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Two-player game

Two-player game (A,B) given by matrices A,B ∈ Rm×n.

Alice plays mixed strategy in ∆A over the m rows.
Bob plays mixed strategy in ∆B over n columns.

For x ∈ ∆A and y ∈ ∆B, (expected) cost given by

CAlice(x , y) = xT Ay , CBob(x , y) = xT By .

Example
Alice has SA = {a1,a2} and SB = {b1,b2,b3}.

A =

(
2 1 2
3 3 2

)
and B =

(
2 4 2
2 0 4

)
.

Suppose that x = (1,0) and y = (0.5,0,0.5), then

CBob(x , y) = xT By =
(
1 0

)(2 4 2
2 0 4

)0.5
0

0.5

 = 2.
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Mixed Nash equilibrium (MNE)

We will use the “best response” version of the MNE definition.

Definition
Column bj is best response against x for Bob if (xT B)j = mink (xT B)k .
Row ai is best response against y for Alice if (Ay)i = mink (Ay)k .

For (xT B) = (2,4,2)T , we have (xT B)1 = 2, (xT B)2 = 4 and (xT B)3 = 2.
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3 / 28



Mixed Nash equilibrium (MNE)

We will use the “best response” version of the MNE definition.

Definition
Column bj is best response against x for Bob if (xT B)j = mink (xT B)k .
Row ai is best response against y for Alice if (Ay)i = mink (Ay)k .

For (xT B) = (2,4,2)T , we have (xT B)1 = 2, (xT B)2 = 4 and (xT B)3 = 2.

Definition (MNE, best response version)
Pair (x∗, y∗) is MNE if and only if

x∗i > 0 ⇒ (Ay∗)i = mink (Ay∗)k ∀i = 1, . . . ,m,
y∗j > 0 ⇒ ((x∗)T B)j = mink ((x∗)T B)k ∀j = 1, . . . ,n.

That is, players only assign positive probability to best responses.

3 / 28



Mixed Nash equilibrium (MNE)

We will use the “best response” version of the MNE definition.

Definition
Column bj is best response against x for Bob if (xT B)j = mink (xT B)k .
Row ai is best response against y for Alice if (Ay)i = mink (Ay)k .

For (xT B) = (2,4,2)T , we have (xT B)1 = 2, (xT B)2 = 4 and (xT B)3 = 2.

Definition (MNE, best response version)
Pair (x∗, y∗) is ε-MNE if and only if

x∗i > 0 ⇒ (Ay∗)i ≤ mink (Ay∗)k + ε ∀i = 1, . . . ,m,
y∗j > 0 ⇒ ((x∗)T B)j ≤ mink ((x∗)T B)k + ε ∀j = 1, . . . ,n.

That is, players only assign positive probability to best responses.

3 / 28



Mixed Nash equilibrium (MNE)

We will use the “best response” version of the MNE definition.

Definition
Column bj is best response against x for Bob if (xT B)j = mink (xT B)k .
Row ai is best response against y for Alice if (Ay)i = mink (Ay)k .

For (xT B) = (2,4,2)T , we have (xT B)1 = 2, (xT B)2 = 4 and (xT B)3 = 2.

Definition (MNE, best response version)
Pair (x∗, y∗) is ε-MNE if and only if

x∗i > 0 ⇒ (Ay∗)i ≤ mink (Ay∗)k + ε ∀i = 1, . . . ,m,
y∗j > 0 ⇒ ((x∗)T B)j ≤ mink ((x∗)T B)k + ε ∀j = 1, . . . ,n.

That is, players only assign positive probability to best responses.

Strategies that get positive probability assigned to them play
special role.

3 / 28



Recap from Lecture 4

Theorem (Nash’s theorem, 1950)
Any finite game Γ has a mixed Nash equilibrium.

Probably no polynomial time algorithm exists for computing one.
PPAD-hardness.

In two-player zero-sum games (A,B), where A + B = 0, computing an
MNE can be reduced to solving a linear program.

We also saw fictitious play, where empirical beliefs of other
player’s mixed strategy “converge” to MNE.

Today, the goal is to give a “quasi-polynomial” time algorithm that
computes an ε-approximate mixed Nash equilibrium.

Supports of mixed strategies play an important role here.
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Support of mixed strategies
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Support of mixed strategy

The support of a mixed strategy x ∈ ∆A is

Supp(x) = {ai : xi > 0 for i = 1, . . . ,m} ⊆ SA.

Similarly, for y ∈ ∆B it is

Supp(y) = {bj : yj > 0 for j = 1, . . . ,n} ⊆ SB

Example (cont’d)
Suppose again that x = (1,0) and y = (0.5,0,0.5). Then
Supp(x) = {a1} and Supp(y) = {b1,b3}.

Does it help if one knows the supports of an equilibrium? Yes!

Remark
Informally speaking, knowing the support of an (ε-)MNE is enough to
be able to efficiently compute one. Once the support is fixed, the
computation of an equilibrium (with that support) reduces to solving a
linear program.
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Remark (cont’d)

Somewhat more technical, if we know supports Supp(x∗) and
Supp(y∗) of an (ε-)MNE (x∗, y∗), but not x∗ and y∗ themselves, then
there is a linear program to compute MNE with supports Supp(x∗) and
Supp(y∗).

The linear program does not necessarily return (x∗, y∗), but
possibly another equilibrium with the same supports.
Linear program comes from (best response) MNE definition.

Definition (MNE, best response version)
Pair (x∗, y∗) is MNE if and only if

x∗i > 0 ⇒ (Ay∗)i = mink (Ay∗)k ∀i = 1, . . . ,m,
y∗j > 0 ⇒ ((x∗)T B)j = mink ((x∗)T B)k ∀j = 1, . . . ,n.

For Alice, expected costs for rows in support should be equal, and
minimal compared to rows not in support.
For Bob, expected costs for columns in support should be equal,
and minimal compared to columns not in support.
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Sketch of how to get linear program

Suppose for MNE (x , y) we have Supp(x) = {a1}, Supp(y) = {b1,b3}.

A =

(
2 1 2
3 3 2

)
and B =

(
2 4 2
2 0 4

)
.

For Bob:

Expected cost for Bob, given Alice’s strategy x , on b1 and b3 are equal:

2x1 + 2x2 = (xT B)1 = (xT B)3 = 2x1 + 4x2

Expected cost of b1,b3 are minimal compared to that of b2:

2x1 + 2x2 = (xT B)1 (or 3) ≤ (xT B)2 = 4x1 + 0x2.

Non-support columns have zero probability: y2 = 0.

Support columns have positive probability: y1, y3 > 0.

For Alice:

For Alice, minimality of expected cost on a1 gives

2y1 + y2 + 2y3 = (Ay)1 ≤ (Ay)2 = 3y1 + 3y2 + 2y3.

Similarly as for Bob, we get x2 = 0 and x1 > 0.
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That is, (x , y), with Supp(x) = {a1}, Supp(y) = {b1,b3}, should satisfy

2x1 + 2x2 = 2x1 + 4x2
2x1 + 2x2 ≤ 4x1 + 0x2
2y1 + y2 + 2y3 ≤ 3y1 + 3y2 + 2y3
x1 + x2 = 1
y1 + y2 + y3 = 1
x2 = y2 = 0
x1, y1, y3 > 0 (not linear constraint)

To turn the last constraint into a linear one, we consider the program

max δ
subject to 2x1 + 2x2 = 2x1 + 4x2

2x1 + 2x2 ≤ 4x1 + 0x2
2y1 + y2 + 2y3 ≤ 3y1 + 3y2 + 2y3
x2 = y2 = 0, x1 + x2 = y1 + y2 + y3 = 1
x1 ≥ δ
y1 ≥ δ
y3 ≥ δ

(A,B) has MNE with given supports iff LP returns feasible solution with δ > 0.

9 / 28
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Computing MNE by support enumeration

Let TA ⊆ {a1, . . . ,am} and TB ⊆ {b1, . . . ,bn}.

Theorem
There is a polynomial time algorithm A to decide if there exists an
MNE (x∗, y∗) with Supp(x∗) = TA and Supp(y∗) = TB. An MNE will be
computed by A in polynomial time in case the answer is YES.

Algorithm A consists of solving linear program (given later).

Corollary (Support enumeration)
There exists an 2n+mpoly(n,m, |A|, |B|) algorithm that computes an
MNE of a two-player game (A,B) with A,B ∈ Qm×n.

Proof (of corollary): We have 2m choices for TA, and 2n choices of TB.
For fixed (TA,TB), we can compute an MNE with those supports in
polynomial time with A (or decide that none exists).

Nash’s theorem guarantees that at least one MNE (x∗, y∗) exists.
For TA = Supp(x∗) and TB = Supp(y∗), A will return an MNE.
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The algorithm A (linear program)

Let TA ⊆ {a1, . . . ,am} and TB ⊆ {b1, . . . ,bn} be “candidate” supports.

max δ

subject to (Ay)i = U ai ∈ TA (xT B)j = V bj ∈ TB
xi ≥ δ ai ∈ TA yj ≥ δ bj ∈ TB
(Ay)i ≥ U ai /∈ TA (xT B)j ≥ V bj /∈ TB
xi = 0 ai /∈ TA yj = 0 bj /∈ TB∑m

i=1 xi = 1
∑n

j=1 yj = 1
U, x1, . . . , xm, δ ∈ R V , y1, . . . , yn ∈ R

Note that (Ay)i =
∑

j Aijyj and (xT B)j =
∑

i xiBij .

Theorem
There exists an MNE (x∗, y∗) with Supp(x∗) = TA and Supp(y∗) = TB
if and only if linear program above returns optimal solution with δ > 0.

Exercise: Prove this theorem (using best response definition of MNE).
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Computing MNE with sparse supports

MNE (x∗, y∗) is k -sparse if |Supp(x∗)|, |Supp(y∗)| ≤ k .
Players assign positive probability to at most k strategies.
Game (A,B) is called k -sparse if it has k -sparse MNE.

Theorem (Computation of sparse MNE)

There exists (nm)kpoly(n,m, |A|, |B|)-time algorithm to decide whether
k-sparse MNE exists (and that outputs one if answer is YES) in games
(A,B) with A,B ∈ Qm×n.

Proof: There are
∑k

q=1
(m

q

)
≤ mk+1 choices of support of Alice that are

k -sparse, and
∑k

q=1
(n

q

)
≤ nk+1 for Bob. Remainder is similar to proof

of corollary on Slide 10.

Remark
There exist games with unique MNE (x∗, y∗) having |Supp(x∗)| = m
and |Supp(y∗)| = n.

Theorem useful for computation of approximate Nash equilibrium.
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Approximate equilibrium

Consider two-player game (A,B) played by Alice and Bob.

For x ∈ ∆A and y ∈ ∆B, (expected) cost given by
CAlice(x , y) = xT Ay , CBob(x , y) = xT By .

Definition (Approximate MNE, pure strategy formulation)
For ε > 0, mixed strategies (x∗, y∗) form ε-MNE iff

(x∗)T Ay∗ ≤ (ei)T Ay∗ + ε i = 1, . . . ,m,
(x∗)T By∗ ≤ (x∗)T Bej + ε j = 1, . . . ,n.

That is, players both have no improving move to pure strategy.

Captures idea that mixed strategies are “almost” an equilibrium.
Players might be able to improve cost, but at most by term ε.

Example
x = (1,0), y = (1,0) is 0.1-approximate equilibrium for game

A =

(
1 1

0.9 2

)
and B =

(
1 2
2 2

)
.
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Let TA ⊆ {a1, . . . ,am} and TB ⊆ {b1, . . . ,bn}.

Theorem
There is a polynomial time algorithm A to decide if there exists an
ε-approximate MNE (x∗, y∗) with Supp(x∗) = TA and Supp(y∗) = TB.
An ε-approximate MNE will be computed by A in polynomial time in
case the answer is YES.

Modify the linear program from the case ε = 0 on Slide 11.

max δ

subject to (Ay)i ≤ U + ε ai ∈ TA (xT B)j ≤ V + ε bj ∈ TB
xi ≥ δ ai ∈ TA yj ≥ δ bj ∈ TB
(Ay)i ≥ U ai /∈ TA (xT B)j ≥ V bj /∈ TB
xi = 0 ai /∈ TA yj = 0 bj /∈ TB∑m

i=1 xi = 1
∑n

j=1 yj = 1
U, x1, . . . , xm, δ ∈ R V , y1, . . . , yn ∈ R

“Support enumeration” corollary on Slide 10 also holds for ε-MNE.
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Small support approximate equilibria

An ε-MNE (x∗, y∗) is k -sparse if |Supp(x∗)|, |Supp(y∗)| ≤ k .

Same as for MNE (since definition does not involve ε).
Theorem (Computation of sparse approximate MNE)
Suppose game (A,B), with A,B ∈ Qm×n, has k-sparse ε-MNE. Then
there is an (nm)kpoly(n,m, |A|, |B|)-time algorithm to compute one.

Lemma (Lipton, Markakis and Mehta (LMM), 2003)
For any ε > 0, (A,B) with A,B ∈ [−1,1]m×n has ε-MNE (x ε, y ε) with

|Supp(x ε)| = O(log(n)/ε2) and |Supp(y ε)| = O(log(m)/ε2).

Corollary

There exists (nm)O(log(max{m,n})/ε2)poly(n,m, |A|, |B|) time algorithm for
computing ε-MNE in game (A,B) with A,B ∈ [−1,1]m×n.

Assuming m ≥ n, running time reduces to mO(log(m)/ε2)poly(n,m, |A|, |B|).
For constant ε > 0, mO(log(m)) dependence is much better than 2O(m).
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Computation of approximate MNE
Proof of LMM lemma
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Recap (computation of approximate MNE)

Suppose there is an ε-MNE (x∗, y∗) with |Supp(x∗)|, |Supp(y∗)| ≤ k .

Enumerate over all (nm)k possible supports (TA,TB).
Solve linear program for every fixed (TA,TB).

For exact MNE (ε = 0), there is no non-trivial bound known for k .
There exist games for which k is as large as m (or n) for all MNE.

For ε-MNE, with ε constant, there does exist a non-trivial bound on k .

Lemma (Lipton, Markakis and Mehta, 2003)
For any ε > 0, (A,B) with A,B ∈ [−1,1]m×n has ε-MNE (x ε, y ε) with

|Supp(x ε)| = O(log(n)/ε2) and |Supp(y ε)| = O(log(m)/ε2).

The normalization of A and B is not without loss of generality!
Just like Nash’s theorem, proof is non-constructive!
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Solve linear program for every fixed (TA,TB).

For exact MNE (ε = 0), there is no non-trivial bound known for k .
There exist games for which k is as large as m (or n) for all MNE.
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Proof of LMM lemma

Lemma (Lipton, Markakis and Mehta, 2003)
For any ε > 0, (A,B) with A,B ∈ [−1,1]m×n has ε-MNE (x ε, y ε) with

|Supp(x ε)| = O(log(n)/ε2) and |Supp(y ε)| = O(log(m)/ε2).

Proof: We start with an exact (ε = 0) mixed Nash equilibrium (x , y).
Always exists at least one because of Nash’s theorem.

High-level idea
First, replace y by mixed strategy y ε with properties:

|Supp(y ε)| = O(log(m)/ε2),
(x , y ε) is ε

2 -approximate MNE.
Then, replace x by mixed strategy x ε with properties:

|Supp(xε)| = O(log(n)/ε2),
(xε, y ε) is ε-approximate MNE.

Both sparsification steps can be proved in a similar way
(Of course, one may also first sparsify x, and then y.)
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Sparsifying mixed strategy y

What should the mixed strategy y ε satisfy for (x , y ε) to be ε
2 -MNE?

(Note that mixed strategy x is fixed throughout sparsification of y .)

Definition (ε-MNE, pure strategy version)
Pair (x , y ε) is ε

2 -MNE if

xT Ay ε ≤ (ei)T Ay ε + ε
2 i = 1, . . . ,m,

xT By ε ≤ xT Bej + ε
2 j = 1, . . . ,n.

That is, players both have no improving move to pure strategy.

For Bob, we want xT By ε ≤ xT Bej + ε/2 for j = 1, . . . ,n.

If expected cost of Bob does not change much, i.e.,∣∣xT By − xT By ε
∣∣ ≤ ε/2, (1)

then, for any pure strategy ej with j = 1, . . . ,m,

xT By ε ≤ xT By + ε/2 ≤ xT B(ej) + ε/2.
Second inequality holds because (x , y) is MNE.
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For Alice, we want xT Ay ε ≤ (ei)T Ay ε + ε
2 for i = 1, . . . ,m.

The expected cost per row for Alice should not change much.

Suffices to have

|(Ay)i − (Ay ε)i | ≤
ε

4
for i = 1, . . . ,m. (2)

This is the same as saying ||Ay − Ay ε||∞ ≤ ε
4 .

(Infinity norm: ||z||∞ = maxi |zi | for z = (z1, . . . , zn) ∈ Rn.)

Why? Inequality (2) implies

|xT Ay − xT Ay ε| ≤ ||x ||1||Ay − Ay ε||∞ ≤ ε/4 (3)

(1-norm: ||z||1 =
∑

i |zi | for z = (z1, . . . , zn) ∈ Rn.)
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To summarize, (x , y ε) will be an ε
2 -MNE, if y ε satisfies∣∣∣xT By − xT By ε
∣∣∣ ≤ ε/2

||Ay − Ay ε||∞ ≤ ε/4

Does there always exist such a vector y ε with Supp(y ε) = O(log(m)/ε2)?
Yes!

A concise representation of requirements
Consider (m + 1)× n matrix obtained by appending row-vector xT B to A, i.e.,

A′ =

(
A

xT B

)
.

The pair (x , y ε) will be an ε
2 -MNE, if y ε ∈ ∆B satisfies

||A′y − A′y ε||∞ ≤ ε/4.
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Sparse approximation of vectors

Theorem (Sparse vector approximation)

Let D ∈ [−1,1](m+1)×n and let y ∈ ∆B = ∆n.

For any ε > 0 there is a
multi-set Sε of columns in {b1, . . . ,bn} of size |Sε| = O(log(m)/ε2) such
that the empirical distribution

y ε =
1
|Sε|

∑
j∈Sε

ej

satisfies ||Dy − Dy ε||∞ = maxi=1,...,m+1 |(Dy)i − (Dy ε)i | ≤ ε/4.

Here ej ∈ {0,1}n is defined as usual (with ej
k = 1 if and only if j = k ).

Example (Empirical distribution)

Let n = 4. If Sε = {b1,b2,b3,b2,b3,b2}, then y ε = 1
6(1,3,2,0).

Remark
It holds that |Supp(y ε)| ≤ O(log(m)/ε2), i.e., the vector y ε has at most
O(log(m)/ε2) non-zero entries.
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Proof of theorem:

Fix ε > 0 and let y ∈ ∆B. Let c1, . . . , cT be random
columns in {b1, . . . ,bn} distributed according to y .

That is, we have P(cr = bj) = yj for j = 1, . . . ,n and every r .
Write ecr for pure strategy corresponding to (random) column cr .

Remember that y ε = 1
T
∑T

r=1 ecr .

It suffices to show that, if T = O(log(m)/ε2),

P
(∣∣(Dy ε)i − (Dy)i

∣∣ < ε/4 for i = 1, . . . ,m + 1
)
> 0 (4)

Why? Because this implies that there is some (deterministic) multi-set
of columns Sε, with |Sε| = O(log(m)/ε2), for which its empirical
distribution y ε satisfies

∣∣(Dy ε)i − (Dy)i
∣∣ < ε/4 for i = 1, . . . ,m + 1.

This is called the probabilistic method.
Very roughly: Define random process, and show desired object is
outputted with strictly positive probability.

It is non-constructive, as we do not know y!
Also note that

E [(Dy ε)i ] = E

[(
D

(
1
T

T∑
r=1

ecr

))
i

]
=

1
T

T∑
r=1

E [(Decr )i ] = (Dy)i .
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In order to show (4), it suffices to show that for every individual i ,

P
(∣∣(Dy ε)i − (Dy)i

∣∣ > ε/4
)
<

1
m + 1

, (5)

This follows from a union bound argument (check yourself!).
Remember that E [(Dy ε)i ] = (Dy)i and

y ε =
1
T

T∑
r=1

ecr .

In order to bound probability that a random variable attains a value far
away from its expectation, one needs a concentration inequality.

Hoeffding’s inequality implies that

P
(∣∣(Dy ε)i − (Dy)i

∣∣ > ε/4
)
≤ 2 exp

(
−T ε2

16

)
.

How large should T be so that (5) is satisfied? Take T = O(log(m)/ε2).
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Small support equilibria in multi-player games

We use the following notation for finite game Γ = (N, (Si), (Ci)) here.

k = |N| ≥ 2 is the number of players.
m is number of strategies of every player, i.e., |Si | = m ∀i ∈ N.

Theorem (Lipton, Markakis and Mehta, 2003)

For every ε > 0, there exists an ε-MNE (z1, . . . , zk ) where

|Supp(z i)| = O(k2 log(k2m)/ε2)

Can be improved to O
(
log(mk)
ε2

)
[Babichenko-Barman-Peretz, 2014].
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Remarks on sparse vector approximation

Theorem (Sparse vector approximation)

Let D ∈ [−1,1](m+1)×n and let y ∈ ∆B = ∆n. For any ε > 0 there is a
multi-set Sε of columns in {b1, . . . ,bn} of size |Sε| = O(log(m)/ε2) such
that the empirical distribution

y ε =
1
|Sε|

∑
j∈Sε

ej

satisfies ||Dy − Dy ε||∞ = maxi |(Dy)i − (Dy ε)i | ≤ ε/4.

There exist many similar theorems like the above:
Related to Maurey’s lemma, approximate Carathéodory’s
theorem, . . .
There is an `p-norm version [Barman, 2018].

There is also a refinement in terms of VC (or pseudo)-dimension of
matrix D.

Used to prove the “Fundamental Theorem of Statistical Learning”.
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