** Nash equilibria of Γ. For a (possibly infinite) class of games G , we have

$$
\mathsf{PoA}(\mathcal{G}) = \mathsf{sup}_{\Gamma \in \mathcal{G}} \mathsf{PoA}(\Gamma) \quad \text{and} \quad \mathsf{PoS}(\mathcal{G}) = \mathsf{sup}_{\Gamma \in \mathcal{G}} \mathsf{PoS}(\Gamma).
$$

Price of Anarchy (PoA) and Price of Stability (PoS) of finite game Γ are given by

$$
\mathsf{PoA}(\Gamma) = \frac{\max_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)} \quad \text{and} \quad \mathsf{PoS}(\Gamma) = \frac{\min_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)},
$$

where PNE = PNE(Γ) is the set of **pure** Nash equilibria of Γ. For a (possibly infinite) class of games G , we have

$$
\mathsf{PoA}(\mathcal{G}) = \mathsf{sup}_{\Gamma \in \mathcal{G}} \mathsf{PoA}(\Gamma) \quad \text{and} \quad \mathsf{PoS}(\mathcal{G}) = \mathsf{sup}_{\Gamma \in \mathcal{G}} \mathsf{PoS}(\Gamma).
$$

• PoA measures worst-case inefficiency due to strategic behaviour.

Price of Anarchy (PoA) and Price of Stability (PoS) of finite game Γ are given by

$$
\mathsf{PoA}(\Gamma) = \frac{\max_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)} \quad \text{and} \quad \mathsf{PoS}(\Gamma) = \frac{\min_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)},
$$

where PNE = PNE(Γ) is the set of **pure** Nash equilibria of Γ. For a (possibly infinite) class of games G , we have

$$
\mathsf{PoA}(\mathcal{G}) = \mathsf{sup}_{\Gamma \in \mathcal{G}} \mathsf{PoA}(\Gamma) \quad \text{and} \quad \mathsf{PoS}(\mathcal{G}) = \mathsf{sup}_{\Gamma \in \mathcal{G}} \mathsf{PoS}(\Gamma).
$$

• PoA measures worst-case inefficiency due to strategic behaviour. **• PoS measures minimal inefficiency due to strategic behaviour.**

Price of Anarchy (PoA) and Price of Stability (PoS) of finite game Γ are given by

$$
\mathsf{PoA}(\Gamma) = \frac{\max_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)} \quad \text{and} \quad \mathsf{PoS}(\Gamma) = \frac{\min_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)},
$$

where PNE = PNE(Γ) is the set of **pure** Nash equilibria of Γ. For a (possibly infinite) class of games G , we have

$$
\mathsf{PoA}(\mathcal{G}) = \mathsf{sup}_{\Gamma \in \mathcal{G}} \mathsf{PoA}(\Gamma) \quad \text{and} \quad \mathsf{PoS}(\mathcal{G}) = \mathsf{sup}_{\Gamma \in \mathcal{G}} \mathsf{PoS}(\Gamma).
$$

• PoA measures worst-case inefficiency due to strategic behaviour. **• PoS measures minimal inefficiency due to strategic behaviour.**

We always have

 $PoS(\Gamma) \le PoA(\Gamma)$.

Price of Anarchy (PoA) and Price of Stability (PoS) of finite game Γ are given by

$$
\mathsf{PoA}(\Gamma) = \frac{\max_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)} \quad \text{and} \quad \mathsf{PoS}(\Gamma) = \frac{\min_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)},
$$

where PNE = PNE(Γ) is the set of **pure** Nash equilibria of Γ. For a (possibly infinite) class of games G , we have

$$
\mathsf{PoA}(\mathcal{G}) = \mathsf{sup}_{\Gamma \in \mathcal{G}} \mathsf{PoA}(\Gamma) \quad \text{and} \quad \mathsf{PoS}(\mathcal{G}) = \mathsf{sup}_{\Gamma \in \mathcal{G}} \mathsf{PoS}(\Gamma).
$$

• PoA measures worst-case inefficiency due to strategic behaviour. **• PoS measures minimal inefficiency due to strategic behaviour.**

We always have

 $PoS(\Gamma) \le PoA(\Gamma)$.

Both PoA and PoS can be unbounded already in simple games.

Both PoA and PoS can be unbounded already in simple games. • Unbounded in number of players $n = |N|$.

Both PoA and PoS can be unbounded already in simple games.

• Unbounded in number of players $n = |N|$.

Consider the following game Γ.

Both PoA and PoS can be unbounded already in simple games.

• Unbounded in number of players $n = |N|$.

Consider the following game Γ.

$$
c_{e_1}(x) = 1 + \epsilon
$$
\n
\n
\n
$$
\vdots
$$
\n
$$
c_{e_2}(x) = \begin{cases} 0 & x < n \\ 1 & x = n \end{cases}
$$
\n
\n
$$
e_1
$$
\n
$$
e_2
$$
\n
\n
$$
C(s) = \sum_i C_i(s) = 1 + (1 + \dots + 1) = n
$$

Both PoA and PoS can be unbounded already in simple games.

• Unbounded in number of players $n = |N|$.

Consider the following game Γ.

$$
c_{e_1}(x) = 1 + \epsilon
$$
\n
\n
\n
$$
n
$$
\n
$$
\vdots
$$
\n
$$
c_{e_2}(x) = \begin{cases} 0 & x < n \\ 1 & x = n \end{cases}
$$
\n
$$
e_1
$$
\n
$$
e_2
$$
\n
$$
C(s) = \sum_i C_i(s) = 1 + (1 + \dots + 1) = n
$$
\n
$$
PoA(\Gamma) = PoS(\Gamma) = \frac{n}{1 + \epsilon}
$$

Both PoA and PoS can be unbounded already in simple games.

• Unbounded in number of players $n = |N|$.

Consider the following game Γ.

$$
c_{e_1}(x) = 1 + \epsilon
$$
\n
\n
\n
$$
n
$$
\n
\n
$$
c_{e_2}(x) = \begin{cases} 0 & x < n \\ 1 & x = n. \end{cases}
$$
\n
\n
$$
e_1
$$
\n
$$
e_2
$$
\n
\n
$$
C(s) = \sum_i C_i(s) = 1 + (1 + \cdots + 1) = n
$$
\n
\n
$$
PoA(\Gamma) = PoS(\Gamma) = \frac{n}{1 + \epsilon}
$$

Are there classes of games where PoA/PoS is constant (for any n)?

Both PoA and PoS can be unbounded already in simple games.

• Unbounded in number of players $n = |N|$.

Consider the following game Γ.

Are there classes of games where PoA/PoS is constant (for any n)? Yes, if we make assumptions on the cost functions.

Polynomial cost functions are of the form

$$
c_e(y)=\sum_{j=0}^d a_{\!,e}y^d
$$

with $a_{i,e} \geq 0$ for all $j = 0, \ldots, d$ and $e \in E$.

Polynomial cost functions are of the form

$$
c_e(y)=\sum_{j=0}^d a_{\!,e}y^d
$$

with $a_{i,e} \geq 0$ for all $j = 0, \ldots, d$ and $e \in E$.

• Affine when $d = 1$, i.e.,

$$
c_e(y)=a_{e,1}y+a_{e,0}.
$$

Polynomial cost functions are of the form

$$
c_e(y)=\sum_{j=0}^d a_{j,e}y^d
$$

with $a_{i,e} \geq 0$ for all $j = 0, \ldots, d$ and $e \in E$.

• Affine when $d = 1$, i.e.,

$$
c_e(y)=a_{e,1}y+a_{e,0}.
$$

• Quadratic when $d = 2$, i.e.,

$$
c_e(y) = a_{e,2}y^2 + a_{e,1}y + a_{e,0}.
$$

Polynomial cost functions are of the form

$$
c_e(y)=\sum_{j=0}^d a_{j,e}y^d
$$

with $a_{i,e} \geq 0$ for all $j = 0, \ldots, d$ and $e \in E$.

• Affine when $d = 1$, i.e.,

$$
c_e(y)=a_{e,1}y+a_{e,0}.
$$

• Quadratic when $d = 2$, i.e.,

$$
c_e(y) = a_{e,2}y^2 + a_{e,1}y + a_{e,0}.
$$

\bullet Etc...
$$
\mathsf{PoA}(\Gamma) = \frac{\max_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)}
$$

Theorem (Christodoulou and Koutsoupias (2005))

$$
PoA(\mathcal{G})=\frac{5}{2}.
$$

Theorem (Christodoulou and Koutsoupias (2005))

Let G *be the set of all congestion games with cost functions of the form* $c_e(y) = a_e y + b_e$ *where* $a_e, b_e \geq 0$ *. It holds that*

$$
PoA(\mathcal{G})=\frac{5}{2}.
$$

(Asymptotic) tightness holds even for the special class of symmetric network congestion games.

Theorem (Christodoulou and Koutsoupias (2005))

$$
PoA(\mathcal{G})=\frac{5}{2}.
$$

- (Asymptotic) tightness holds even for the special class of symmetric network congestion games.
	- De Keijzer et al. (2015)

Theorem (Christodoulou and Koutsoupias (2005))

$$
PoA(\mathcal{G})=\frac{5}{2}.
$$

- (Asymptotic) tightness holds even for the special class of symmetric network congestion games.
	- De Keijzer et al. (2015)
- Does not hold for, e.g., symmetric singleton congestion games.

Theorem (Christodoulou and Koutsoupias (2005))

$$
PoA(\mathcal{G})=\frac{5}{2}.
$$

- (Asymptotic) tightness holds even for the special class of symmetric network congestion games.
	- De Keijzer et al. (2015)
- Does not hold for, e.g., symmetric singleton congestion games.
	- \bullet Tight bound of 4/3 is known for this class.

Theorem (Christodoulou and Koutsoupias (2005))

Let G *be the set of all congestion games with cost functions of the form* $c_e(y) = a_e y + b_e$ *where* $a_e, b_e \geq 0$ *. It holds that*

$$
PoA(\mathcal{G})=\frac{5}{2}.
$$

- (Asymptotic) tightness holds even for the special class of symmetric network congestion games.
	- De Keijzer et al. (2015)
- Does not hold for, e.g., symmetric singleton congestion games.
	- \bullet Tight bound of 4/3 is known for this class.

Remark

For polynomials of degree at most *d*, a tight bound is known as well. It grows roughly like *d d*(1−*o*(1)) .

Let $\Gamma = (N,(S_i)_{i\in N},(C_i)_{i\in N})$ be a finite (cost minimization) game with $\text{\textbf{social cost}} \; C(\boldsymbol{s}) = \sum_{i \in N} C_i(\boldsymbol{s}).$

Let $\Gamma = (N,(S_i)_{i\in N},(C_i)_{i\in N})$ be a finite (cost minimization) game with $\text{\textbf{social cost}} \; C(\boldsymbol{s}) = \sum_{i \in N} C_i(\boldsymbol{s}).$

Definition

Γ is called $(λ, μ)$ -smooth if for any two strategy profiles $s, s^∗ ∈ ×_iS_i$,

Let $\Gamma = (N,(S_i)_{i\in N},(C_i)_{i\in N})$ be a finite (cost minimization) game with $\text{\textbf{social cost}} \; C(\boldsymbol{s}) = \sum_{i \in N} C_i(\boldsymbol{s}).$

Definition

Γ is called $(λ, μ)$ -smooth if for any two strategy profiles $s, s^∗ ∈ ×_iS_i$,

$$
\sum_{i\in N} C_i(s_i^*, s_{-i}) \leq \lambda C(s^*) + \mu C(s). \tag{1}
$$

Let $\Gamma = (N,(S_i)_{i\in N},(C_i)_{i\in N})$ be a finite (cost minimization) game with $\text{\textbf{social cost}} \; C(\boldsymbol{s}) = \sum_{i \in N} C_i(\boldsymbol{s}).$

Definition

Γ is called $(λ, μ)$ -smooth if for any two strategy profiles $s, s^∗ ∈ ×_iS_i$,

$$
\sum_{i\in N} C_i(\mathbf{s}_i^*, \mathbf{s}_{-i}) \leq \lambda C(\mathbf{s}^*) + \mu C(\mathbf{s}). \tag{1}
$$

Theorem (Roughgarden, 2009)

If Γ *is* (λ, μ)-smooth and $\mu < 1$, then PoA(Γ) $\leq \frac{\lambda}{1-\mu}$.

Let $\Gamma = (N,(S_i)_{i\in N},(C_i)_{i\in N})$ be a finite (cost minimization) game with $\text{\textbf{social cost}} \; C(\boldsymbol{s}) = \sum_{i \in N} C_i(\boldsymbol{s}).$

Definition

Γ is called $(λ, μ)$ -smooth if for any two strategy profiles $s, s^∗ ∈ ×_iS_i$,

$$
\sum_{i\in N} C_i(\mathbf{s}_i^*, \mathbf{s}_{-i}) \leq \lambda C(\mathbf{s}^*) + \mu C(\mathbf{s}). \tag{1}
$$

Theorem (Roughgarden, 2009)

If Γ *is* (λ, μ)-smooth and $\mu < 1$, then PoA(Γ) $\leq \frac{\lambda}{1-\mu}$.

Proof: Let *s* be a pure Nash equilibrium and *s* [∗] a social optimum.

Let $\Gamma = (N,(S_i)_{i\in N},(C_i)_{i\in N})$ be a finite (cost minimization) game with $\text{\textbf{social cost}} \; C(\boldsymbol{s}) = \sum_{i \in N} C_i(\boldsymbol{s}).$

Definition

Γ is called $(λ, μ)$ -smooth if for any two strategy profiles $s, s^∗ ∈ ×_iS_i$,

$$
\sum_{i\in N} C_i(\mathbf{s}_i^*, \mathbf{s}_{-i}) \leq \lambda C(\mathbf{s}^*) + \mu C(\mathbf{s}). \tag{1}
$$

Theorem (Roughgarden, 2009)

If Γ *is* (λ, μ)-smooth and $\mu < 1$, then PoA(Γ) $\leq \frac{\lambda}{1-\mu}$.

Proof: Let *s* be a pure Nash equilibrium and *s* [∗] a social optimum. Then

$$
C(\boldsymbol{s}) = \sum_{i \in N} C_i(\boldsymbol{s}_i, \boldsymbol{s}_{-i}) \leq \sum_{i \in N} C_i(\boldsymbol{s}_i^*, \boldsymbol{s}_{-i}) \leq \lambda C(\boldsymbol{s}^*) + \mu C(\boldsymbol{s}).
$$

Let $\Gamma = (N,(S_i)_{i\in N},(C_i)_{i\in N})$ be a finite (cost minimization) game with $\text{\textbf{social cost}} \; C(\boldsymbol{s}) = \sum_{i \in N} C_i(\boldsymbol{s}).$

Definition

Γ is called $(λ, μ)$ -smooth if for any two strategy profiles $s, s^∗ ∈ ×_iS_i$,

$$
\sum_{i\in N} C_i(\mathbf{s}_i^*, \mathbf{s}_{-i}) \leq \lambda C(\mathbf{s}^*) + \mu C(\mathbf{s}). \tag{1}
$$

Theorem (Roughgarden, 2009)

If Γ *is* (λ, μ)-smooth and $\mu < 1$, then PoA(Γ) $\leq \frac{\lambda}{1-\mu}$.

Proof: Let *s* be a pure Nash equilibrium and *s* [∗] a social optimum. Then

$$
C(\boldsymbol{s}) = \sum_{i \in \mathcal{N}} C_i(\boldsymbol{s}_i, \boldsymbol{s}_{-i}) \leq \sum_{i \in \mathcal{N}} C_i(\boldsymbol{s}_i^*, \boldsymbol{s}_{-i}) \leq \lambda C(\boldsymbol{s}^*) + \mu C(\boldsymbol{s}).
$$

Rearranging terms and exploiting that $\mu < 1$ proves the claim.

Theorem (Roughgarden, 2009)

If Γ *is* (λ, μ)-smooth and $\mu < 1$, then PoA(Γ) $\leq \frac{\lambda}{1-\mu}$.

• Remember that we defined the PoA for pure Nash equilibria.

Theorem (Roughgarden, 2009)

If Γ *is* (λ, μ)-smooth and $\mu < 1$, then PoA(Γ) $\leq \frac{\lambda}{1-\mu}$.

• Remember that we defined the PoA for pure Nash equilibria.

Definition

The robust price of anarchy of a strategic game Γ is defined as

$$
\textit{RPoA}(\Gamma) = \inf \ \left\{ \frac{\lambda}{1-\mu} \ : \ \Gamma \text{ is } (\lambda,\mu) \text{-smooth with } \mu < 1 \right\}
$$

For a class $\mathcal G$ of games, we define

 $RPoA(\mathcal{G}) = \sup \{RPoA(\Gamma) : \Gamma \in \mathcal{G}\}.$

.

Theorem (Roughgarden, 2009)

If Γ *is* (λ, μ)-smooth and $\mu < 1$, then PoA(Γ) $\leq \frac{\lambda}{1-\mu}$.

• Remember that we defined the PoA for pure Nash equilibria.

Definition

The robust price of anarchy of a strategic game Γ is defined as

$$
\textit{RPOA}(\Gamma)=\inf\ \left\{\frac{\lambda}{1-\mu}\ :\ \Gamma\text{ is } (\lambda,\mu)\text{-smooth with }\mu<1\right\}
$$

For a class G of games, we define

$$
\mathsf{RPoA}(\mathcal{G}) = \sup \{ \mathsf{RPoA}(\Gamma) \; : \; \Gamma \in \mathcal{G} \} \, .
$$

RPoA automatically extends to other equilibria types in hierarchy. Mixed, correlated and coarse correlated equilibria.

.

Theorem

The price of anarchy of affine congestion games is $\frac{5}{2}$.

Theorem

The price of anarchy of affine congestion games is $\frac{5}{2}$.

Proof: Let *s* be PNE and *s* [∗] a social optimum. We will show that

$$
\sum_{i\in N} C_i(s_i^*, s_{-i}) \leq \frac{5}{3}C(s^*) + \frac{1}{3}C(s),
$$

Theorem

The price of anarchy of affine congestion games is $\frac{5}{2}$.

Proof: Let *s* be PNE and *s* [∗] a social optimum. We will show that

$$
\sum_{i\in N} C_i(s_i^*,s_{-i}) \leq \frac{5}{3}C(s^*) + \frac{1}{3}C(s),
$$

i.e., that the game is $(5/3, 1/3)$ -smooth.

Theorem

The price of anarchy of affine congestion games is $\frac{5}{2}$.

Proof: Let *s* be PNE and *s* [∗] a social optimum. We will show that

$$
\sum_{i\in N} C_i(s_i^*,s_{-i}) \leq \frac{5}{3}C(s^*) + \frac{1}{3}C(s),
$$

i.e., that the game is $(5/3, 1/3)$ -smooth.

The price of anarchy of affine congestion games is $\frac{5}{2}$.

Proof: Let *s* be PNE and *s* [∗] a social optimum. We will show that

$$
\sum_{i\in N} C_i(s_i^*,s_{-i}) \leq \frac{5}{3}C(s^*) + \frac{1}{3}C(s),
$$

i.e., that the game is $(5/3, 1/3)$ -smooth.

- Assume (w.l.o.g.) that $c_e(x) = x$ for every $e \in E$.
- Write $x_e = x_e(s)$ and $x_e^* = x_e(s^*)$.

The price of anarchy of affine congestion games is $\frac{5}{2}$.

Proof: Let *s* be PNE and *s* [∗] a social optimum. We will show that

$$
\sum_{i\in N} C_i(s_i^*,s_{-i}) \leq \frac{5}{3}C(s^*) + \frac{1}{3}C(s),
$$

i.e., that the game is $(5/3, 1/3)$ -smooth.

- Assume (w.l.o.g.) that $c_e(x) = x$ for every $e \in E$.
- Write $x_e = x_e(s)$ and $x_e^* = x_e(s^*)$.

The price of anarchy of affine congestion games is $\frac{5}{2}$.

Proof: Let *s* be PNE and *s* [∗] a social optimum. We will show that

$$
\sum_{i\in N} C_i(s_i^*,s_{-i}) \leq \frac{5}{3}C(s^*) + \frac{1}{3}C(s),
$$

i.e., that the game is $(5/3, 1/3)$ -smooth.

Assume (w.l.o.g.) that $c_e(x) = x$ for every $e \in E$.

• Write
$$
x_e = x_e(s)
$$
 and $x_e^* = x_e(s^*)$.

 $C(s) = \sum_{i \in N} C_i(s)$

The price of anarchy of affine congestion games is $\frac{5}{2}$.

Proof: Let *s* be PNE and *s* [∗] a social optimum. We will show that

$$
\sum_{i\in N} C_i(s_i^*,s_{-i}) \leq \frac{5}{3}C(s^*) + \frac{1}{3}C(s),
$$

i.e., that the game is $(5/3, 1/3)$ -smooth.

• Write
$$
x_e = x_e(s)
$$
 and $x_e^* = x_e(s^*)$.

$$
C(s) = \sum_{i \in N} C_i(s)
$$

\$\leq \sum_{i \in N} C_i(s_i^*, s_{-i})\$ (using PNE definition)

The price of anarchy of affine congestion games is $\frac{5}{2}$.

Proof: Let *s* be PNE and *s* [∗] a social optimum. We will show that

$$
\sum_{i\in N} C_i(s_i^*,s_{-i}) \leq \frac{5}{3}C(s^*) + \frac{1}{3}C(s),
$$

i.e., that the game is $(5/3, 1/3)$ -smooth.

• Write
$$
x_e = x_e(s)
$$
 and $x_e^* = x_e(s^*)$.

$$
C(s) = \sum_{i \in N} C_i(s)
$$

\n
$$
\leq \sum_{i \in N} C_i(s_i^*, s_{-i})
$$

\n
$$
= \sum_{i \in N} \sum_{e \in s_i^*} c_e(x_e(s_i^*, s_{-i}))
$$
 (using PNE definition)

The price of anarchy of affine congestion games is $\frac{5}{2}$.

Proof: Let *s* be PNE and *s* [∗] a social optimum. We will show that

$$
\sum_{i\in N} C_i(s_i^*,s_{-i}) \leq \frac{5}{3}C(s^*) + \frac{1}{3}C(s),
$$

i.e., that the game is $(5/3, 1/3)$ -smooth.

Assume (w.l.o.g.) that $c_e(x) = x$ for every $e \in E$.

Write $x_e = x_e(s)$ and $x_e^* = x_e(s^*)$.

$$
C(s) = \sum_{i \in N} C_i(s)
$$

\n
$$
\leq \sum_{i \in N} C_i(s_i^*, s_{-i})
$$

\n
$$
= \sum_{i \in N} \sum_{e \in s_i^*} c_e(x_e(s_i^*, s_{-i}))
$$

\n
$$
= \sum_{i \in N} \sum_{e \in s_i^*} x_e(s_i^*, s_{-i})
$$

\n
$$
(c_e(x) = x)
$$

The price of anarchy of affine congestion games is $\frac{5}{2}$.

Proof: Let *s* be PNE and *s* [∗] a social optimum. We will show that

$$
\sum_{i\in N}C_i(s_i^*,s_{-i})\leq \frac{5}{3}C(s^*)+\frac{1}{3}C(s),
$$

i.e., that the game is $(5/3, 1/3)$ -smooth.

• Write
$$
x_e = x_e(s)
$$
 and $x_e^* = x_e(s^*)$.

$$
C(s) = \sum_{i \in N} C_i(s)
$$

\n
$$
\leq \sum_{i \in N} C_i(s_i^*, s_{-i})
$$

\n
$$
= \sum_{i \in N} \sum_{e \in s_i^*} c_e(x_e(s_i^*, s_{-i}))
$$

\n
$$
= \sum_{i \in N} \sum_{e \in s_i^*} x_e(s_i^*, s_{-i})
$$

\n
$$
\leq \sum_{i \in N} \sum_{e \in s_i^*} x_e + 1
$$

\n($c_e(x) = x$)

The price of anarchy of affine congestion games is $\frac{5}{2}$.

Proof: Let *s* be PNE and *s* [∗] a social optimum. We will show that

$$
\sum_{i\in N} C_i(s_i^*,s_{-i}) \leq \frac{5}{3}C(s^*) + \frac{1}{3}C(s),
$$

i.e., that the game is $(5/3, 1/3)$ -smooth.

• Write
$$
x_e = x_e(s)
$$
 and $x_e^* = x_e(s^*)$.

$$
C(s) = \sum_{i \in N} C_i(s)
$$

\n
$$
\leq \sum_{i \in N} C_i(s_i^*, s_{-i})
$$
 (using PNE definition)
\n
$$
= \sum_{i \in N} \sum_{e \in s_i^*} c_e(x_e(s_i^*, s_{-i}))
$$

\n
$$
\leq \sum_{i \in N} \sum_{e \in s_i^*} x_e(s_i^*, s_{-i})
$$
 (c_e(x) = x)
\n
$$
\leq \sum_{i \in N} \sum_{e \in s_i^*} x_e + 1
$$

\n
$$
= \sum_{e \in E} \sum_{i : e \in s_i^*} x_e + 1
$$
 (interchanging summation)

The price of anarchy of affine congestion games is $\frac{5}{2}$.

Proof: Let *s* be PNE and *s* [∗] a social optimum. We will show that

$$
\sum_{i\in N} C_i(s_i^*,s_{-i}) \leq \frac{5}{3}C(s^*) + \frac{1}{3}C(s),
$$

i.e., that the game is $(5/3, 1/3)$ -smooth.

• Write
$$
x_e = x_e(s)
$$
 and $x_e^* = x_e(s^*)$.

$$
C(s) = \sum_{i \in N} C_i(s)
$$

\n
$$
\leq \sum_{i \in N} C_i(s_i^*, s_{-i})
$$
 (using PNE definition)
\n
$$
= \sum_{i \in N} \sum_{e \in s_i^*} C_e(x_e(s_i^*, s_{-i}))
$$

\n
$$
\leq \sum_{i \in N} \sum_{e \in s_i^*} x_e(s_i^*, s_{-i})
$$

\n
$$
\leq \sum_{i \in N} \sum_{e \in s_i^*} x_e + 1
$$

\n
$$
= \sum_{e \in E} \sum_{i:e \in s_i^*} x_e + 1
$$
 (interchanging summation)
\n
$$
= \sum_{e \in E} x_e^*(x_e + 1)
$$

$$
C(t) = \sum_i C_i(t) = \sum_{e \in E} y_e c_e(y_e)
$$
 with $y_e = y_e(t)$

$$
C(t) = \sum_i C_i(t) = \sum_{e \in E} y_e c_e(y_e)
$$
 with $y_e = y_e(t)$

With the assumption $c_e(x) = x$ for all $e \in E$, it suffices to show that

$$
\sum_{e\in E} x^*_e(x_e+1) \leq \frac{5}{3}\sum_{e\in E}(x^*_e)^2 + \frac{1}{3}\sum_{e\in E}(x_e)^2.
$$

$$
C(t) = \sum_i C_i(t) = \sum_{e \in E} y_e c_e(y_e)
$$
 with $y_e = y_e(t)$

With the assumption $c_e(x) = x$ for all $e \in E$, it suffices to show that

$$
\sum_{e \in E} x_e^*(x_e+1) \leq \frac{5}{3} \sum_{e \in E} (x_e^*)^2 + \frac{1}{3} \sum_{e \in E} (x_e)^2.
$$

Fact

Let α *and* β *be two non-negative integers. Then*

$$
\alpha(\beta+1)\leq \frac{5}{3}\alpha^2+\frac{1}{3}\beta^2.
$$

Tightness holds for $(\alpha, \beta) = (1, 1)$ *and* $(\alpha, \beta) = (1, 2)$ *.*

$$
C(t) = \sum_i C_i(t) = \sum_{e \in E} y_e c_e(y_e)
$$
 with $y_e = y_e(t)$

With the assumption $c_e(x) = x$ for all $e \in E$, it suffices to show that

$$
\sum_{e \in E} x_e^*(x_e+1) \leq \frac{5}{3} \sum_{e \in E} (x_e^*)^2 + \frac{1}{3} \sum_{e \in E} (x_e)^2.
$$

Fact

Let α *and* β *be two non-negative integers. Then*

$$
\alpha(\beta+1)\leq \frac{5}{3}\alpha^2+\frac{1}{3}\beta^2.
$$

Tightness holds for $(\alpha, \beta) = (1, 1)$ *and* $(\alpha, \beta) = (1, 2)$ *.*

By applying this to every resource $e \in E$, we get

$$
C(t) = \sum_i C_i(t) = \sum_{e \in E} y_e c_e(y_e)
$$
 with $y_e = y_e(t)$

With the assumption $c_e(x) = x$ for all $e \in E$, it suffices to show that

$$
\sum_{e\in E} x^*_e(x_e+1) \leq \frac{5}{3}\sum_{e\in E} (x^*_e)^2 + \frac{1}{3}\sum_{e\in E} (x_e)^2.
$$

Fact

Let α *and* β *be two non-negative integers. Then*

$$
\alpha(\beta+1)\leq \frac{5}{3}\alpha^2+\frac{1}{3}\beta^2.
$$

Tightness holds for $(\alpha, \beta) = (1, 1)$ *and* $(\alpha, \beta) = (1, 2)$ *.*

By applying this to every resource $e \in E$, we get

$$
C(s) \leq \sum_{e \in E} x_e^*(x_e + 1) \leq \frac{5}{3} \sum_{e \in E} (x_e^*)^2 + \frac{1}{3} \sum_{e \in E} (x_e)^2 = \frac{5}{3} C(s^*) + \frac{1}{3} C(s). \quad \Box
$$

PoA lower bound for affine congestion games

Congestion game instance • $N = \{1, 2, 3\}.$
- $N = \{1, 2, 3\}.$
- \bullet *E* = *E*₁ ∪ *E*₂, where *E*₁ = {*e*₁, *e*₂, *e*₃} and *E*₂ = {*h*₁, *h*₂, *h*₃}.

- $N = \{1, 2, 3\}.$
- \bullet *E* = *E*₁ ∪ *E*₂, where *E*₁ = {*e*₁, *e*₂, *e*₃} and *E*₂ = {*h*₁, *h*₂, *h*₃}.
- Cost function $c_e(x) = x$ for every $e \in E$.

- \bullet *N* = {1, 2, 3}.
- \bullet *E* = *E*₁ ∪ *E*₂, where *E*₁ = {*e*₁, *e*₂, *e*₃} and *E*₂ = {*h*₁, *h*₂, *h*₃}.
- Cost function $c_e(x) = x$ for every $e \in E$.
- Each player *i* has two strategies (modulo 3):

$$
S_i = \{\{e_i, h_i\}, \{e_{i-1}, e_{i+1}, h_{i+1}\}\}.
$$

- \bullet *N* = {1, 2, 3}.
- \bullet *E* = *E*₁ ∪ *E*₂, where *E*₁ = {*e*₁, *e*₂, *e*₃} and *E*₂ = {*h*₁, *h*₂, *h*₃}.
- Cost function $c_e(x) = x$ for every $e \in E$.
- Each player *i* has two strategies (modulo 3):

$$
\mathcal{S}_i = \{ \{e_i, h_i\}, \{e_{i-1}, e_{i+1}, h_{i+1}\} \}.
$$

Congestion game instance

- \bullet *N* = {1, 2, 3}.
- \bullet *E* = *E*₁ ∪ *E*₂, where *E*₁ = {*e*₁, *e*₂, *e*₃} and *E*₂ = {*h*₁, *h*₂, *h*₃}.
- Cost function $c_e(x) = x$ for every $e \in E$.
- Each player *i* has two strategies (modulo 3):

$$
\mathcal{S}_i = \{ \{e_i, h_i\}, \{e_{i-1}, e_{i+1}, h_{i+1}\} \}.
$$

Social optimum *s* ∗

Every player *i* plays $\{e_i, h_i\}$, which gives $C(s^*) = 6$.

Congestion game instance

- \bullet *N* = {1, 2, 3}.
- \bullet *E* = *E*₁ ∪ *E*₂, where *E*₁ = {*e*₁, *e*₂, *e*₃} and *E*₂ = {*h*₁, *h*₂, *h*₃}.
- Cost function $c_e(x) = x$ for every $e \in E$.
- Each player *i* has two strategies (modulo 3):

$$
\mathcal{S}_i = \{ \{e_i, h_i\}, \{e_{i-1}, e_{i+1}, h_{i+1}\} \}.
$$

Social optimum *s* ∗

Every player *i* plays $\{e_i, h_i\}$, which gives $C(s^*) = 6$.

Pure Nash equilibrium *s* Every player *i* plays $\{e_{i-1}, e_{i+1}, h_{i+1}\}$, which gives $C(s) = 15$.

Definition

Γ is called $(λ, μ)$ -smooth if for any two strategy profiles *s*, *s*^{*} ∈ ×*_iS_i*,
 $∇ C_i(s_i^*, s_{-i})$ ≤ $λC(s_i^*) + μC(s)$.

$$
\sum_{i\in N} C_i(s_i^*, s_{-i}) \leq \lambda C(s^*) + \mu C(s). \tag{2}
$$

Definition

Γ is called $(λ, μ)$ -smooth if for any two strategy profiles *s*, *s*^{*} ∈ ×*_iS_i*,
 $∇ C_i(s_i^*, s_{-i})$ ≤ $λC(s_i^*) + μC(s)$.

$$
\sum_{i\in N} C_i(s_i^*, s_{-i}) \leq \lambda C(s^*) + \mu C(s). \tag{2}
$$

Remember that *PNE* ⊆ *MNE* ⊆ *CE* ⊆ *CCE*.

Pure, mixed, correlated and coarse correlated equilibria.

Definition

Γ is called $(λ, μ)$ -smooth if for any two strategy profiles *s*, *s*^{*} ∈ ×*_iS_i*,
 $∇ C_i(s_i^*, s_{-i})$ ≤ $λC(s_i^*) + μC(s)$.

$$
\sum_{i\in N} C_i(s_i^*, s_{-i}) \leq \lambda C(s^*) + \mu C(s). \tag{2}
$$

Remember that *PNE* ⊆ *MNE* ⊆ *CE* ⊆ *CCE*.

Pure, mixed, correlated and coarse correlated equilibria.

Definition (PoA, general)

For $EQ \in \{PNE, MNE, CE, CCE\}$, we define

$$
\mathsf{PoA}_{\mathit{EQ}}(\Gamma) = \frac{\mathsf{max}_{\sigma \in \mathsf{EQ}} \mathbb{E}_{\bm{s} \sim \sigma} \left[C(\bm{s}) \right]}{\mathsf{min}_{\bm{t} \in \times_i \mathcal{S}_i} C(\bm{t})}
$$

Definition

Γ is called $(λ, μ)$ -smooth if for any two strategy profiles *s*, *s*^{*} ∈ ×*_iS_i*,
 $∇ C_i(s_i^*, s_{-i})$ ≤ $λC(s_i^*) + μC(s)$.

$$
\sum_{i\in N} C_i(s_i^*, s_{-i}) \leq \lambda C(s^*) + \mu C(s). \tag{2}
$$

Remember that *PNE* ⊆ *MNE* ⊆ *CE* ⊆ *CCE*.

Pure, mixed, correlated and coarse correlated equilibria.

Definition (PoA, general)

For $EQ \in \{PNE, MNE, CE, CCE\}$, we define

$$
\mathsf{PoA}_{\mathsf{EQ}}(\Gamma) = \frac{\max_{\sigma \in \mathsf{EQ}} \mathbb{E}_{s \sim \sigma} \left[C(s) \right]}{\min_{t \in \times_i S_i} C(t)}
$$
\nwhere for $s \in \times_i S_i$, one has $\mathbb{E}_{s \sim \sigma} \left[C_i(s) \right] = \sum_{s \in \times_i S_i} \sigma(s) C_i(s)$.

Definition

Γ is called $(λ, μ)$ -smooth if for any two strategy profiles *s*, *s*^{*} ∈ ×*_iS_i*,
 $∇ C_i(s_i^*, s_{-i})$ ≤ $λC(s_i^*) + μC(s)$.

$$
\sum_{i\in N} C_i(s_i^*, s_{-i}) \leq \lambda C(s^*) + \mu C(s). \tag{2}
$$

Remember that *PNE* ⊆ *MNE* ⊆ *CE* ⊆ *CCE*.

Pure, mixed, correlated and coarse correlated equilibria.

Definition (PoA, general)

For $EQ \in \{PNE, MNE, CE, CCE\}$, we define

$$
\mathsf{PoA}_{\mathsf{EQ}}(\Gamma) = \frac{\max_{\sigma \in \mathsf{EQ}} \mathbb{E}_{\mathsf{S} \sim \sigma} \left[C(\mathsf{s}) \right]}{\min_{t \in \times_i \mathcal{S}_i} C(t)}
$$

 $\textsf{where for } \mathcal{s} \in \times_i \mathcal{S}_i \text{, one has } \mathbb{E}_{\boldsymbol{s} \sim \sigma}\left[\mathcal{C}_i(\boldsymbol{s})\right] = \sum_{\boldsymbol{s} \in \times_i \mathcal{S}_i} \sigma(\boldsymbol{s}) \mathcal{C}_i(\boldsymbol{s}).$

Theorem (Extension)

If the game Γ *is* (λ, μ)*-smooth, then RPoA_{EQ}*(Γ) < λ /(1 – μ)*.*

Definition (Coarse correlated equilibrium (CCE))

A distribution σ on $\times_i {\mathcal S}_i$ is a coarse correlated equilibrium if for every $i \in \mathcal{N}$, and every unilateral deviation $\boldsymbol{s}'_i \in \mathcal{S}_i$, it holds that

$$
\mathbb{E}_{s \sim \sigma} [C_i(s)] \leq \mathbb{E}_{s \sim \sigma} [C_i(s_i', s_{-i})].
$$

Definition (Coarse correlated equilibrium (CCE))

A distribution σ on $\times_i {\mathcal S}_i$ is a coarse correlated equilibrium if for every $i \in \mathcal{N}$, and every unilateral deviation $\boldsymbol{s}'_i \in \mathcal{S}_i$, it holds that

$$
\mathbb{E}_{s \sim \sigma} [C_i(s)] \leq \mathbb{E}_{s \sim \sigma} [C_i(s_i', s_{-i})].
$$

Definition (Coarse correlated equilibrium (CCE))

A distribution σ on $\times_i {\mathcal S}_i$ is a coarse correlated equilibrium if for every $i \in \mathcal{N}$, and every unilateral deviation $\boldsymbol{s}'_i \in \mathcal{S}_i$, it holds that

$$
\mathbb{E}_{s \sim \sigma} [C_i(s)] \leq \mathbb{E}_{s \sim \sigma} [C_i(s'_i, s_{-i})].
$$

$$
\mathbb{E}_{s \sim \sigma} [C(s)] = \mathbb{E}_{s \sim \sigma} \left[\sum_i C_i(s) \right]
$$

Definition (Coarse correlated equilibrium (CCE))

A distribution σ on $\times_i {\mathcal S}_i$ is a coarse correlated equilibrium if for every $i \in \mathcal{N}$, and every unilateral deviation $\boldsymbol{s}'_i \in \mathcal{S}_i$, it holds that

$$
\mathbb{E}_{s \sim \sigma} [C_i(s)] \leq \mathbb{E}_{s \sim \sigma} [C_i(s'_i, s_{-i})].
$$

Proof (extension theorem): Let *s* be CCE and *s* [∗] social optimum. Then

$$
\mathbb{E}_{s \sim \sigma} [C(s)] = \mathbb{E}_{s \sim \sigma} \left[\sum_i C_i(s) \right]
$$

=
$$
\sum_i \mathbb{E}_{s \sim \sigma} [C_i(s)]
$$

E*s*∼^σ [*Ci*(*s*)] (lin. of expectation)

Definition (Coarse correlated equilibrium (CCE))

A distribution σ on $\times_i {\mathcal S}_i$ is a coarse correlated equilibrium if for every $i \in \mathcal{N}$, and every unilateral deviation $\boldsymbol{s}'_i \in \mathcal{S}_i$, it holds that

$$
\mathbb{E}_{s \sim \sigma} [C_i(s)] \leq \mathbb{E}_{s \sim \sigma} [C_i(s'_i, s_{-i})].
$$

$$
\mathbb{E}_{s \sim \sigma} [C(s)] = \mathbb{E}_{s \sim \sigma} \left[\sum_{i} C_{i}(s) \right]
$$

\n
$$
= \sum_{i} \mathbb{E}_{s \sim \sigma} [C_{i}(s)] \qquad \text{(lin. of expectation)}
$$

\n
$$
\leq \sum_{i} \mathbb{E}_{s \sim \sigma} [C_{i}(s_{i}^{*}, s_{-i})] \qquad \text{(CCE definition)}
$$

Definition (Coarse correlated equilibrium (CCE))

A distribution σ on $\times_i {\mathcal S}_i$ is a coarse correlated equilibrium if for every $i \in \mathcal{N}$, and every unilateral deviation $\boldsymbol{s}'_i \in \mathcal{S}_i$, it holds that

$$
\mathbb{E}_{s \sim \sigma} [C_i(s)] \leq \mathbb{E}_{s \sim \sigma} [C_i(s'_i, s_{-i})].
$$

$$
\mathbb{E}_{s \sim \sigma} [C(s)] = \mathbb{E}_{s \sim \sigma} \left[\sum_{i} C_{i}(s) \right]
$$
\n
$$
= \sum_{i} \mathbb{E}_{s \sim \sigma} [C_{i}(s)] \qquad \text{(lin. of expectation)}
$$
\n
$$
\leq \sum_{i} \mathbb{E}_{s \sim \sigma} [C_{i}(s_{i}^{*}, s_{-i})] \qquad \text{(CCE definition)}
$$
\n
$$
= \mathbb{E}_{s \sim \sigma} \left[\sum_{i} C_{i}(s_{i}^{*}, s_{-i}) \right]
$$

Definition (Coarse correlated equilibrium (CCE))

A distribution σ on $\times_i {\mathcal S}_i$ is a coarse correlated equilibrium if for every $i \in \mathcal{N}$, and every unilateral deviation $\boldsymbol{s}'_i \in \mathcal{S}_i$, it holds that

$$
\mathbb{E}_{s \sim \sigma} [C_i(s)] \leq \mathbb{E}_{s \sim \sigma} [C_i(s'_i, s_{-i})].
$$

$$
\mathbb{E}_{s \sim \sigma} [C(s)] = \mathbb{E}_{s \sim \sigma} \left[\sum_{i} C_{i}(s) \right]
$$
\n
$$
= \sum_{i} \mathbb{E}_{s \sim \sigma} [C_{i}(s)] \qquad \text{(lin. of expectation)}
$$
\n
$$
\leq \sum_{i} \mathbb{E}_{s \sim \sigma} [C_{i}(s_{i}^{*}, s_{-i})] \qquad \text{(CCE definition)}
$$
\n
$$
= \mathbb{E}_{s \sim \sigma} \left[\sum_{i} C_{i}(s_{i}^{*}, s_{-i}) \right]
$$
\n
$$
\leq \mathbb{E}_{s \sim \sigma} [\lambda C(s^{*}) + \mu C(s)] \qquad \text{(smoothness)}
$$

Definition (Coarse correlated equilibrium (CCE))

A distribution σ on $\times_i {\mathcal S}_i$ is a coarse correlated equilibrium if for every $i \in \mathcal{N}$, and every unilateral deviation $\boldsymbol{s}'_i \in \mathcal{S}_i$, it holds that

$$
\mathbb{E}_{s \sim \sigma} [C_i(s)] \leq \mathbb{E}_{s \sim \sigma} [C_i(s'_i, s_{-i})].
$$

$$
\mathbb{E}_{s \sim \sigma} [C(s)] = \mathbb{E}_{s \sim \sigma} \left[\sum_{i} C_{i}(s) \right]
$$
\n
$$
= \sum_{i} \mathbb{E}_{s \sim \sigma} [C_{i}(s)] \qquad \text{(lin. of expectation)}
$$
\n
$$
\leq \sum_{i} \mathbb{E}_{s \sim \sigma} [C_{i}(s_{i}^{*}, s_{-i})] \qquad \text{(CCE definition)}
$$
\n
$$
= \mathbb{E}_{s \sim \sigma} \left[\sum_{i} C_{i}(s_{i}^{*}, s_{-i}) \right]
$$
\n
$$
\leq \mathbb{E}_{s \sim \sigma} [\lambda C(s^{*}) + \mu C(s)] \qquad \text{(smoothness)}
$$
\n
$$
= \lambda C(s^{*}) + \mu \cdot \mathbb{E}_{s \sim \sigma} [C(s)] \qquad \Box
$$

Price of Anarchy of affine congestion games is at most 5/2 *and this bound is tight.*

Price of Anarchy of affine congestion games is at most 5/2 *and this bound is tight.*

• Also holds for other equilibrium types in hierarchy.

Price of Anarchy of affine congestion games is at most 5/2 *and this bound is tight.*

- Also holds for other equilibrium types in hierarchy.
- **•** Extendability is proved using the smoothness framework.

Price of Anarchy of affine congestion games is at most 5/2 *and this bound is tight.*

- Also holds for other equilibrium types in hierarchy.
- **•** Extendability is proved using the smoothness framework.

Note that smoothness framework (and extension theorem) apply to finite games in general, and not only congestion games.

Price of Anarchy of affine congestion games is at most 5/2 *and this bound is tight.*

- Also holds for other equilibrium types in hierarchy.
- **•** Extendability is proved using the smoothness framework.

Note that smoothness framework (and extension theorem) apply to finite games in general, and not only congestion games.

Remark

The smoothness framework cannot always be applied. For example, a tight bound on the Price of Anarchy of 4/3 is known for class of symmetric singleton congestion games, but this bound does not extend to more general equilibrium types.

Price of Anarchy of affine congestion games is at most 5/2 *and this bound is tight.*

- Also holds for other equilibrium types in hierarchy.
- **•** Extendability is proved using the smoothness framework.

Note that smoothness framework (and extension theorem) apply to finite games in general, and not only congestion games.

Remark

The smoothness framework cannot always be applied. For example, a tight bound on the Price of Anarchy of 4/3 is known for class of symmetric singleton congestion games, but this bound does not extend to more general equilibrium types.

• Same is true for Price of Stability bounds (up next).

Price of Stability for affine congestion game Γ

$$
\mathsf{PoS}(\Gamma) = \frac{\min_{s \in \mathsf{PNE}} C(s)}{\min_{t \in \times_i S_i} C(t)}
$$

For bounding the PoS, we need to do something else than just use the inequalities defining a PNE.

For bounding the PoS, we need to do something else than just use the inequalities defining a PNE.

For congestion games $(N, E, (S_i), (c_e))$, recall that Rosenthal's potential Φ : $\times_i S_i \rightarrow \mathbb{R}$ is given by

$$
\Phi(\mathbf{S}) = \sum_{\mathbf{e} \in E} \sum_{k=1}^{X_{\mathbf{e}}(\mathbf{S})} c_{\mathbf{e}}(k).
$$

For bounding the PoS, we need to do something else than just use the inequalities defining a PNE.

For congestion games $(N, E, (S_i), (c_e))$, recall that Rosenthal's potential Φ : $\times_i S_i \rightarrow \mathbb{R}$ is given by

$$
\Phi(\mathbf{S}) = \sum_{e \in E} \sum_{k=1}^{X_e(\mathbf{S})} c_e(k).
$$

We have seen that PNEs are local minima of Rosenthal's potential (w.r.t the unilateral deviation neighbourhood).

For bounding the PoS, we need to do something else than just use the inequalities defining a PNE.

For congestion games $(N, E, (S_i), (c_e))$, recall that Rosenthal's potential Φ : $\times_i S_i \rightarrow \mathbb{R}$ is given by

$$
\Phi(\mathbf{s}) = \sum_{e \in E} \sum_{k=1}^{X_e(\mathbf{s})} c_e(k).
$$

We have seen that PNEs are local minima of Rosenthal's potential (w.r.t the unilateral deviation neighbourhood). Do some local minima have better social cost than others?

For bounding the PoS, we need to do something else than just use the inequalities defining a PNE.

For congestion games $(N, E, (S_i), (c_e))$, recall that Rosenthal's potential Φ : $\times_i S_i \rightarrow \mathbb{R}$ is given by

$$
\Phi(\mathbf{s}) = \sum_{e \in E} \sum_{k=1}^{X_e(\mathbf{s})} c_e(k).
$$

We have seen that PNEs are local minima of Rosenthal's potential (w.r.t the unilateral deviation neighbourhood). Do some local minima have better social cost than others?

Informal "rule of thumb" (not true in general):

For bounding the PoS, we need to do something else than just use the inequalities defining a PNE.

For congestion games $(N, E, (S_i), (c_e))$, recall that Rosenthal's potential Φ : $\times_i S_i \rightarrow \mathbb{R}$ is given by

$$
\Phi(\mathbf{s}) = \sum_{e \in E} \sum_{k=1}^{X_e(\mathbf{s})} c_e(k).
$$

We have seen that PNEs are local minima of Rosenthal's potential (w.r.t the unilateral deviation neighbourhood). Do some local minima have better social cost than others?

Informal "rule of thumb" (not true in general): PNE *s* that is a global minimizer of Rosenthal's potential has better ${\rm \bf s}$ ocial cost $C(\bm{s}) = \sum_i C_i(\bm{s}) = \sum_{e \in E} x_e c_e(x_e).$

For bounding the PoS, we need to do something else than just use the inequalities defining a PNE.

For congestion games $(N, E, (S_i), (c_e))$, recall that Rosenthal's potential Φ : $\times_i S_i \rightarrow \mathbb{R}$ is given by

$$
\Phi(\mathbf{S}) = \sum_{e \in E} \sum_{k=1}^{X_e(\mathbf{S})} c_e(k).
$$

We have seen that PNEs are local minima of Rosenthal's potential (w.r.t the unilateral deviation neighbourhood). Do some local minima have better social cost than others?

Informal "rule of thumb" (not true in general):

PNE *s* that is a global minimizer of Rosenthal's potential has better ${\rm \bf s}$ ocial cost $C(\bm{s}) = \sum_i C_i(\bm{s}) = \sum_{e \in E} x_e c_e(x_e).$

Strategy profile s is global minimizer if $\Phi(s) \leq \Phi(t)$ for all $t \in \times_i \mathcal{S}_i.$

Potential function approach for bounding PoS

Theorem

Let Γ *be congestion game and C* : ×*i*S*ⁱ* → R>⁰ *social cost function given by* $C(s) = \sum_i C_i(s)$.

Let Γ *be congestion game and C* : ×*i*S*ⁱ* → R>⁰ *social cost function* g iven by $C(\bm{s}) = \sum_i C_i(\bm{s})$. Let $\alpha, \beta > 0$ be such that Rosenthal's *potential* Φ *satisfies*

$$
C(t)/\alpha \leq \Phi(t) \leq \beta C(t)
$$

for every t \in \times *_iS*^{*j*}.

Let Γ *be congestion game and C* : ×*i*S*ⁱ* → R>⁰ *social cost function* g iven by $C(\bm{s}) = \sum_i C_i(\bm{s})$. Let $\alpha, \beta > 0$ be such that Rosenthal's *potential* Φ *satisfies*

$$
C(t)/\alpha \leq \Phi(t) \leq \beta C(t)
$$

for every t $\in \times_i S_i$ *. Then PoS*(Γ) $\leq \alpha \beta$ *.*
Let Γ *be congestion game and C* : ×*i*S*ⁱ* → R>⁰ *social cost function* g iven by $C(\bm{s}) = \sum_i C_i(\bm{s})$. Let $\alpha, \beta > 0$ be such that Rosenthal's *potential* Φ *satisfies*

$$
C(t)/\alpha \leq \Phi(t) \leq \beta C(t)
$$

for every t $\in \times_i S_i$ *. Then PoS*(Γ) $\leq \alpha \beta$ *.*

Proof: Let *s* be a global minimizer of Φ.

Let Γ *be congestion game and C* : ×*i*S*ⁱ* → R>⁰ *social cost function* g iven by $C(\bm{s}) = \sum_i C_i(\bm{s})$. Let $\alpha, \beta > 0$ be such that Rosenthal's *potential* Φ *satisfies*

$$
C(t)/\alpha \leq \Phi(t) \leq \beta C(t)
$$

for every t $\in \times_i S_i$ *. Then PoS*(Γ) $\leq \alpha \beta$ *.*

Proof: Let *s* be a global minimizer of Φ. Note that *s* is then a pure Nash equilibrium.

Let Γ *be congestion game and C* : ×*i*S*ⁱ* → R>⁰ *social cost function* g iven by $C(\bm{s}) = \sum_i C_i(\bm{s})$. Let $\alpha, \beta > 0$ be such that Rosenthal's *potential* Φ *satisfies*

$$
C(t)/\alpha \leq \Phi(t) \leq \beta C(t)
$$

for every t $\in \times_i S_i$ *. Then PoS*(Γ) $\leq \alpha \beta$ *.*

Proof: Let *s* be a global minimizer of Φ. Note that *s* is then a pure Nash equilibrium. Let *s* [∗] be social optimum.

Let Γ *be congestion game and C* : ×*i*S*ⁱ* → R>⁰ *social cost function* g iven by $C(\bm{s}) = \sum_i C_i(\bm{s})$. Let $\alpha, \beta > 0$ be such that Rosenthal's *potential* Φ *satisfies*

$$
C(t)/\alpha \leq \Phi(t) \leq \beta C(t)
$$

for every t $\in \times_i S_i$ *. Then PoS*(Γ) $\leq \alpha \beta$ *.*

Proof: Let *s* be a global minimizer of Φ. Note that *s* is then a pure Nash equilibrium. Let *s* [∗] be social optimum. We have

 $C(s) \leq \alpha \Phi(s)$

Let Γ *be congestion game and C* : ×*i*S*ⁱ* → R>⁰ *social cost function* g iven by $C(\bm{s}) = \sum_i C_i(\bm{s})$. Let $\alpha, \beta > 0$ be such that Rosenthal's *potential* Φ *satisfies*

$$
C(t)/\alpha \leq \Phi(t) \leq \beta C(t)
$$

for every t $\in \times_i S_i$ *. Then PoS*(Γ) $\leq \alpha \beta$ *.*

Proof: Let *s* be a global minimizer of Φ. Note that *s* is then a pure Nash equilibrium. Let *s* [∗] be social optimum. We have

$$
C(s) \leq \alpha \Phi(s) \leq \alpha \Phi(s^*)
$$

Let Γ *be congestion game and C* : ×*i*S*ⁱ* → R>⁰ *social cost function* g iven by $C(\bm{s}) = \sum_i C_i(\bm{s})$. Let $\alpha, \beta > 0$ be such that Rosenthal's *potential* Φ *satisfies*

$$
C(t)/\alpha \leq \Phi(t) \leq \beta C(t)
$$

for every t $\in \times_i S_i$ *. Then PoS*(Γ) $\leq \alpha \beta$ *.*

Proof: Let *s* be a global minimizer of Φ. Note that *s* is then a pure Nash equilibrium. Let *s* [∗] be social optimum. We have

$$
C(s) \leq \alpha \Phi(s) \leq \alpha \Phi(s^*) \leq \alpha \beta C(s^*).
$$

Theorem

The price of stability of affine congestion games is at most 2.

Theorem

The price of stability of affine congestion games is at most 2.

Proof: Let $t \in x_iS_i$ be a strategy profile.

Theorem

The price of stability of affine congestion games is at most 2.

Theorem

The price of stability of affine congestion games is at most 2.

$$
\Phi(t) = \sum_{e \in E} \sum_{k=1}^{x_e} c_e(k)
$$

Theorem

The price of stability of affine congestion games is at most 2.

$$
\Phi(t) = \sum_{e \in E} \sum_{k=1}^{x_e} c_e(k) = \sum_{e \in E} \sum_{k=1}^{x_e} k
$$

Theorem

The price of stability of affine congestion games is at most 2.

$$
\Phi(t)=\sum_{e\in E}\sum_{k=1}^{x_e}c_e(k)=\sum_{e\in E}\sum_{k=1}^{x_e}k=\sum_{e\in E}\frac{1}{2}x_e(x_e+1)
$$

Theorem

The price of stability of affine congestion games is at most 2.

$$
\Phi(t) = \sum_{e \in E} \sum_{k=1}^{x_e} c_e(k) = \sum_{e \in E} \sum_{k=1}^{x_e} k = \sum_{e \in E} \frac{1}{2} x_e(x_e + 1) = \frac{1}{2} C(t) + \frac{1}{2} \sum_{e \in E} x_e
$$

Theorem

The price of stability of affine congestion games is at most 2.

$$
\Phi(t) = \sum_{e \in E} \sum_{k=1}^{x_e} c_e(k) = \sum_{e \in E} \sum_{k=1}^{x_e} k = \sum_{e \in E} \frac{1}{2} x_e(x_e + 1)
$$

= $\frac{1}{2} C(t) + \frac{1}{2} \sum_{e \in E} x_e$
 $\leq \frac{1}{2} C(t) + \frac{1}{2} C(t).$

Theorem

The price of stability of affine congestion games is at most 2.

Proof: Let $t \in \times_i S_i$ be a strategy profile. Assume again (w.l.o.g.) that $c_e(x) = x$ and write $x_e = x_e(t)$. Then

$$
\Phi(t) = \sum_{e \in E} \sum_{k=1}^{x_e} c_e(k) = \sum_{e \in E} \sum_{k=1}^{x_e} k = \sum_{e \in E} \frac{1}{2} x_e(x_e + 1) = \frac{1}{2} C(t) + \frac{1}{2} \sum_{e \in E} x_e \le \frac{1}{2} C(t) + \frac{1}{2} C(t).
$$

This implies that $\frac{1}{2}C(t) \leq \Phi(t) \leq C(t)$.

Theorem

The price of stability of affine congestion games is at most 2.

Proof: Let $t \in x_iS_i$ be a strategy profile. Assume again (w.l.o.g.) that $c_e(x) = x$ and write $x_e = x_e(t)$. Then

$$
\Phi(t) = \sum_{e \in E} \sum_{k=1}^{x_e} c_e(k) = \sum_{e \in E} \sum_{k=1}^{x_e} k = \sum_{e \in E} \frac{1}{2} x_e(x_e + 1)
$$

= $\frac{1}{2} C(t) + \frac{1}{2} \sum_{e \in E} x_e$
 $\leq \frac{1}{2} C(t) + \frac{1}{2} C(t).$

This implies that $\frac{1}{2}C(t) \leq \Phi(t) \leq C(t)$.

Remark

Can be improved to tight bound of 1 $+$ 1/ √ $3 \approx 1.577.$

How to get tight PoS bound?

How to get tight PoS bound? Combine inequalities defining PNE and global minimizer inequality.

How to get tight PoS bound? Combine inequalities defining PNE and global minimizer inequality.

Let *s* be global minimizer Φ and let *s* [∗] be social optimum.

How to get tight PoS bound? Combine inequalities defining PNE and global minimizer inequality.

Let *s* be global minimizer Φ and let *s* [∗] be social optimum.

PNE inequalities

$$
\sum_{e \in E} x_e^2 = \sum_i C_i(s) \leq \sum_i C_i(s_i^*, s_{-i}) \leq \sum_{e \in E} x_e^*(x_e + 1)
$$

Global minimizer inequality

$$
\frac{1}{2}\sum_{e\in E}x_e(x_e+1)=\Phi(s)\leq \Phi(s^*)=\frac{1}{2}\sum_{e\in E}x^*_e(x^*_e+1)
$$

How to get tight PoS bound? Combine inequalities defining PNE and global minimizer inequality.

Let *s* be global minimizer Φ and let *s* [∗] be social optimum.

PNE inequalities

$$
\sum_{e \in E} x_e^2 = \sum_i C_i(s) \leq \sum_i C_i(s_i^*, s_{-i}) \leq \sum_{e \in E} x_e^*(x_e + 1)
$$

Global minimizer inequality

$$
\sum_{e \in E} x_e^2 = 2\Phi(s) \leq 2\Phi(s^*) = \sum_{e \in E} x_e^*(x_e^* + 1) - x_e
$$

How to get tight PoS bound? Combine inequalities defining PNE and global minimizer inequality.

Let *s* be global minimizer Φ and let *s* [∗] be social optimum.

PNE inequalities

$$
\gamma \times \left[\sum_{e \in E} x_e^2 = \sum_i C_i(s) \leq \sum_i C_i(s_i^*, s_{-i}) \leq \sum_{e \in E} x_e^*(x_e + 1)\right]
$$

Global minimizer inequality

$$
(1-\gamma)\times\left[\sum_{e\in E}x_e^2=2\Phi(s)\leq 2\Phi(s^*)=\sum_{e\in E}x_e^*(x_e^*+1)-x_e\right]
$$

How to get tight PoS bound? Combine inequalities defining PNE and global minimizer inequality.

Let *s* be global minimizer Φ and let *s* [∗] be social optimum.

PNE inequalities

$$
\gamma \times \left[\sum_{e \in E} x_e^2 = \sum_i C_i(s) \leq \sum_i C_i(s_i^*, s_{-i}) \leq \sum_{e \in E} x_e^*(x_e + 1)\right]
$$

Global minimizer inequality

$$
(1-\gamma)\times\left[\sum_{e\in E}x_e^2=2\Phi(s)\leq 2\Phi(s^*)=\sum_{e\in E}x_e^*(x_e^*+1)-x_e\right]
$$

How to get tight PoS bound? Combine inequalities defining PNE and global minimizer inequality.

Let *s* be global minimizer Φ and let *s* [∗] be social optimum.

PNE inequalities

$$
\gamma \times \left[\sum_{e \in E} x_e^2 = \sum_i C_i(s) \leq \sum_i C_i(s_i^*, s_{-i}) \leq \sum_{e \in E} x_e^*(x_e + 1) \right]
$$

Global minimizer inequality

$$
(1-\gamma)\times\left[\sum_{e\in E}x_e^2=2\Phi(s)\leq 2\Phi(s^*)=\sum_{e\in E}x_e^*(x_e^*+1)-x_e\right]
$$

$$
C(s) \leq \sum_{e \in E} \gamma x_e^*(x_e+1) + \sum_{e \in E} (1-\gamma)[x_e^*(x_e^*+1) - x_e]
$$

How to get tight PoS bound? Combine inequalities defining PNE and global minimizer inequality.

Let *s* be global minimizer Φ and let *s* [∗] be social optimum.

PNE inequalities

$$
\gamma \times \left[\sum_{e \in E} x_e^2 = \sum_i C_i(s) \leq \sum_i C_i(s_i^*, s_{-i}) \leq \sum_{e \in E} x_e^*(x_e + 1)\right]
$$

Global minimizer inequality

$$
(1-\gamma)\times\left[\sum_{e\in E}x_e^2=2\Phi(s)\leq 2\Phi(s^*)=\sum_{e\in E}x_e^*(x_e^*+1)-x_e\right]
$$

$$
C(s) \leq \sum_{e \in E} \gamma x_e^*(x_e + 1) + \sum_{e \in E} (1 - \gamma)[x_e^*(x_e^* + 1) - x_e] \leq \lambda(\gamma)C(s^*) + \mu(\gamma)C(s)
$$

How to get tight PoS bound? Combine inequalities defining PNE and global minimizer inequality.

Let *s* be global minimizer Φ and let *s* [∗] be social optimum.

PNE inequalities

$$
\gamma \times \left[\sum_{e \in E} x_e^2 = \sum_i C_i(s) \leq \sum_i C_i(s_i^*, s_{-i}) \leq \sum_{e \in E} x_e^*(x_e + 1)\right]
$$

Global minimizer inequality

$$
(1-\gamma)\times\left[\sum_{e\in E}x_e^2=2\Phi(s)\leq 2\Phi(s^*)=\sum_{e\in E}x_e^*(x_e^*+1)-x_e\right]
$$

$$
C(s) \leq \sum_{e \in E} \gamma x_e^*(x_e + 1) + \sum_{e \in E} (1 - \gamma)[x_e^*(x_e^* + 1) - x_e] \leq \lambda(\gamma)C(s^*) + \mu(\gamma)C(s)
$$
 and optimize over γ ...

Overview for affine congestion games

Theorem

Price of Anarchy for affine congestion games is 5/2*.*

- Relatively simple lower bound construction showing tightness.
- Proof extends to other equilibrium types in hierarchy by means of (λ, μ) -smoothness technique.

Theorem

Price of Stability for affine congestion games is 1 + 1/ √ $3 \approx$ 1.577.

- Tightness examples are more involved.
- Proof does not extend to other equilibrium types in hierarchy.

Suppose that $c_e(x) = a_e x + b_e$ with $a_e, b_e \in \mathbb{N}$. (Same works for Q.) \bullet We write $a = a_e, b = b_e$.

Suppose that $c_e(x) = a_e x + b_e$ with $a_e, b_e \in \mathbb{N}$. (Same works for Q.) • We write $a = a_e$, $b = b_e$.

If player *i* uses *e* in some of its strategies, replace it by set $K_i(e) = \{f_1, \ldots, f_a, g_1^i, \ldots, g_b^i\}.$

Suppose that $c_e(x) = a_e x + b_e$ with $a_e, b_e \in \mathbb{N}$. (Same works for Q.) • We write $a = a_e$, $b = b_e$.

If player *i* uses *e* in some of its strategies, replace it by set $K_i(e) = \{f_1, \ldots, f_a, g_1^i, \ldots, g_b^i\}.$

Suppose that $c_e(x) = a_e x + b_e$ with $a_e, b_e \in \mathbb{N}$. (Same works for Q.) \bullet We write $a = a_e, b = b_e$.

If player *i* uses *e* in some of its strategies, replace it by set $K_i(e) = \{f_1, \ldots, f_a, g_1^i, \ldots, g_b^i\}.$

Cost incurred on resources $K_i(e)$ *is precisely* $ax_e + b$ *if load is* x_e *.* 25 / 25