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Congestion games

Congestion game Γ:
Set of players N = {1, . . . ,n}.

Set of resources E = {e1, . . . ,em}.
Strategy set Si ⊆ 2E for all i ∈ N.

(s, t)-paths in directed graph.

Cost function ce : R≥0 → R for e ∈ E .

Player places one unit of unsplittable load on a strategy with goal of
minimizing her cost.

For strategy profile s = (s1, . . . , sn) ∈ S1 × S2 × · · · × Sn = ×iSi ,

Ci(s) =
∑
e∈si

ce(xe),

where xe = xe(s) is the number of players using e ∈ E .
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Pure Nash equilibrium

We will focus on pure Nash equilibria in congestion games.

Definition (Pure Nash equilibrium (PNE))
A strategy profile s ∈ ×iSi is a pure Nash equilibrium if for every i ∈ N,

Ci(s1, . . . , si , . . . , sn) ≤ Ci(s1, . . . , s′i , . . . , sn)

for every s′i ∈ Si .

In short, Ci(s) ≤ Ci(s′i , s−i).

From Lecture 2:
Computing PNE is PLS-complete problem in general.
PNE can be computed efficiently in special case of symmetric
network congestion games.
Better response dynamics converge rapidly in singleton
congestion games.
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Inefficiency of equilibria
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Inefficiency of PNE

Let Γ = (N, (Si), (Ci)) be a finite game and

C : ×iSi → R>0

a social cost objective assigning cost to every strategy profile.

Unless specified otherwise, we consider total player cost

C(s) =
∑
i∈N

Ci(s).

Definition (Social optimum)
A social optimum s∗ ∈ ×iSi is a strategy profile that minimizes C, i.e.,

C(s∗) = min{C(s) : s ∈ ×iSi}.

How close is social cost of (pure) Nash equilibrium to that of a social
optimum? Multiple answers, as equilibrium is in general not unique.
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Inefficiency measures

Definition (Price of Anarchy/Stability)
Price of Anarchy (PoA) and Price of Stability (PoS) of finite game Γ are
given by

PoA(Γ) =
maxs∈PNE C(s)

mint∈×iSi C(t)
and PoS(Γ) =

mins∈PNE C(s)

mint∈×iSi C(t)
,

where PNE = PNE(Γ) is the set of pure Nash equilibria of Γ. For a
(possibly infinite) class of games G, we have

PoA(G) = supΓ∈G PoA(Γ) and PoS(G) = supΓ∈G PoS(Γ).

PoA measures worst-case inefficiency due to strategic behaviour.
PoS measures minimal inefficiency due to strategic behaviour.

We always have
PoS(Γ) ≤ PoA(Γ).
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Inefficiency in congestion games

Both PoA and PoS can be unbounded already in simple games.

Unbounded in number of players n = |N|.
Consider the following game Γ.

Are there classes of games where PoA/PoS is constant (for any n)?
Yes, if we make assumptions on the cost functions.
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e1

ce1(x) = 1 + ε

1

e2

2

...

n

ce2(x) =

{
0 x < n
1 x = n.
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Polynomial cost functions

Polynomial cost functions are of the form

ce(y) =
d∑

j=0

aj,eyd

with aj,e ≥ 0 for all j = 0, . . . ,d and e ∈ E .

Affine when d = 1, i.e.,

ce(y) = ae,1y + ae,0.

Quadratic when d = 2, i.e.,

ce(y) = ae,2y2 + ae,1y + ae,0.

Etc...
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PoA of affine congestion game Γ

PoA(Γ) =
maxs∈PNE C(s)

mint∈×iSi C(t)
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PoA for affine congestion games

Theorem (Christodoulou and Koutsoupias (2005))
Let G be the set of all congestion games with cost functions of the form
ce(y) = aey + be where ae,be ≥ 0. It holds that

PoA(G) =
5
2
.

(Asymptotic) tightness holds even for the special class of
symmetric network congestion games.

De Keijzer et al. (2015)
Does not hold for, e.g., symmetric singleton congestion games.

Tight bound of 4/3 is known for this class.

Remark
For polynomials of degree at most d , a tight bound is known as well. It
grows roughly like dd(1−o(1)).
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Smoothness technique

Let Γ = (N, (Si)i∈N , (Ci)i∈N) be a finite (cost minimization) game with
social cost C(s) =

∑
i∈N Ci(s).

Definition
Γ is called (λ, µ)-smooth if for any two strategy profiles s, s∗ ∈ ×iSi ,∑

i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s). (1)

Theorem (Roughgarden, 2009)

If Γ is (λ, µ)-smooth and µ < 1, then PoA(Γ) ≤ λ
1−µ .

Proof: Let s be a pure Nash equilibrium and s∗ a social optimum. Then

C(s) =
∑
i∈N

Ci(si , s−i) ≤
∑
i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s).

Rearranging terms and exploiting that µ < 1 proves the claim.

11 / 25



Smoothness technique

Let Γ = (N, (Si)i∈N , (Ci)i∈N) be a finite (cost minimization) game with
social cost C(s) =

∑
i∈N Ci(s).

Definition
Γ is called (λ, µ)-smooth if for any two strategy profiles s, s∗ ∈ ×iSi ,

∑
i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s). (1)

Theorem (Roughgarden, 2009)

If Γ is (λ, µ)-smooth and µ < 1, then PoA(Γ) ≤ λ
1−µ .

Proof: Let s be a pure Nash equilibrium and s∗ a social optimum. Then

C(s) =
∑
i∈N

Ci(si , s−i) ≤
∑
i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s).

Rearranging terms and exploiting that µ < 1 proves the claim.

11 / 25



Smoothness technique

Let Γ = (N, (Si)i∈N , (Ci)i∈N) be a finite (cost minimization) game with
social cost C(s) =

∑
i∈N Ci(s).

Definition
Γ is called (λ, µ)-smooth if for any two strategy profiles s, s∗ ∈ ×iSi ,∑

i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s). (1)

Theorem (Roughgarden, 2009)

If Γ is (λ, µ)-smooth and µ < 1, then PoA(Γ) ≤ λ
1−µ .

Proof: Let s be a pure Nash equilibrium and s∗ a social optimum. Then

C(s) =
∑
i∈N

Ci(si , s−i) ≤
∑
i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s).

Rearranging terms and exploiting that µ < 1 proves the claim.

11 / 25



Smoothness technique

Let Γ = (N, (Si)i∈N , (Ci)i∈N) be a finite (cost minimization) game with
social cost C(s) =

∑
i∈N Ci(s).

Definition
Γ is called (λ, µ)-smooth if for any two strategy profiles s, s∗ ∈ ×iSi ,∑

i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s). (1)

Theorem (Roughgarden, 2009)

If Γ is (λ, µ)-smooth and µ < 1, then PoA(Γ) ≤ λ
1−µ .

Proof: Let s be a pure Nash equilibrium and s∗ a social optimum. Then

C(s) =
∑
i∈N

Ci(si , s−i) ≤
∑
i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s).

Rearranging terms and exploiting that µ < 1 proves the claim.

11 / 25



Smoothness technique

Let Γ = (N, (Si)i∈N , (Ci)i∈N) be a finite (cost minimization) game with
social cost C(s) =

∑
i∈N Ci(s).

Definition
Γ is called (λ, µ)-smooth if for any two strategy profiles s, s∗ ∈ ×iSi ,∑

i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s). (1)

Theorem (Roughgarden, 2009)

If Γ is (λ, µ)-smooth and µ < 1, then PoA(Γ) ≤ λ
1−µ .

Proof: Let s be a pure Nash equilibrium and s∗ a social optimum.

Then

C(s) =
∑
i∈N

Ci(si , s−i) ≤
∑
i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s).

Rearranging terms and exploiting that µ < 1 proves the claim.

11 / 25



Smoothness technique

Let Γ = (N, (Si)i∈N , (Ci)i∈N) be a finite (cost minimization) game with
social cost C(s) =

∑
i∈N Ci(s).

Definition
Γ is called (λ, µ)-smooth if for any two strategy profiles s, s∗ ∈ ×iSi ,∑

i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s). (1)

Theorem (Roughgarden, 2009)

If Γ is (λ, µ)-smooth and µ < 1, then PoA(Γ) ≤ λ
1−µ .

Proof: Let s be a pure Nash equilibrium and s∗ a social optimum. Then

C(s) =
∑
i∈N

Ci(si , s−i) ≤
∑
i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s).

Rearranging terms and exploiting that µ < 1 proves the claim.

11 / 25



Smoothness technique

Let Γ = (N, (Si)i∈N , (Ci)i∈N) be a finite (cost minimization) game with
social cost C(s) =

∑
i∈N Ci(s).

Definition
Γ is called (λ, µ)-smooth if for any two strategy profiles s, s∗ ∈ ×iSi ,∑

i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s). (1)

Theorem (Roughgarden, 2009)

If Γ is (λ, µ)-smooth and µ < 1, then PoA(Γ) ≤ λ
1−µ .

Proof: Let s be a pure Nash equilibrium and s∗ a social optimum. Then

C(s) =
∑
i∈N

Ci(si , s−i) ≤
∑
i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s).

Rearranging terms and exploiting that µ < 1 proves the claim.
11 / 25



Smoothness technique (cont’d)

Theorem (Roughgarden, 2009)

If Γ is (λ, µ)-smooth and µ < 1, then PoA(Γ) ≤ λ
1−µ .

Remember that we defined the PoA for pure Nash equilibria.

Definition

The robust price of anarchy of a strategic game Γ is defined as

RPoA(Γ) = inf

{
λ

1− µ
: Γ is (λ, µ)-smooth with µ < 1

}
.

For a class G of games, we define

RPoA(G) = sup {RPoA(Γ) : Γ ∈ G} .

RPoA automatically extends to other equilibria types in hierarchy.
Mixed, correlated and coarse correlated equilibria.
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PoA for affine congestion games (cont’d)

Theorem
The price of anarchy of affine congestion games is 5

2 .

Proof: Let s be PNE and s∗ a social optimum. We will show that∑
i∈N

Ci (s∗i , s−i ) ≤
5
3

C(s∗) +
1
3

C(s),

i.e., that the game is (5/3,1/3)-smooth.
Assume (w.l.o.g.) that ce(x) = x for every e ∈ E .
Write xe = xe(s) and x∗e = xe(s∗).
C(s) =

∑
i∈N Ci (s)

≤
∑

i∈N Ci (s∗i , s−i ) (using PNE definition)
=
∑

i∈N
∑

e∈s∗
i

ce(xe(s∗i , s−i ))

=
∑

i∈N
∑

e∈s∗
i

xe(s∗i , s−i ) (ce(x) = x)

≤
∑

i∈N
∑

e∈s∗
i

xe + 1
=
∑

e∈E
∑

i:e∈s∗
i

xe + 1 (interchanging summation)
=
∑

e∈E x∗e (xe + 1)
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For t ∈ ×iSi , we have

C(t) =
∑

i

Ci (t) =
∑
e∈E

yece(ye) with ye = ye(t)

With the assumption ce(x) = x for all e ∈ E , it suffices to show that∑
e∈E

x∗e (xe + 1) ≤ 5
3

∑
e∈E

(x∗e )2 +
1
3

∑
e∈E

(xe)2.

Fact
Let α and β be two non-negative integers. Then

α(β + 1) ≤ 5
3
α2 +

1
3
β2.

Tightness holds for (α, β) = (1,1) and (α, β) = (1,2).

By applying this to every resource e ∈ E , we get

C(s) ≤
∑
e∈E

x∗e (xe + 1) ≤ 5
3

∑
e∈E

(x∗e )2 +
1
3

∑
e∈E

(xe)2 =
5
3

C(s∗) +
1
3

C(s).
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PoA lower bound for affine congestion games

Congestion game instance
N = {1,2,3}.

E = E1 ∪ E2, where E1 = {e1,e2,e3} and E2 = {h1,h2,h3}.
Cost function ce(x) = x for every e ∈ E .
Each player i has two strategies (modulo 3):

Si = {{ei ,hi}, {ei−1,ei+1,hi+1}}.

Social optimum s∗

Every player i plays {ei ,hi}, which gives C(s∗) = 6.

Pure Nash equilibrium s
Every player i plays {ei−1,ei+1,hi+1}, which gives C(s) = 15.
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Extension to other equilibrium types in hierarchy

Definition
Γ is called (λ, µ)-smooth if for any two strategy profiles s, s∗ ∈ ×iSi ,∑

i∈N

Ci(s∗i , s−i) ≤ λC(s∗) + µC(s). (2)

Remember that PNE ⊆ MNE ⊆ CE ⊆ CCE .
Pure, mixed, correlated and coarse correlated equilibria.

Definition (PoA, general)
For EQ ∈ {PNE,MNE,CE,CCE}, we define

PoAEQ(Γ) =
maxσ∈EQ Es∼σ [C(s)]

mint∈×iSi C(t)
where for s ∈ ×iSi , one has Es∼σ [Ci(s)] =

∑
s∈×iSi

σ(s)Ci(s).

Theorem (Extension)
If the game Γ is (λ, µ)-smooth, then RPoAEQ(Γ) ≤ λ/(1− µ).
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Suffices to show extension theorem for coarse correlated equilibria.

Definition (Coarse correlated equilibrium (CCE))
A distribution σ on ×iSi is a coarse correlated equilibrium if for every
i ∈ N, and every unilateral deviation s′i ∈ Si , it holds that

Es∼σ [Ci(s)] ≤ Es∼σ
[
Ci(s′i , s−i)

]
.

Proof (extension theorem): Let s be CCE and s∗ social optimum. Then

Es∼σ [C(s)] = Es∼σ

[∑
i

Ci (s)

]
=
∑

i

Es∼σ [Ci (s)] (lin. of expectation)

≤
∑

i

Es∼σ [Ci (s∗i , s−i )] (CCE definition)

= Es∼σ

[∑
i

Ci (s∗i , s−i )

]
≤ Es∼σ [λC(s∗) + µC(s)] (smoothness)

= λC(s∗) + µ · Es∼σ [C(s)]
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Summary

Theorem
Price of Anarchy of affine congestion games is at most 5/2 and this
bound is tight.

Also holds for other equilibrium types in hierarchy.
Extendability is proved using the smoothness framework.

Note that smoothness framework (and extension theorem) apply to
finite games in general, and not only congestion games.

Remark
The smoothness framework cannot always be applied. For example, a
tight bound on the Price of Anarchy of 4/3 is known for class of
symmetric singleton congestion games, but this bound does not
extend to more general equilibrium types.

Same is true for Price of Stability bounds (up next).
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Price of Stability for affine congestion game Γ

PoS(Γ) =
mins∈PNE C(s)

mint∈×iSi C(t)

19 / 25



Some intuition

For bounding the PoS, we need to do something else than just use the
inequalities defining a PNE.

For congestion games (N,E , (Si), (ce)), recall that Rosenthal’s
potential Φ : ×iSi → R is given by

Φ(s) =
∑

e∈E
∑xe(s)

k=1 ce(k).

We have seen that PNEs are local minima of Rosenthal’s potential
(w.r.t the unilateral deviation neighbourhood). Do some local minima

have better social cost than others?

Informal “rule of thumb" (not true in general):
PNE s that is a global minimizer of Rosenthal’s potential has better
social cost C(s) =

∑
i Ci(s) =

∑
e∈E xece(xe).

Strategy profile s is global minimizer if Φ(s) ≤ Φ(t) for all t ∈ ×iSi .
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Potential function approach for bounding PoS

Theorem
Let Γ be congestion game and C : ×iSi → R>0 social cost function
given by C(s) =

∑
i Ci(s).

Let α, β > 0 be such that Rosenthal’s
potential Φ satisfies

C(t)/α ≤ Φ(t) ≤ βC(t)

for every t ∈ ×iSi . Then PoS(Γ) ≤ αβ.

Proof: Let s be a global minimizer of Φ. Note that s is then a pure
Nash equilibrium. Let s∗ be social optimum. We have

C(s) ≤ αΦ(s) ≤ αΦ(s∗) ≤ αβC(s∗).

21 / 25



Potential function approach for bounding PoS

Theorem
Let Γ be congestion game and C : ×iSi → R>0 social cost function
given by C(s) =

∑
i Ci(s). Let α, β > 0 be such that Rosenthal’s

potential Φ satisfies

C(t)/α ≤ Φ(t) ≤ βC(t)

for every t ∈ ×iSi .

Then PoS(Γ) ≤ αβ.

Proof: Let s be a global minimizer of Φ. Note that s is then a pure
Nash equilibrium. Let s∗ be social optimum. We have

C(s) ≤ αΦ(s) ≤ αΦ(s∗) ≤ αβC(s∗).

21 / 25



Potential function approach for bounding PoS

Theorem
Let Γ be congestion game and C : ×iSi → R>0 social cost function
given by C(s) =

∑
i Ci(s). Let α, β > 0 be such that Rosenthal’s

potential Φ satisfies

C(t)/α ≤ Φ(t) ≤ βC(t)

for every t ∈ ×iSi . Then PoS(Γ) ≤ αβ.

Proof: Let s be a global minimizer of Φ. Note that s is then a pure
Nash equilibrium. Let s∗ be social optimum. We have

C(s) ≤ αΦ(s) ≤ αΦ(s∗) ≤ αβC(s∗).

21 / 25



Potential function approach for bounding PoS

Theorem
Let Γ be congestion game and C : ×iSi → R>0 social cost function
given by C(s) =

∑
i Ci(s). Let α, β > 0 be such that Rosenthal’s

potential Φ satisfies

C(t)/α ≤ Φ(t) ≤ βC(t)

for every t ∈ ×iSi . Then PoS(Γ) ≤ αβ.

Proof: Let s be a global minimizer of Φ.

Note that s is then a pure
Nash equilibrium. Let s∗ be social optimum. We have

C(s) ≤ αΦ(s) ≤ αΦ(s∗) ≤ αβC(s∗).

21 / 25



Potential function approach for bounding PoS

Theorem
Let Γ be congestion game and C : ×iSi → R>0 social cost function
given by C(s) =

∑
i Ci(s). Let α, β > 0 be such that Rosenthal’s

potential Φ satisfies

C(t)/α ≤ Φ(t) ≤ βC(t)

for every t ∈ ×iSi . Then PoS(Γ) ≤ αβ.

Proof: Let s be a global minimizer of Φ. Note that s is then a pure
Nash equilibrium.

Let s∗ be social optimum. We have

C(s) ≤ αΦ(s) ≤ αΦ(s∗) ≤ αβC(s∗).

21 / 25



Potential function approach for bounding PoS

Theorem
Let Γ be congestion game and C : ×iSi → R>0 social cost function
given by C(s) =

∑
i Ci(s). Let α, β > 0 be such that Rosenthal’s

potential Φ satisfies

C(t)/α ≤ Φ(t) ≤ βC(t)

for every t ∈ ×iSi . Then PoS(Γ) ≤ αβ.

Proof: Let s be a global minimizer of Φ. Note that s is then a pure
Nash equilibrium. Let s∗ be social optimum.

We have

C(s) ≤ αΦ(s) ≤ αΦ(s∗) ≤ αβC(s∗).

21 / 25



Potential function approach for bounding PoS

Theorem
Let Γ be congestion game and C : ×iSi → R>0 social cost function
given by C(s) =

∑
i Ci(s). Let α, β > 0 be such that Rosenthal’s

potential Φ satisfies

C(t)/α ≤ Φ(t) ≤ βC(t)

for every t ∈ ×iSi . Then PoS(Γ) ≤ αβ.

Proof: Let s be a global minimizer of Φ. Note that s is then a pure
Nash equilibrium. Let s∗ be social optimum. We have

C(s) ≤ αΦ(s)

≤ αΦ(s∗) ≤ αβC(s∗).

21 / 25



Potential function approach for bounding PoS

Theorem
Let Γ be congestion game and C : ×iSi → R>0 social cost function
given by C(s) =

∑
i Ci(s). Let α, β > 0 be such that Rosenthal’s

potential Φ satisfies

C(t)/α ≤ Φ(t) ≤ βC(t)

for every t ∈ ×iSi . Then PoS(Γ) ≤ αβ.

Proof: Let s be a global minimizer of Φ. Note that s is then a pure
Nash equilibrium. Let s∗ be social optimum. We have

C(s) ≤ αΦ(s) ≤ αΦ(s∗)

≤ αβC(s∗).

21 / 25



Potential function approach for bounding PoS

Theorem
Let Γ be congestion game and C : ×iSi → R>0 social cost function
given by C(s) =

∑
i Ci(s). Let α, β > 0 be such that Rosenthal’s

potential Φ satisfies

C(t)/α ≤ Φ(t) ≤ βC(t)

for every t ∈ ×iSi . Then PoS(Γ) ≤ αβ.

Proof: Let s be a global minimizer of Φ. Note that s is then a pure
Nash equilibrium. Let s∗ be social optimum. We have

C(s) ≤ αΦ(s) ≤ αΦ(s∗) ≤ αβC(s∗).

21 / 25



PoS for affine congestion games

Theorem
The price of stability of affine congestion games is at most 2.

Proof: Let t ∈ ×iSi be a strategy profile. Assume again (w.l.o.g.) that
ce(x) = x and write xe = xe(t). Then

Φ(t) =
∑
e∈E

xe∑
k=1

ce(k) =
∑
e∈E

xe∑
k=1

k =
∑
e∈E

1
2

xe(xe + 1)

=
1
2

C(t) +
1
2

∑
e∈E

xe

≤ 1
2

C(t) +
1
2

C(t).

This implies that 1
2C(t) ≤ Φ(t) ≤ C(t).

Remark
Can be improved to tight bound of 1 + 1/

√
3 ≈ 1.577.
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Tight PoS bound

How to get tight PoS bound?

Combine inequalities defining PNE and
global minimizer inequality.

Let s be global minimizer Φ and let s∗ be social optimum.

Find constants λ(γ), µ(γ) such that

C(s) ≤
∑
e∈E

γx∗e (xe + 1) +
∑
e∈E

(1− γ)[x∗e (x∗e + 1)− xe]

≤ λ(γ)C(s∗) + µ(γ)C(s) and optimize over γ...
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Overview for affine congestion games

Theorem
Price of Anarchy for affine congestion games is 5/2.

Relatively simple lower bound construction showing tightness.
Proof extends to other equilibrium types in hierarchy by means of
(λ, µ)-smoothness technique.

Theorem
Price of Stability for affine congestion games is 1 + 1/

√
3 ≈ 1.577.

Tightness examples are more involved.
Proof does not extend to other equilibrium types in hierarchy.
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About the assumption ce(x) = x

Suppose that ce(x) = aex + be with ae,be ∈ N. (Same works for Q.)
We write a = ae, b = be.

→e

fa

fa−1

...

f2

f1

g1
b

g1
b−1

...

g1
2

g1
1

g2
b

g2
b−1

... · · ·

g2
2

g2
1

gn
b

gn
b−1

...

gn
2

gn
1

If player i uses e in some of its strategies, replace it by set

Ki(e) = {f1, . . . , fa,g i
1, . . . ,g

i
b}.

Cost incurred on resources Ki(e) is precisely axe + b if load is xe.
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