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Finite game

Finite game Γ = (N, (Si)i∈N , (Ci)i∈N) consists of:

Finite set N of players.
Finite strategy set Si for every player i ∈ N.
Cost function Ci : ×jSj → R for every i ∈ N.

Matching pennies
Alice and Bob both choose side of a penny.

(a,b) denotes cost for Alice (A) and Bob (B) in given profile.
Bob

Head Tails

Alice
Head (0,1) (1,0)

Tails (1,0) (0,1)

No PNE: (Head,Head)
B−→ (Head,Tails)

A−→ (Tails,Tails)
B−→ (Tails,Head)

A−→ (Head,Head).

Game does have mixed Nash equilibrium (MNE).
Both randomize over their strategies {Head,Tails}.

Mixed strategies σA = (1/2,1/2) and σB = (1/2,1/2).
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Mixed strategies

We focus on two-player games (for sake of notation).

Players are
Row player Alice (A) with strategy set SA = {a1, . . . ,am}, and
Column player Bob (B) with strategy set SB = {b1, . . . ,bn}.

Definition (Mixed strategy)
A mixed strategy is a probability distribution over Si for i ∈ {Alice,Bob}.
The collection of all mixed strategies will be denoted by ∆i , i.e.,

∆Alice = {(x1, . . . , xm) :
∑

i xi = 1, xi ≥ 0 for i = 1, . . . ,m},
∆Bob = {(y1, . . . , yn) :

∑
j yj = 1, yj ≥ 0 for j = 1, . . . ,n}.

Interpretation: Alice plays strategy a1 with prob. x1, etc...

Example
b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Strategies of Alice and Bob are given by:
∆Alice = {(x1, x2) : x1 + x2 = 1, x1, x2 ≥ 0},
∆Bob = {(y1, y2, y3) : y1 + y2 + y3 = 1, y1, y2, y3 ≥ 0}.
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∆A(lice) = {(x1, . . . , xm) :
∑

i xi = 1, xi ≥ 0 for i = 1, . . . ,m},
∆B(ob) = {(y1, . . . , yn) :

∑
j yj = 1, yj ≥ 0 for j = 1, . . . ,n}.

For x ∈ ∆A, y ∈ ∆B, we get product distribution σx ,y : SA × SB → [0,1]
over strategy profiles,

σx ,y (ak ,b`) = xky` for k = 1, . . . ,m and ` = 1, . . . ,n.

Example (cont’d)
Distribution over strategy profiles is given by(

x1y1 x1y2 x1y3
x2y1 x2y2 x2y3

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Then expected cost Ci(σx ,y ) = Ci(x , y), of i ∈ {Alice,Bob} is

Ci(x , y) = E(ak ,b`)∼σx,y [Ci(ak ,b`)] =
∑

(ak ,b`)∈SA×SB

xky`Ci(ak ,b`)
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Matrix representation

Matrix representation of cost functions Ci : ∆A ×∆B → R for
i ∈ {Alice,Bob} given by A,B ∈ Rm×n defined as

Ak` = CA(ak ,b`) and Bk` = CB(ak ,b`) for k = 1, . . . ,m and ` = 1, . . . ,n.

Example (cont’d)

A =

(
0 1 2
3 0 1

)
and B =

(
2 0 1
0 1 4

)
.

b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Expected cost under mixed strategies x ∈ ∆A, y ∈ ∆B is then

CAlice(x , y) = xT Ay =
m∑

k=1

n∑
`=1

Ak`xk y`, CBob(x , y) = xT By =
m∑

k=1

n∑
`=1

Bk`xk y`

Short overview
Two-player game (A,B) is given by matrices A,B ∈ Rm×n, with player Alice
choosing mixed strategy x over rows, and player Bob mixed strategy y over
columns. Expected costs are given by xT Ay and xT By, respectively.
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Hierarchy of equilibrium concepts

PNE
Exists in any congestion game

MNE

Exists in any finite game, but hard to compute

CE

Computationally tractable

CCE
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Mixed Nash equilibrium (2-player case)

For two-player game (A,B), we have

CA(x , y) = xT Ay =
m∑

k=1

n∑
`=1

Ak`xk y`, CB(x , y) = xT By =
m∑

k=1

n∑
`=1

Bk`xk y`

Definition (Mixed Nash equilibrium)
Pair (x∗, y∗) ∈ ∆A ×∆B is mixed Nash equilibrium (MNE) if neither
Alice nor Bob can deviate to other mixed strategy and improve cost:

CA(x∗, y∗) ≤ CA(x ′, y∗) ∀x ′ ∈ ∆A
CB(x∗, y∗) ≤ CB(x∗, y ′) ∀y ′ ∈ ∆B

For ε > 0, pair (x∗, y∗) is ε-approximate MNE (or simply ε-MNE) if

CA(x∗, y∗) ≤ CA(x ′, y∗) + ε ∀x ′ ∈ ∆A
CB(x∗, y∗) ≤ CB(x∗, y ′) + ε ∀y ′ ∈ ∆B

Will see later that is suffices to have these conditions only for pure
strategies: One strategy is played with probability 1.
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Example
Alice has SA = {a1,a2} and SB = {b1,b2,b3}.

A =

(
2 1 2
3 3 1

)
and B =

(
2 4 2
2 0 4

)
.

Suppose that x = (0.5,0.5) and y = (0.3,0.4,0.3), then

CB(x , y) = xT By =
(
0.5 0.5

)(2 4 2
2 0 4

)0.3
0.4
0.3

 = 2.3

Is (x , y) MNE? For y ′ = (0.3,0.7,0), CB(x , y ′) = xT By ′ = 2 < 2.3.

(Row) vector xT B = (2,2,3)T gives (expected) cost for Bob per
column.

Bob assigns positive probability to b3: not optimal.
Should only give positive probability to b1,b2 (given Alice plays x).

In MNE, players only have positive probability on rows/columns that
minimize expected cost per row/column (given other’s strategy).
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Definition
Column bj is best response against x for Bob if (xT B)j = mink (xT B)k .

Row ai is best response against y for Alice if (Ay)i = mink (Ay)k .

(E.g., if xT B = (7,1,3)T , then (xT B)1 = 7, (xT B)2 = 1, (xT B)3 = 3.)
(xT B)j is expected cost for Bob in column j given Alice plays x .
(Ay)i is expected cost for Alice in row i given Bob plays y .

Definition (MNE, best response version)
Mixed strategies (x∗, y∗) form MNE if Alice and Bob only assign
positive probability to best responses. That is, pair (x∗, y∗) is MNE if

x∗i > 0 ⇒ (Ay∗)i = mink (Ay∗)k ∀i = 1, . . . ,m,
y∗j > 0 ⇒ ((x∗)T B)j = mink ((x∗)T B)k ∀j = 1, . . . ,n.

Example (cont’d)
An MNE is given by x∗ = (1,0), y∗ = (0.5,0,0.5).

(x∗)T B = (2,4,2)T . We have y∗
1 , y

∗
3 > 0 and (xT B)1, (xT B)3 are min.

Ay∗ = (2,2). We have x∗
1 > 0 and (Ay∗)1 is minimum.
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Finally, we write ek ∈ ∆A for pure strategy in which Alice plays ak ∈ SA
with probability 1.

That is,

ek
j =

{
1 if j = k
0 if j 6= k

If Alice plays ek ∈ SA, then CA(ek , y) = (ek )T Ay = (Ay)k .
Analogous definitions for Bob.

For Alice, one has ek ∈ Rm and for Bob e` ∈ Rn. We abuse notation
and do not always state the dimension of these vectors.

Definition (MNE, pure strategy version)
Mixed strategies (x∗, y∗) form MNE if

(x∗)T Ay∗ ≤ (ei)T Ay∗ i = 1, . . . ,m,
(x∗)T By∗ ≤ (x∗)T Aej j = 1, . . . ,n.

That is, players both have no improving move to pure strategy.

I.e., suffices to focus on pure strategies in definition on Slide 8.
Exercise: Prove that this definition is equivalent to that on Slide 8.
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Mixed Nash equilibrium (general)

Definition (Mixed Nash equilibrium (MNE))
A mixed strategy σi : Si → [0,1] of player i ∈ N is a probability
distribution over pure strategies in Si , i.e., coming from

∆i =
{
τ : τ(t) ≥ 0 ∀t ∈ Si and

∑
t∈Si

τ(t) = 1
}
.

A collection of mixed strategies (σi)i∈N , with σi ∈ ∆i , is a mixed Nash
equilibrium if

Ci(σ) := Es∼σ [Ci(s)] ≤ E(s−i )∼(σ−i )

[
Ci(s′i , s−i)

]
∀s′i ∈ Si . (1)

Here
σ : ×jSj → R≥0 is given by σ(t) =

∏
j σj(tj), and

σ−i : ×j 6=iSj → R≥0 is given by σ−i(t−i) =
∏

j 6=i σj(tj).
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Existence and computational complexity
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Existence (“Nobel” Prize in Economics in 1994)

Theorem (Nash’s theorem, 1950)
Any finite game Γ has a mixed Nash equilibrium.

Theorem (Brouwer’s fixed point theorem)
Let D ⊆ Rm be compact and convex, and let f : D → D be a
continuous function. Then there exists an x∗ ∈ D such that f (x∗) = x∗.
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Theorem (Brouwer’s fixed point theorem)
Let D ⊆ Rm be compact and convex, and let f : D → D be a
continuous function. Then there exists an x∗ ∈ D such that f (x∗) = x∗.

Convex means that line segments between points are included in D.

Convex

D

Not convex

D
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Theorem (Brouwer’s fixed point theorem)
Let D ⊆ Rm be compact and convex, and let f : D → D be a
continuous function. Then there exists an x∗ ∈ D such that f (x∗) = x∗.

Compact means bounded and closed.
Satisfied by sets of mixed strategies ∆i that we will be looking at.

14 / 31



Existence (“Nobel” Prize in Economics in 1994)

Theorem (Nash’s theorem, 1950)
Any finite game Γ has a mixed Nash equilibrium.

Theorem (Brouwer’s fixed point theorem)
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Brouwer’s theorem says that f has a fixed point.
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Theorem (Nash’s theorem, 1950)
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Theorem (Brouwer’s fixed point theorem)
Let D ⊆ Rm be compact and convex, and let f : D → D be a
continuous function. Then there exists an x∗ ∈ D such that f (x∗) = x∗.

Brouwer’s theorem fails if f is not continuous.

1

D = [0,1]

x

1

f (x)

0

f (x) = x
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Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.
Brouwer’s theorem then gives existence (proof is not constructive).

Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B. (Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},
∆B = {(y1, . . . , yn) :

∑
` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B, define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.

15 / 31



Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.

Brouwer’s theorem then gives existence (proof is not constructive).
Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B. (Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},
∆B = {(y1, . . . , yn) :

∑
` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B, define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.

15 / 31



Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.
Brouwer’s theorem then gives existence (proof is not constructive).

Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B. (Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},
∆B = {(y1, . . . , yn) :

∑
` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B, define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.

15 / 31



Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.
Brouwer’s theorem then gives existence (proof is not constructive).

Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B. (Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},
∆B = {(y1, . . . , yn) :

∑
` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B, define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.

15 / 31



Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.
Brouwer’s theorem then gives existence (proof is not constructive).

Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B.

(Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},
∆B = {(y1, . . . , yn) :

∑
` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B, define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.

15 / 31



Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.
Brouwer’s theorem then gives existence (proof is not constructive).

Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B. (Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},
∆B = {(y1, . . . , yn) :

∑
` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B, define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.

15 / 31



Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.
Brouwer’s theorem then gives existence (proof is not constructive).

Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B. (Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},

∆B = {(y1, . . . , yn) :
∑

` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B, define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.

15 / 31



Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.
Brouwer’s theorem then gives existence (proof is not constructive).

Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B. (Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},
∆B = {(y1, . . . , yn) :

∑
` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B, define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.

15 / 31



Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.
Brouwer’s theorem then gives existence (proof is not constructive).

Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B. (Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},
∆B = {(y1, . . . , yn) :

∑
` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B,

define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.

15 / 31



Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.
Brouwer’s theorem then gives existence (proof is not constructive).

Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B. (Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},
∆B = {(y1, . . . , yn) :

∑
` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B, define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m

RB,b`
(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.

15 / 31



Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.
Brouwer’s theorem then gives existence (proof is not constructive).

Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B. (Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},
∆B = {(y1, . . . , yn) :

∑
` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B, define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.

15 / 31



Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.
Brouwer’s theorem then gives existence (proof is not constructive).

Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B. (Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},
∆B = {(y1, . . . , yn) :

∑
` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B, define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.

15 / 31



Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.
Brouwer’s theorem then gives existence (proof is not constructive).

Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B. (Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},
∆B = {(y1, . . . , yn) :

∑
` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B, define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.

15 / 31



Proof of Nash’s theorem

Show that MNEs correspond to fixed points of some function.
Brouwer’s theorem then gives existence (proof is not constructive).

Proof given for 2-player games. (To save on notation.)

Proof: Consider set D = ∆A ×∆B. (Convex and compact.)

Remember
{

∆A = {(x1, . . . , xm) :
∑

k xk = 1, xk ≥ 0},
∆B = {(y1, . . . , yn) :

∑
` y` = 1, y` ≥ 0}.

For (x , y) ∈ ∆A ×∆B, define

RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

Note that the R·,·(x , y) encode MNE as follows:

Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz ⇔ (x , y) is MNE.

Exercise: Show that Rz,sz (x , y) is a continuous function.
15 / 31



RA,ak (x , y) = max{0,CA(x , y)− CA(ek , y)} k = 1, . . . ,m
RB,b`

(x , y) = max{0,CB(x , y)− CB(x ,e`)} ` = 1, . . . ,n

We use these functions to define mapping f : ∆A ×∆B → ∆A ×∆B by
f (x , y) = (x ′, y ′) = (x ′1, . . . , x

′
m, y ′1, . . . , y

′
n), where

x ′i :=
xi + RA,ai (x , y)∑m

k=1 xk + RA,ak (x , y)
=

xi + RA,ai (x , y)

1 +
∑m

k=1 RA,ak (x , y)
i = 1, . . . ,m

and y ′ ∈ ∆2 by

y ′j :=
yj + RB,bj (x , y)∑n
`=1 y` + RB,b`

(x , y)
=

yj + RB,bj (x , y)

1 +
∑n

`=1 RB,b`
(x , y)

j = 1, . . . ,n

Exercise: Show that f is a continuous function.

If (x∗, y∗) is MNE, then Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz , and so
x ′ = x∗ and y ′ = y∗. In other words, (x∗, y∗) is fixed point of f .
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Other direction remains: If (x∗, y∗) is fixed point of f , then it is MNE.

Suffices to show that Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz .

RA,ai (x , y) = max{0,CA(x , y)− CA(ei , y)} i = 1, . . . ,m

x ′i :=
xi + RA,ai (x , y)

1 +
∑m

k=1 RA,ak (x , y)
i = 1, . . . ,m

Note that

CA(x , y) =
∑

k

xkCA(ek , y) ≤ max
k :xk>0

CA(ek , y)
∑

k

xk = max
k :xk>0

CA(ek , y)

There exists ī with xī > 0 such that RA,aī
(x , y) = 0.

Let us look at x ′ī for fixed point (x∗,y∗):

x∗ī =
x∗ī

1 +
∑m

k=1 RA,ak (x∗, y∗)
xī>0
⇐==⇒ 1 =

1
1 +

∑m
k=1 RA,ak (x∗, y∗)

This gives
∑m

k=1 RA,ak (x∗, y∗) = 0.
RA,ak is always non-negative⇒ RA,ak (x∗, y∗) = 0 for k = 1, . . . ,m.
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xī>0
⇐==⇒ 1 =

1
1 +

∑m
k=1 RA,ak (x∗, y∗)

This gives
∑m

k=1 RA,ak (x∗, y∗) = 0.
RA,ak is always non-negative⇒ RA,ak (x∗, y∗) = 0 for k = 1, . . . ,m.

17 / 31



Other direction remains: If (x∗, y∗) is fixed point of f , then it is MNE.
Suffices to show that Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz .

RA,ai (x , y) = max{0,CA(x , y)− CA(ei , y)} i = 1, . . . ,m

x ′i :=
xi + RA,ai (x , y)

1 +
∑m

k=1 RA,ak (x , y)
i = 1, . . . ,m

Note that

CA(x , y) =
∑

k

xkCA(ek , y) ≤ max
k :xk>0

CA(ek , y)
∑

k

xk = max
k :xk>0

CA(ek , y)
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1 +
∑m

k=1 RA,ak (x∗, y∗)
xī>0
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xī>0
⇐==⇒ 1 =

1
1 +

∑m
k=1 RA,ak (x∗, y∗)

This gives
∑m

k=1 RA,ak (x∗, y∗) = 0.
RA,ak is always non-negative⇒ RA,ak (x∗, y∗) = 0 for k = 1, . . . ,m.

17 / 31



Other direction remains: If (x∗, y∗) is fixed point of f , then it is MNE.
Suffices to show that Rz,sz (x , y) = 0 ∀z ∈ {A,B} ∀sz ∈ Sz .

RA,ai (x , y) = max{0,CA(x , y)− CA(ei , y)} i = 1, . . . ,m

x ′i :=
xi + RA,ai (x , y)

1 +
∑m

k=1 RA,ak (x , y)
i = 1, . . . ,m

Note that

CA(x , y) =
∑

k

xkCA(ek , y) ≤ max
k :xk>0

CA(ek , y)
∑

k

xk = max
k :xk>0

CA(ek , y)
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x∗ī =
x∗ī
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1 +
∑m

k=1 RA,ak (x∗, y∗)
xī>0
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Computation of MNE

Theorem (Nash’s theorem, 1950)
Any finite game Γ has a mixed Nash equilibrium.

Can we compute an MNE efficiently?

Assuming cost functions are rational (think of A,B ∈ Qm×n),
MNE is always rational when n = 2, but
MNE can be irrational when n ≥ 3.

Irrational numbers are, e.g., π,e (Euler’s number), etc.
(Context: Suppose f (z) = z2 + z − 2, then f (z) = z is solved by z∗ = ±

√
2.)

For n ≥ 3,
Rational ε-approximate MNE still exists for any ε > 0.
Algorithms are known to compute approx. equilibrium.

E.g., Scarf’s algorithm (1967) for approximating fixed points.
Probably hard to compute in general (similar to upcoming
discussion for n = 2).
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Complexity of computing MNE (n = 2)

For n = 2, proof(s) of Brouwer’s theorem give no algorithm.

(Combinatorial) algorithms are known, e.g., Lemke-Howson
algorithm.

Worst-case running time is exponential (in #strategies).

How to study computational complexity of MNE in 2-player games?
Computing MNE will be referred to as problem NASH.

Some (informal) intuition
Consider function/search problem version of NP:

For problem X, decide whether solution exists. If YES, output one.

Is NASH NP-complete? Not likely.
“Deciding” whether Nash equilibrium exists is trivial.

NASH is complete for complexity class PPAD (already for n = 2).
“Polynomial Parity Arguments on Directed graphs”
See Chapter 20 [R2016] for this class, and more..
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Theorem (Chen and Deng, 2006)
Computing MNE in 2-player games is PPAD-complete

Same is true for approximate equilibria when n ≥ 3.

What about approximate equilibria in 2-player games?

Assuming game is normalized (0 ≤ Aij ,Bij ≤ 1) and m = n, we have:

Theorem (Lipton, Markakis and Mehta, 2003)

There is an O∗(n24 log(n)/ε2) algorithm known for computing
ε-approximate MNE in 2-player game.

Quasi-polynomial in n.

Theorem (Rubinstein, 2016)
There exists a constant ε > 0 such that, assuming the “Exponential
Time Hypothesis for PPAD”, computing ε-approximate MNE in 2-player
game requires time at least nlog1−o(1)(n).
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Two-player zero-sum game

Two-player game is called zero-sum if A + B = 0, i.e, A = −B.

Minimizing cost under A is same as maximizing cost under B.

Viewpoint that we take: Given is m × n matrix C.
Row player (Alice) tries to maximize utility xT Cy ;
Column player (Bob) tries to minimize cost xT Cy .

Think of it as that Bob has to pay xT Cy to Alice.

Algorithmic aspects of MNE:
Can be modeled as optimal solution of linear program (LP).

Solvable in polynomial time.
(Any LP can be written as zero-sum game as well.)

Certain player dynamics can “learn” it: Fictitious Play
Holds for more classes of games, but not in general.
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Value of zero-sum game

What can Alice guarantee to get from Bob?

Suppose Alice plays mixed strategy x . What should Bob do?
Choose y such that xT Cy is minimal, i.e., strategy attaining

min
y∈∆B

xT Cy .

So what should Alice do? Choose x maximizing miny∈∆B xT Cy .
Alice can guarantee to get vA = max

x
min

y
xT Cy .

Similarly, Bob can guarantee to pay no more than vB = min
y

max
x

xT Cy .
Exercise: Show that vA ≤ vB

Theorem (Von Neumann, 1928)
Consider a two-player zero-sum game given by matrix C. Then

vA = maxx miny xT Cy = miny maxx xT Cy = vB.

The number v = vA = vB is called the value of the game.

Often referred to as the “Minimax theorem”
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Theorem (Minimax)
Consider a two-player zero-sum game given by matrix C. Then

vA = maxx miny xT Cy = miny maxx xT Cy = vB.

We say that x∗ is optimal for Alice if vA is attained for x∗, i.e.,
max

x
min

y
xT Cy = min

y
(x∗)T Cy ,

and, similarly, y∗ is optimal for Bob if vB is attained for y∗, i.e.,
min

y
max

x
xT Cy = max

x
xT Cy∗.

Corollary
(x∗, y∗) is MNE if and only x∗ optimal for Alice and y∗ optimal for Bob.

Computing MNE comes down to computing optimal strategies.

Corollary
Any MNE yield the same utility/loss for Alice/Bob, namely v = vA = vB.

Exercise: Prove these corollaries
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Two-player zero-sum games
Computing MNE using linear programming
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LP formulation for optimal strategy

Optimal strategy x∗ for Alice is solution to optimization problem.

We assume that the C is m × n matrix, i.e., m rows, n columns.
The dual of this program precisely computes optimal strategy for Bob!

In fact, strong duality can be used to prove the minimax theorem.

Theorem
MNE can be computed in polynomial time in 2-player zero-sum game.
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Two-player zero-sum games
Fictitious play

27 / 31



Simultaneous fictitious play (Brown, 1951)

Introduced as algorithm for approximating value of zero-sum game.

Game is played repeatedly.

In every round:
Alice (A) and Bob (B) play a pure strategy.
They base their decision on history of the other player.

Choose best response w.r.t. empirical distribution (so far) of
strategies chosen by the other.

Informally speaking, empirical distributions “converge” to MNE.

Let SA = {a1, . . . ,am} (rows) and SB = {b1, . . . ,bn} (columns).

Definition (Empirical distribution)
Let rt be row chosen by Alice in step t = 1, . . . ,T − 1. Empirical
distribution over SA in round t is given by

x̄ i(t) =
|{j : rj = ai ,1 ≤ j ≤ t − 1}|

t − 1
for i = 1, . . . ,m. (Fraction of rounds in which Alice chose row i.)

Analogous definition for Bob (with chosen column ct in round t).
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Example
Suppose the matrix C has n = 6 rows, and that Alice plays
(a1,a1,a4,a6,a4,a5,a2,a3,a4) in first t − 1 = 9 rounds. Then

x̄(t) = x̄(10) = 1
9(2,1,1,3,1,1) =

(2
9 ,

1
9 ,

1
9 ,

3
9 ,

1
9 ,

1
9

)
.

The idea of fictitious play is that Alice believes Bob plays every round
according to some (unknown to her) probability distribution y .

She uses empirical distribution ȳ(t) as guess for y in step t .
Alice chooses best response row rt ∈ SA with respect to ȳ(t):

rt ∈ argmaxj{(ei)T Cȳ(t) : i = 1, . . . ,m}.

Bob is doing the same w.r.t Alice (for unknown distribution x).
He uses empirical distribution x̄(t) as guess for x in step t .
Bob chooses best response column ct ∈ SB with respect to x̄(t):

ct ∈ argminj{x̄(t)T Cej : j = 1, . . . ,n}.
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Alice chooses best response row rt ∈ SA with respect to ȳ(t):

rt ∈ argmaxj{(ei)T Cȳ(t) : i = 1, . . . ,m}.

Bob is doing the same w.r.t Alice (for unknown distribution x).
He uses empirical distribution x̄(t) as guess for x in step t .

Bob chooses best response column ct ∈ SB with respect to x̄(t):

ct ∈ argminj{x̄(t)T Cej : j = 1, . . . ,n}.

29 / 31



Example
Suppose the matrix C has n = 6 rows, and that Alice plays
(a1,a1,a4,a6,a4,a5,a2,a3,a4) in first t − 1 = 9 rounds. Then

x̄(t) = x̄(10) = 1
9(2,1,1,3,1,1) =

(2
9 ,

1
9 ,

1
9 ,

3
9 ,

1
9 ,

1
9

)
.

The idea of fictitious play is that Alice believes Bob plays every round
according to some (unknown to her) probability distribution y .

She uses empirical distribution ȳ(t) as guess for y in step t .
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Fictitious play algorithm

ALGORITHM 1: Fictitious play (with index tie-breaking rule)
Input : m × n matrix C; initial row r , column c; round total T ∈ N.
Output: Empirical distributions x̄(T ), ȳ(T ).

x̄(1) = er and ȳ(1) = ec .
for t = 2, . . . ,T do

Choose rt ∈ argmax{(ei )T Cȳ(t) : i = 1, . . . ,m}
Choose ct ∈ argmin{x̄(t)T Cej : j = 1, . . . ,n}
(Choose lowest indexed row/column in case of multiple best
responses.)

Update empirical distributions (x̄(t), ȳ(t)) to (x̄(t + 1), ȳ(t + 1))
end
return x̄(T ), ȳ(T )

Observe that we specify a tie-breaking rule that decides which
column/row to choose, in case there are multiple best responses.
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(Choose lowest indexed row/column in case of multiple best
responses.)

Update empirical distributions (x̄(t), ȳ(t)) to (x̄(t + 1), ȳ(t + 1))
end
return x̄(T ), ȳ(T )

Observe that we specify a tie-breaking rule that decides which
column/row to choose, in case there are multiple best responses.
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Theorem (Robinson, 1951)
Utility/cost of Alice/Bob converges to value v of the game.

That is, as
t →∞, it holds that

maxi(ei)Cȳ(t)→ v, minj x̄(t)T Cej → v, and x̄(t)T Cȳ(t)→ v.

Empirical distributions (x̄(t), ȳ(t)) “converge” to MNE as t →∞.
Convergence in the sense that (x̄(t), ȳ(t)) is ε(t)-approximate
equilibrium, where ε(t)→ 0 as t →∞.

Convergence time of Fictitious Play still not fully understood!

Some notes on fictitious play
Simple way to compute value and ε-MNE.

Avoiding the need to solve LPs.
Players do not need to know each other’s empirical distribution.

Alice only needs to know vector (Cȳ(t)) in round t .
Bob only needs to know (row) vector (x̄(t)T C) in round t .

Fictitious play can be defined for any two-player game (A,B).
Convergence fails beyond zero-sum games.
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Empirical distributions (x̄(t), ȳ(t)) “converge” to MNE as t →∞.

Convergence in the sense that (x̄(t), ȳ(t)) is ε(t)-approximate
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equilibrium, where ε(t)→ 0 as t →∞.

Convergence time of Fictitious Play still not fully understood!

Some notes on fictitious play
Simple way to compute value and ε-MNE.

Avoiding the need to solve LPs.
Players do not need to know each other’s empirical distribution.

Alice only needs to know vector (Cȳ(t)) in round t .
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