Topics in Algorithmic Game Theory and Economics

Pieter Kleer

Max Planck Institute for Informatics Saarland Informatics Campus

December 9, 2020

Lecture 5 Finite games II - Computation of Approximate MNE

Two-player game

Two-player game (A, B) given by matrices $A, B \in \mathbb{R}^{m \times n}$.

- Alice plays mixed strategy in Δ_A over the *m* rows.
- Bob plays mixed strategy in Δ_B over *n* columns.

For $x \in \Delta_A$ and $y \in \Delta_B$, (expected) cost given by

$$C_{\text{Alice}}(x,y) = x^T A y, \quad C_{\text{Bob}}(x,y) = x^T B y.$$

Example

Alice has
$$S_A = \{a_1, a_2\}$$
 and $S_B = \{b_1, b_2, b_3\}$.

$$A = \begin{pmatrix} 2 & 1 & 2 \\ 3 & 3 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 4 & 2 \\ 2 & 0 & 4 \end{pmatrix}$.

Suppose that x = (1,0) and y = (0.5, 0, 0.5), then

$$C_{\text{Bob}}(x,y) = x^T B y = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 4 & 2 \\ 2 & 0 & 4 \end{pmatrix} \begin{pmatrix} 0.5 \\ 0 \\ 0.5 \end{pmatrix} = 2.$$

Mixed Nash equilibrium (MNE)

We will use the "best response" version of the MNE definition.

Definition

Column b_j is best response against x for Bob if $(x^T B)_j = \min_k (x^T B)_k$. Row a_i is best response against y for Alice if $(Ay)_i = \min_k (Ay)_k$.

• For $(x^TB) = (2, 4, 2)^T$, we have $(x^TB)_1 = 2$, $(x^TB)_2 = 4$ and $(x^TB)_3 = 2$.

Definition (MNE, best response version)

Pair (x^*, y^*) is ϵ -MNE if and only if

$$\begin{array}{ll} x_i^* > 0 & \Rightarrow & (Ay^*)_i \leq \min_k (Ay^*)_k + \epsilon & \forall i = 1, \dots, m, \\ y_j^* > 0 & \Rightarrow & ((x^*)^T B)_j \leq \min_k ((x^*)^T B)_k + \epsilon & \forall j = 1, \dots, n. \end{array}$$

That is, players only assign positive probability to best responses.

 Strategies that get positive probability assigned to them play special role.

Theorem (Nash's theorem, 1950)

Any finite game Γ has a mixed Nash equilibrium.

Probably no polynomial time algorithm exists for computing one.
PPAD-hardness.

In two-player zero-sum games (A, B), where A + B = 0, computing an MNE can be reduced to solving a linear program.

• We also saw fictitious play, where empirical beliefs of other player's mixed strategy "converge" to MNE.

Today, the goal is to give a "quasi-polynomial" time algorithm that computes an ε-approximate mixed Nash equilibrium. Supports of mixed strategies play an important role here.

Support of mixed strategies

Support of mixed strategy

The support of a mixed strategy $x \in \Delta_A$ is

$$\operatorname{Supp}(x) = \{a_i : x_i > 0 \text{ for } i = 1, \dots, m\} \subseteq \mathcal{S}_{\mathcal{A}}.$$

Similarly, for $y \in \Delta_B$ it is

$$\mathsf{Supp}(y) = \{b_j : y_j > 0 \text{ for } j = 1, \dots, n\} \subseteq \mathcal{S}_B$$

Example (cont'd)

Suppose again that x = (1,0) and y = (0.5, 0, 0.5). Then Supp $(x) = \{a_1\}$ and Supp $(y) = \{b_1, b_3\}$.

Does it help if one knows the supports of an equilibrium? Yes!

Remark

Informally speaking, knowing the support of an (ϵ -)MNE is enough to be able to efficiently compute one. Once the support is fixed, the computation of an equilibrium (with that support) reduces to solving a linear program.

Remark (cont'd)

Somewhat more technical, if we know supports $\text{Supp}(x^*)$ and $\text{Supp}(y^*)$ of an $(\epsilon$ -)MNE (x^*, y^*) , but not x^* and y^* themselves, then there is a linear program to compute MNE with supports $\text{Supp}(x^*)$ and $\text{Supp}(y^*)$.

- The linear program does not necessarily return (x*, y*), but possibly another equilibrium with the same supports.
- Linear program comes from (best response) MNE definition.

Definition (MNE, best response version)

Pair (x^*, y^*) is MNE if and only if

$$\begin{array}{ll} x_i^* > 0 & \Rightarrow & (Ay^*)_i = \min_k (Ay^*)_k & \forall i = 1, \dots, m, \\ y_i^* > 0 & \Rightarrow & ((x^*)^T B)_i = \min_k ((x^*)^T B)_k & \forall j = 1, \dots, n. \end{array}$$

- For Alice, expected costs for rows in support should be equal, and minimal compared to rows not in support.
- For Bob, expected costs for columns in support should be equal, and minimal compared to columns not in support.

Sketch of how to get linear program

Suppose for MNE (x, y) we have Supp $(x) = \{a_1\}$, Supp $(y) = \{b_1, b_3\}$.

$$A = \begin{pmatrix} 2 & 1 & 2 \\ 3 & 3 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 4 & 2 \\ 2 & 0 & 4 \end{pmatrix}$.

For Bob:

• Expected cost for Bob, given Alice's strategy *x*, on *b*₁ and *b*₃ are equal:

$$2x_1 + 2x_2 = (x^T B)_1 = (x^T B)_3 = 2x_1 + 4x_2$$

Expected cost of b₁, b₃ are minimal compared to that of b₂:

$$2x_1 + 2x_2 = (x^TB)_1 \text{ (or 3)} \le (x^TB)_2 = 4x_1 + 0x_2.$$

- Non-support columns have zero probability: $y_2 = 0$.
- Support columns have positive probability: $y_1, y_3 > 0$.

For Alice:

For Alice, minimality of expected cost on a₁ gives

$$2y_1 + y_2 + 2y_3 = (Ay)_1 \le (Ay)_2 = 3y_1 + 3y_2 + 2y_3.$$

• Similarly as for Bob, we get $x_2 = 0$ and $x_1 > 0$.

That is, (x, y), with Supp $(x) = \{a_1\}$, Supp $(y) = \{b_1, b_3\}$, should satisfy

$$\begin{array}{rclrcl} 2x_1 + 2x_2 & = & 2x_1 + 4x_2 \\ 2x_1 + 2x_2 & \leq & 4x_1 + 0x_2 \\ 2y_1 + y_2 + 2y_3 & \leq & 3y_1 + 3y_2 + 2y_3 \\ x_1 + x_2 & = & 1 \\ y_1 + y_2 + y_3 & = & 1 \\ x_2 = y_2 = 0 \\ x_1, y_1, y_3 > 0 \end{array}$$
 (not linear constraint)

To turn the last constraint into a linear one, we consider the program

(A, B) has MNE with given supports iff LP returns feasible solution with $\delta > 0$.

Computing MNE by support enumeration

Let $T_A \subseteq \{a_1, \ldots, a_m\}$ and $T_B \subseteq \{b_1, \ldots, b_n\}$.

Theorem

There is a polynomial time algorithm A to decide if there exists an MNE (x^*, y^*) with $Supp(x^*) = T_A$ and $Supp(y^*) = T_B$. An MNE will be computed by A in polynomial time in case the answer is YES.

• Algorithm \mathcal{A} consists of solving linear program (given later).

Corollary (Support enumeration)

There exists an 2^{n+m} poly(n, m, |A|, |B|) algorithm that computes an MNE of a two-player game (A, B) with $A, B \in \mathbb{Q}^{m \times n}$.

Proof (of corollary): We have 2^m choices for T_A , and 2^n choices of T_B .

• For fixed (T_A, T_B) , we can compute an MNE with those supports in polynomial time with A (or decide that none exists).

Nash's theorem guarantees that at least one MNE (x^*, y^*) exists.

• For $T_A = \text{Supp}(x^*)$ and $T_B = \text{Supp}(y^*)$, \mathcal{A} will return an MNE.

The algorithm \mathcal{A} (linear program)

Let $T_A \subseteq \{a_1, \ldots, a_m\}$ and $T_B \subseteq \{b_1, \ldots, b_n\}$ be "candidate" supports.

$$\begin{array}{lll} \max & \delta \\ \text{subject to} & (Ay)_i = U & a_i \in T_A \\ & x_i \ge \delta & a_i \in T_A \\ & (Ay)_i \ge U & a_i \notin T_A \\ & x_i = 0 & a_i \notin T_A \\ & \sum_{i=1}^m x_i = 1 \\ & U, x_1, \dots, x_m, \delta \in \mathbb{R} \end{array} \begin{array}{lll} (x^TB)_j = V & b_j \in T_B \\ & y_j \ge \delta & b_j \in T_B \\ & y_j \ge 0 & b_j \notin T_B \\ & \sum_{j=1}^n y_j = 1 \\ & U, y_1, \dots, y_n \in \mathbb{R} \end{array}$$

• Note that $(Ay)_i = \sum_j A_{ij}y_j$ and $(x^TB)_j = \sum_i x_i B_{ij}$.

Theorem

There exists an MNE (x^*, y^*) with $Supp(x^*) = T_A$ and $Supp(y^*) = T_B$ if and only if linear program above returns optimal solution with $\delta > 0$.

Exercise: Prove this theorem (using best response definition of MNE).

Computing MNE with sparse supports

MNE (x^*, y^*) is *k*-sparse if $|\text{Supp}(x^*)|, |\text{Supp}(y^*)| \le k$.

- Players assign positive probability to at most *k* strategies.
- Game (A, B) is called k-sparse if it has k-sparse MNE.

Theorem (Computation of sparse MNE)

There exists $(nm)^k poly(n, m, |A|, |B|)$ -time algorithm to decide whether *k*-sparse MNE exists (and that outputs one if answer is YES) in games (A, B) with $A, B \in \mathbb{Q}^{m \times n}$.

Proof: There are $\sum_{q=1}^{k} {m \choose q} \le m^{k+1}$ choices of support of Alice that are *k*-sparse, and $\sum_{q=1}^{k} {n \choose q} \le n^{k+1}$ for Bob. Remainder is similar to proof of corollary on Slide 10.

Remark

There exist games with unique MNE (x^*, y^*) having $|\text{Supp}(x^*)| = m$ and $|\text{Supp}(y^*)| = n$.

Theorem useful for computation of approximate Nash equilibrium.

Computation of approximate MNE

Approximate equilibrium

Consider two-player game (A, B) played by Alice and Bob. • For $x \in \Delta_A$ and $y \in \Delta_B$, (expected) cost given by $C_{\text{Alice}}(x, y) = x^T A y$, $C_{\text{Bob}}(x, y) = x^T B y$.

Definition (Approximate MNE, pure strategy formulation)

For $\epsilon > 0$, mixed strategies (x^*, y^*) form ϵ -MNE iff

$$\begin{array}{rcl} (x^*)^T A y^* &\leq & (e^i)^T A y^* + \epsilon & i = 1, \dots, m, \\ (x^*)^T B y^* &\leq & (x^*)^T B e^j + \epsilon & j = 1, \dots, n. \end{array}$$

That is, players both have no improving move to pure strategy.

Captures idea that mixed strategies are "almost" an equilibrium.

• Players might be able to improve cost, but at most by term ϵ .

Example

x = (1,0), y = (1,0) is 0.1-approximate equilibrium for game

$$A = \begin{pmatrix} 1 & 1 \\ 0.9 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$

4/28

Let $T_A \subseteq \{a_1, \ldots, a_m\}$ and $T_B \subseteq \{b_1, \ldots, b_n\}$.

Theorem

There is a polynomial time algorithm A to decide if there exists an ϵ -approximate MNE (x^*, y^*) with $Supp(x^*) = T_A$ and $Supp(y^*) = T_B$. An ϵ -approximate MNE will be computed by A in polynomial time in case the answer is YES.

• Modify the linear program from the case $\epsilon = 0$ on Slide 11.

 $\begin{array}{lll} \max & \delta \\ \text{subject to} & (Ay)_i \leq U + \epsilon \quad a_i \in T_A & (x^TB)_j \leq V + \epsilon \quad b_j \in T_B \\ & x_i \geq \delta & a_i \in T_A & y_j \geq \delta & b_j \in T_B \\ & (Ay)_i \geq U & a_i \notin T_A & (x^TB)_j \geq V & b_j \notin T_B \\ & x_i = 0 & a_i \notin T_A & y_j = 0 & b_j \notin T_B \\ & \sum_{i=1}^m x_i = 1 & \sum_{j=1}^n y_j = 1 \\ & U, x_1, \dots, x_m, \delta \in \mathbb{R} & V, y_1, \dots, y_n \in \mathbb{R} \end{array}$

• "Support enumeration" corollary on Slide 10 also holds for ϵ -MNE.

Small support approximate equilibria

An ϵ -MNE (x^*, y^*) is k-sparse if $|\text{Supp}(x^*)|$, $|\text{Supp}(y^*)| \le k$.

• Same as for MNE (since definition does not involve ϵ).

Theorem (Computation of sparse approximate MNE)

Suppose game (A, B), with A, $B \in \mathbb{Q}^{m \times n}$, has k-sparse ϵ -MNE. Then there is an $(nm)^k$ poly(n, m, |A|, |B|)-time algorithm to compute one.

Lemma (Lipton, Markakis and Mehta (LMM), 2003)

For any $\epsilon > 0$, (A, B) with $A, B \in [-1, 1]^{m \times n}$ has ϵ -MNE $(x^{\epsilon}, y^{\epsilon})$ with $|Supp(x^{\epsilon})| = O(\log(n)/\epsilon^2)$ and $|Supp(y^{\epsilon})| = O(\log(m)/\epsilon^2)$.

Corollary

There exists $(nm)^{O(\log(\max\{m,n\})/\epsilon^2)}$ poly(n, m, |A|, |B|) time algorithm for computing ϵ -MNE in game (A, B) with A, B $\in [-1, 1]^{m \times n}$.

• Assuming $m \ge n$, running time reduces to $m^{O(\log(m)/\epsilon^2)}$ poly(n, m, |A|, |B|).

• For constant $\epsilon > 0$, $m^{O(\log(m))}$ dependence is much better than $2^{O(m)}$.

Computation of approximate MNE Proof of LMM lemma

Recap (computation of approximate MNE)

Suppose there is an ϵ -MNE (x^*, y^*) with $|\text{Supp}(x^*)|, |\text{Supp}(y^*)| \le k$.

- Enumerate over all $(nm)^k$ possible supports (T_A, T_B) .
 - Solve linear program for every fixed (T_A, T_B) .

For exact MNE ($\epsilon = 0$), there is no non-trivial bound known for *k*.

• There exist games for which *k* is as large as *m* (or *n*) for all MNE.

For ϵ -MNE, with ϵ constant, there does exist a non-trivial bound on k.

Lemma (Lipton, Markakis and Mehta, 2003) For any $\epsilon > 0$, (A, B) with $A, B \in [-1, 1]^{m \times n}$ has ϵ -MNE $(x^{\epsilon}, y^{\epsilon})$ with $|Supp(x^{\epsilon})| = O(\log(n)/\epsilon^2)$ and $|Supp(y^{\epsilon})| = O(\log(m)/\epsilon^2)$.

- The normalization of A and B is **not** without loss of generality!
- Just like Nash's theorem, proof is non-constructive!

Lemma (Lipton, Markakis and Mehta, 2003)

For any $\epsilon > 0$, (A, B) with $A, B \in [-1, 1]^{m \times n}$ has ϵ -MNE $(x^{\epsilon}, y^{\epsilon})$ with $|Supp(x^{\epsilon})| = O(\log(n)/\epsilon^2)$ and $|Supp(y^{\epsilon})| = O(\log(n)/\epsilon^2)$.

Proof: We start with an exact ($\epsilon = 0$) mixed Nash equilibrium (x, y).

Always exists at least one because of Nash's theorem.

High-level idea

- First, replace y by mixed strategy y^{ϵ} with properties:
 - $|\operatorname{Supp}(y^{\epsilon})| = O(\log(m)/\epsilon^2),$
 - (x, y^{ϵ}) is $\frac{\epsilon}{2}$ -approximate MNE.
- Then, replace x by mixed strategy x^{ϵ} with properties:
 - $|\operatorname{Supp}(x^{\epsilon})| = O(\log(n)/\epsilon^2),$
 - $(x^{\epsilon}, y^{\epsilon})$ is ϵ -approximate MNE.

Both sparsification steps can be proved in a similar way (Of course, one may also first sparsify x, and then y.)

Sparsifying mixed strategy y

What should the mixed strategy y[€] satisfy for (x, y[€]) to be [€]/₂-MNE?
(Note that mixed strategy x is fixed throughout sparsification of y.)

Definition (ϵ -MNE, pure strategy version)

Pair (x, y^{ϵ}) is $\frac{\epsilon}{2}$ -MNE if

$$\begin{array}{rcl} x^T A y^{\epsilon} & \leq & (e^i)^T A y^{\epsilon} + \frac{\epsilon}{2} & i = 1, \dots, m, \\ x^T B y^{\epsilon} & \leq & x^T B e^j + \frac{\epsilon}{2} & j = 1, \dots, n. \end{array}$$

That is, players both have no improving move to pure strategy.

For Bob, we want
$$x^T B y^{\epsilon} \leq x^T B e^j + \epsilon/2$$
 for $j = 1, ..., n$.

If expected cost of Bob does not change much, i.e.,

$$x^{\mathsf{T}} B y - x^{\mathsf{T}} B y^{\epsilon} \big| \le \epsilon/2, \tag{1}$$

then, for any pure strategy e^{j} with $j = 1, \ldots, m$,

$$x^T B y^{\epsilon} \leq x^T B y + \epsilon/2 \leq x^T B (e^j) + \epsilon/2.$$

 \sim Coord inequality holds because (y, y) is MNL

20/28

For Alice, we want $x^T A y^{\epsilon} \leq (e^i)^T A y^{\epsilon} + \frac{\epsilon}{2}$ for i = 1, ..., m.

The expected cost per row for Alice should not change much.

Suffices to have

$$|(Ay)_i - (Ay^{\epsilon})_i| \le \frac{\epsilon}{4} \text{ for } i = 1, \dots, m.$$
(2)

This is the same as saying ||Ay − Ay^ϵ||_∞ ≤ ^ϵ/₄.
 (Infinity norm: ||z||_∞ = max_i |z_i| for z = (z₁,..., z_n) ∈ ℝⁿ.)

Why? Inequality (2) implies

$$|x^{\mathsf{T}} A y - x^{\mathsf{T}} A y^{\epsilon}| \leq ||x||_1 ||A y - A y^{\epsilon}||_{\infty} \leq \epsilon/4$$
 (3)

• (1-norm: $||z||_1 = \sum_i |z_i|$ for $z = (z_1, ..., z_n) \in \mathbb{R}^n$.)

Now, for pure strategy e^i for i = 1, ..., m of Alice, we have

$$x^{\mathsf{T}} A y^{\epsilon} \leq x^{\mathsf{T}} A y + rac{\epsilon}{4} \leq (e^{i})^{\mathsf{T}} A y + rac{\epsilon}{4} \leq (e^{i})^{\mathsf{T}} A y^{\epsilon} + rac{\epsilon}{4} + rac{\epsilon}{4}$$

• Remember that $(Ay)_i = (e^i)^T Ay$

Inequalities use (3), fact that (x, y) is MNE, and (2) (respectively).

Exercise: Show that having $|x^T A v - x^T A v^{\epsilon}| < \epsilon/2$ is not sufficient!

To summarize, (x, y^{ϵ}) will be an $\frac{\epsilon}{2}$ -MNE, if y^{ϵ} satisfies $\left|x^{T}By - x^{T}By^{\epsilon}\right| \leq \epsilon/2$ $||Ay - Ay^{\epsilon}||_{\infty} \leq \epsilon/4$

Does there always exist such a vector y^{ϵ} with $Supp(y^{\epsilon}) = O(\log(m)/\epsilon^2)$? Yes!

A concise representation of requirements

Consider $(m + 1) \times n$ matrix obtained by appending row-vector $x^T B$ to A, i.e.,

$$A' = \begin{pmatrix} A \\ x^T B \end{pmatrix}.$$

The pair (x, y^{ϵ}) will be an $\frac{\epsilon}{2}$ -MNE, if $y^{\epsilon} \in \Delta_B$ satisfies

 $||\mathbf{A}'\mathbf{y}-\mathbf{A}'\mathbf{y}^{\epsilon}||_{\infty} \leq \epsilon/4.$

Theorem (Sparse vector approximation)

Let $D \in [-1,1]^{(m+1)\times n}$ and let $y \in \Delta_B = \Delta_n$. For any $\epsilon > 0$ there is a multi-set S_{ϵ} of columns in $\{b_1, \ldots, b_n\}$ of size $|S_{\epsilon}| = O(\log(m)/\epsilon^2)$ such that the empirical distribution $y^{\epsilon} = \frac{1}{|S_{\epsilon}|} \sum_{j \in S_{\epsilon}} e^j$

satisfies $||Dy - Dy^{\epsilon}||_{\infty} = \max_{i=1,\dots,m+1} |(Dy)_i - (Dy^{\epsilon})_i| \le \epsilon/4.$

Here $e^{j} \in \{0, 1\}^{n}$ is defined as usual (with $e^{j}_{k} = 1$ if and only if j = k).

Example (Empirical distribution)

Let n = 4. If $S_{\epsilon} = \{b_1, b_2, b_3, b_2, b_3, b_2\}$, then $y^{\epsilon} = \frac{1}{6}(1, 3, 2, 0)$.

Remark

It holds that $|\text{Supp}(y^{\epsilon})| \leq O(\log(m)/\epsilon^2)$, i.e., the vector y^{ϵ} has at most $O(\log(m)/\epsilon^2)$ non-zero entries.

Proof of theorem: Fix $\epsilon > 0$ and let $y \in \Delta_B$. Let c_1, \ldots, c_T be random columns in $\{b_1, \ldots, b_n\}$ distributed according to y.

- That is, we have $\mathbb{P}(c_r = b_j) = y_j$ for j = 1, ..., n and every r.
- Write *e^{c_r* for pure strategy corresponding to (random) column *c_r*.}

Remember that $y^{\epsilon} = \frac{1}{T} \sum_{r=1}^{T} e^{c_r}$.

Also

It suffices to show that, if $T = O(\log(m)/\epsilon^2)$,

$$\mathbb{P}\left(\left|(Dy^{\epsilon})_{i}-(Dy)_{i}
ight|<\epsilon/4 ext{ for }i=1,\ldots,m+1
ight)>0$$
 (4)

Why? Because this implies that there is some (deterministic) multi-set of columns S_{ϵ} , with $|S_{\epsilon}| = O(\log(m)/\epsilon^2)$, for which its empirical distribution y^{ϵ} satisfies $|(Dy^{\epsilon})_i - (Dy)_i| < \epsilon/4$ for i = 1, ..., m + 1.

- This is called the probabilistic method.
 - Very roughly: Define random process, and show desired object is outputted with strictly positive probability.

• It is non-constructive, as we do not know y!

note that

$$\mathbb{E}\left[(Dy^{\epsilon})_{i}\right] = \mathbb{E}\left[\left(D\left(\frac{1}{T}\sum_{r=1}^{T}e^{c_{r}}\right)\right)_{i}\right] = \frac{1}{T}\sum_{r=1}^{T}\mathbb{E}\left[(De^{c_{r}})_{i}\right] = (Dy)_{i}.$$
24/2

In order to show (4), it suffices to show that for every individual *i*, $\mathbb{P}\left(\left|(Dy^{\epsilon})_{i} - (Dy)_{i}\right| > \epsilon/4\right) < \frac{1}{m+1},$ (5)

- This follows from a union bound argument (check yourself!).
- Remember that $\mathbb{E}\left[(Dy^{\epsilon})_{i}\right] = (Dy)_{i}$ and

$$y^{\epsilon} = \frac{1}{T}\sum_{r=1}^{T}e^{c_r}.$$

In order to bound probability that a random variable attains a value far away from its expectation, one needs a concentration inequality.

Hoeffding's inequality implies that $\mathbb{P}\left(\left|(Dy^{\epsilon})_{i}-(Dy)_{i}\right| > \epsilon/4\right) \leq 2\exp\left(-\frac{T\epsilon^{2}}{16}\right).$

How large should T be so that (5) is satisfied? Take $T = O(\log(m)/\epsilon^2)$.

Computation of approximate MNE Final remarks

Small support equilibria in multi-player games

We use the following notation for finite game $\Gamma = (N, (S_i), (C_i))$ here.

- $k = |N| \ge 2$ is the number of players.
- *m* is number of strategies of every player, i.e., $|S_i| = m \forall i \in N$.

Theorem (Lipton, Markakis and Mehta, 2003)

For every $\epsilon > 0$, there exists an ϵ -MNE (z^1, \ldots, z^k) where

$$|Supp(z^i)| = O(k^2 \log(k^2 m)/\epsilon^2)$$

• Can be improved to $O\left(\frac{\log(mk)}{\epsilon^2}\right)$ [Babichenko-Barman-Peretz, 2014].

Theorem (Sparse vector approximation)

Let $D \in [-1,1]^{(m+1)\times n}$ and let $y \in \Delta_B = \Delta_n$. For any $\epsilon > 0$ there is a multi-set S_{ϵ} of columns in $\{b_1, \ldots, b_n\}$ of size $|S_{\epsilon}| = O(\log(m)/\epsilon^2)$ such that the empirical distribution $y^{\epsilon} = \frac{1}{|S_{\epsilon}|} \sum_{j \in S_{\epsilon}} e^j$ satisfies $||Dy - Dy^{\epsilon}||_{\infty} = \max_i |(Dy)_i - (Dy^{\epsilon})_i| \le \epsilon/4$.

There exist many similar theorems like the above:

- Related to Maurey's lemma, approximate Carathéodory's theorem, ...
- There is an ℓ_p -norm version [Barman, 2018].

There is also a refinement in terms of VC (or pseudo)-dimension of matrix *D*.

Used to prove the "Fundamental Theorem of Statistical Learning".