
Topics in Algorithmic Game Theory and Economics

Pieter Kleer

Max Planck Institute for Informatics
Saarland Informatics Campus

December 16, 2020

Lecture 6
Finite games III - Computation of CE and CCE

1 / 32

Hierarchy of equilibrium concepts

Finite (cost minimization) game Γ = (N, (Si)i∈N , (Ci)i∈N) consists of:

Finite set N of players.
Finite strategy set Si for every player i ∈ N.
Cost function Ci : ×jSj → R for every i ∈ N.

PNE
Exists in any congestion game

MNE

Exists in any finite game, but hard to compute

CE

Computationally tractable

CCE

2 / 32

Hierarchy of equilibrium concepts

Finite (cost minimization) game Γ = (N, (Si)i∈N , (Ci)i∈N) consists of:
Finite set N of players.

Finite strategy set Si for every player i ∈ N.
Cost function Ci : ×jSj → R for every i ∈ N.

PNE
Exists in any congestion game

MNE

Exists in any finite game, but hard to compute

CE

Computationally tractable

CCE

2 / 32

Hierarchy of equilibrium concepts

Finite (cost minimization) game Γ = (N, (Si)i∈N , (Ci)i∈N) consists of:
Finite set N of players.
Finite strategy set Si for every player i ∈ N.

Cost function Ci : ×jSj → R for every i ∈ N.

PNE
Exists in any congestion game

MNE

Exists in any finite game, but hard to compute

CE

Computationally tractable

CCE

2 / 32

Hierarchy of equilibrium concepts

Finite (cost minimization) game Γ = (N, (Si)i∈N , (Ci)i∈N) consists of:
Finite set N of players.
Finite strategy set Si for every player i ∈ N.
Cost function Ci : ×jSj → R for every i ∈ N.

PNE
Exists in any congestion game

MNE

Exists in any finite game, but hard to compute

CE

Computationally tractable

CCE

2 / 32

Hierarchy of equilibrium concepts

Finite (cost minimization) game Γ = (N, (Si)i∈N , (Ci)i∈N) consists of:
Finite set N of players.
Finite strategy set Si for every player i ∈ N.
Cost function Ci : ×jSj → R for every i ∈ N.

PNE
Exists in any congestion game

MNE

Exists in any finite game, but hard to compute

CE

Computationally tractable

CCE

2 / 32

Two-player games with mixed strategies (recap)

Two-player game (A,B) given by matrices A,B ∈ Rm×n.
Row player Alice and column player Bob independently choose
strategy x ∈ ∆A and y ∈ ∆B.

Gives product distribution σx ,y : SA×SB → [0,1] over strategy profiles:
σx ,y (ak ,b`) = σk` = xky` for k = 1, . . . ,m and ` = 1, . . . ,n.

Example
Distribution over strategy profiles is given by(

x1y1 x1y2 x1y3
x2y1 x2y2 x2y3

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Then expected cost (for Alice) CA(σx ,y) is

xT Ay = E(ak ,b`)∼σx,y [CA(ak ,b`)] =
∑

(ak ,b`)∈SA×SB

σk`CA(ak ,b`)

Remember that Ak` = CA(ak ,b`).

3 / 32

Two-player games with mixed strategies (recap)

Two-player game (A,B) given by matrices A,B ∈ Rm×n.
Row player Alice and column player Bob independently choose
strategy x ∈ ∆A and y ∈ ∆B.

Gives product distribution σx ,y : SA×SB → [0,1] over strategy profiles:

σx ,y (ak ,b`) = σk` = xky` for k = 1, . . . ,m and ` = 1, . . . ,n.

Example
Distribution over strategy profiles is given by(

x1y1 x1y2 x1y3
x2y1 x2y2 x2y3

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Then expected cost (for Alice) CA(σx ,y) is

xT Ay = E(ak ,b`)∼σx,y [CA(ak ,b`)] =
∑

(ak ,b`)∈SA×SB

σk`CA(ak ,b`)

Remember that Ak` = CA(ak ,b`).

3 / 32

Two-player games with mixed strategies (recap)

Two-player game (A,B) given by matrices A,B ∈ Rm×n.
Row player Alice and column player Bob independently choose
strategy x ∈ ∆A and y ∈ ∆B.

Gives product distribution σx ,y : SA×SB → [0,1] over strategy profiles:
σx ,y (ak ,b`) = σk` = xky` for k = 1, . . . ,m and ` = 1, . . . ,n.

Example
Distribution over strategy profiles is given by(

x1y1 x1y2 x1y3
x2y1 x2y2 x2y3

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Then expected cost (for Alice) CA(σx ,y) is

xT Ay = E(ak ,b`)∼σx,y [CA(ak ,b`)] =
∑

(ak ,b`)∈SA×SB

σk`CA(ak ,b`)

Remember that Ak` = CA(ak ,b`).

3 / 32

Two-player games with mixed strategies (recap)

Two-player game (A,B) given by matrices A,B ∈ Rm×n.
Row player Alice and column player Bob independently choose
strategy x ∈ ∆A and y ∈ ∆B.

Gives product distribution σx ,y : SA×SB → [0,1] over strategy profiles:
σx ,y (ak ,b`) = σk` = xky` for k = 1, . . . ,m and ` = 1, . . . ,n.

Example
Distribution over strategy profiles is given by(

x1y1 x1y2 x1y3
x2y1 x2y2 x2y3

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Then expected cost (for Alice) CA(σx ,y) is

xT Ay = E(ak ,b`)∼σx,y [CA(ak ,b`)] =
∑

(ak ,b`)∈SA×SB

σk`CA(ak ,b`)

Remember that Ak` = CA(ak ,b`).

3 / 32

Two-player games with mixed strategies (recap)

Two-player game (A,B) given by matrices A,B ∈ Rm×n.
Row player Alice and column player Bob independently choose
strategy x ∈ ∆A and y ∈ ∆B.

Gives product distribution σx ,y : SA×SB → [0,1] over strategy profiles:
σx ,y (ak ,b`) = σk` = xky` for k = 1, . . . ,m and ` = 1, . . . ,n.

Example
Distribution over strategy profiles is given by(

x1y1 x1y2 x1y3
x2y1 x2y2 x2y3

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Then expected cost (for Alice) CA(σx ,y) is

xT Ay = E(ak ,b`)∼σx,y [CA(ak ,b`)] =
∑

(ak ,b`)∈SA×SB

σk`CA(ak ,b`)

Remember that Ak` = CA(ak ,b`).

3 / 32

Two-player games with mixed strategies (recap)

Two-player game (A,B) given by matrices A,B ∈ Rm×n.
Row player Alice and column player Bob independently choose
strategy x ∈ ∆A and y ∈ ∆B.

Gives product distribution σx ,y : SA×SB → [0,1] over strategy profiles:
σx ,y (ak ,b`) = σk` = xky` for k = 1, . . . ,m and ` = 1, . . . ,n.

Example
Distribution over strategy profiles is given by(

x1y1 x1y2 x1y3
x2y1 x2y2 x2y3

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Then expected cost (for Alice) CA(σx ,y) is

xT Ay = E(ak ,b`)∼σx,y [CA(ak ,b`)] =
∑

(ak ,b`)∈SA×SB

σk`CA(ak ,b`)

Remember that Ak` = CA(ak ,b`).

3 / 32

Two-player games with mixed strategies (recap)

Two-player game (A,B) given by matrices A,B ∈ Rm×n.
Row player Alice and column player Bob independently choose
strategy x ∈ ∆A and y ∈ ∆B.

Gives product distribution σx ,y : SA×SB → [0,1] over strategy profiles:
σx ,y (ak ,b`) = σk` = xky` for k = 1, . . . ,m and ` = 1, . . . ,n.

Example
Distribution over strategy profiles is given by(

x1y1 x1y2 x1y3
x2y1 x2y2 x2y3

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Then expected cost (for Alice) CA(σx ,y) is

xT Ay = E(ak ,b`)∼σx,y [CA(ak ,b`)] =
∑

(ak ,b`)∈SA×SB

σk`CA(ak ,b`)

Remember that Ak` = CA(ak ,b`).
3 / 32

Beyond mixed strategies

4 / 32

Equilibrium concepts as distributions over SA × SB

We have seen the following equilibrium concepts:

PNE: Strategy profile s = (sA, sB) ∈ SA × SB.
Gives indicator distribution σ over SA × SB with

σ(t) =

{
1 t = s
0 t 6= s .

MNE: Mixed strategies (x , y) with x ∈ ∆A, y ∈ ∆B.
Gives product distribution σ over SA × SB, where

σ(ak ,b`) = σk` = xk y`.

(C)CE: (Coarse) correlated equilibrium will be defined as
general distribution σ over SA × SB.

I.e., not induced by specific player actions.

5 / 32

Equilibrium concepts as distributions over SA × SB

We have seen the following equilibrium concepts:
PNE: Strategy profile s = (sA, sB) ∈ SA × SB.

Gives indicator distribution σ over SA × SB with

σ(t) =

{
1 t = s
0 t 6= s .

MNE: Mixed strategies (x , y) with x ∈ ∆A, y ∈ ∆B.
Gives product distribution σ over SA × SB, where

σ(ak ,b`) = σk` = xk y`.

(C)CE: (Coarse) correlated equilibrium will be defined as
general distribution σ over SA × SB.

I.e., not induced by specific player actions.

5 / 32

Equilibrium concepts as distributions over SA × SB

We have seen the following equilibrium concepts:
PNE: Strategy profile s = (sA, sB) ∈ SA × SB.

Gives indicator distribution σ over SA × SB with

σ(t) =

{
1 t = s
0 t 6= s .

MNE: Mixed strategies (x , y) with x ∈ ∆A, y ∈ ∆B.
Gives product distribution σ over SA × SB, where

σ(ak ,b`) = σk` = xk y`.

(C)CE: (Coarse) correlated equilibrium will be defined as
general distribution σ over SA × SB.

I.e., not induced by specific player actions.

5 / 32

Equilibrium concepts as distributions over SA × SB

We have seen the following equilibrium concepts:
PNE: Strategy profile s = (sA, sB) ∈ SA × SB.

Gives indicator distribution σ over SA × SB with

σ(t) =

{
1 t = s
0 t 6= s .

MNE: Mixed strategies (x , y) with x ∈ ∆A, y ∈ ∆B.

Gives product distribution σ over SA × SB, where

σ(ak ,b`) = σk` = xk y`.

(C)CE: (Coarse) correlated equilibrium will be defined as
general distribution σ over SA × SB.

I.e., not induced by specific player actions.

5 / 32

Equilibrium concepts as distributions over SA × SB

We have seen the following equilibrium concepts:
PNE: Strategy profile s = (sA, sB) ∈ SA × SB.

Gives indicator distribution σ over SA × SB with

σ(t) =

{
1 t = s
0 t 6= s .

MNE: Mixed strategies (x , y) with x ∈ ∆A, y ∈ ∆B.
Gives product distribution σ over SA × SB, where

σ(ak ,b`) = σk` = xk y`.

(C)CE: (Coarse) correlated equilibrium will be defined as
general distribution σ over SA × SB.

I.e., not induced by specific player actions.

5 / 32

Equilibrium concepts as distributions over SA × SB

We have seen the following equilibrium concepts:
PNE: Strategy profile s = (sA, sB) ∈ SA × SB.

Gives indicator distribution σ over SA × SB with

σ(t) =

{
1 t = s
0 t 6= s .

MNE: Mixed strategies (x , y) with x ∈ ∆A, y ∈ ∆B.
Gives product distribution σ over SA × SB, where

σ(ak ,b`) = σk` = xk y`.

(C)CE: (Coarse) correlated equilibrium will be defined as
general distribution σ over SA × SB.

I.e., not induced by specific player actions.

5 / 32

Equilibrium concepts as distributions over SA × SB

We have seen the following equilibrium concepts:
PNE: Strategy profile s = (sA, sB) ∈ SA × SB.

Gives indicator distribution σ over SA × SB with

σ(t) =

{
1 t = s
0 t 6= s .

MNE: Mixed strategies (x , y) with x ∈ ∆A, y ∈ ∆B.
Gives product distribution σ over SA × SB, where

σ(ak ,b`) = σk` = xk y`.

(C)CE: (Coarse) correlated equilibrium will be defined as
general distribution σ over SA × SB.

I.e., not induced by specific player actions.

5 / 32

Game of Chicken

Game of Chicken
Alice and Bob both approach an intersection.

Bob
Stop Go

Alice
Stop (0,0) (3,−1)

Go (−1,3) (4,4)

Two PNEs: (Stop, Go), (Go, Stop).
One MNE: Both players randomize over Stop and Go.

Distributions over strategy profiles (a,b) for these equilibria are(
0 1
0 0

)
,

(
0 0
1 0

)
and

(1
4

1
4

1
4

1
4

)
.

6 / 32

Game of Chicken

Game of Chicken
Alice and Bob both approach an intersection.

Bob
Stop Go

Alice
Stop (0,0) (3,−1)

Go (−1,3) (4,4)

Two PNEs: (Stop, Go), (Go, Stop).

One MNE: Both players randomize over Stop and Go.

Distributions over strategy profiles (a,b) for these equilibria are(
0 1
0 0

)
,

(
0 0
1 0

)
and

(1
4

1
4

1
4

1
4

)
.

6 / 32

Game of Chicken

Game of Chicken
Alice and Bob both approach an intersection.

Bob
Stop Go

Alice
Stop (0,0) (3,−1)

Go (−1,3) (4,4)

Two PNEs: (Stop, Go), (Go, Stop).
One MNE: Both players randomize over Stop and Go.

Distributions over strategy profiles (a,b) for these equilibria are(
0 1
0 0

)
,

(
0 0
1 0

)
and

(1
4

1
4

1
4

1
4

)
.

6 / 32

Game of Chicken

Game of Chicken
Alice and Bob both approach an intersection.

Bob
Stop Go

Alice
Stop (0,0) (3,−1)

Go (−1,3) (4,4)

Two PNEs: (Stop, Go), (Go, Stop).
One MNE: Both players randomize over Stop and Go.

Distributions over strategy profiles (a,b) for these equilibria are(
0 1
0 0

)
,

(
0 0
1 0

)
and

(1
4

1
4

1
4

1
4

)
.

6 / 32

Game of Chicken

Game of Chicken
Alice and Bob both approach an intersection.

Bob
Stop Go

Alice
Stop (0,0) (3,−1)

Go (−1,3) (4,4)

Two PNEs: (Stop, Go), (Go, Stop).
One MNE: Both players randomize over Stop and Go.

Distributions over strategy profiles (a,b) for these equilibria are(
0 1
0 0

)
,

(
0 0
1 0

)
and

(1
4

1
4

1
4

1
4

)
.

6 / 32

Sensible ‘equilibrium’ would be the strategy profile distribution

σ =

(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
There are no x ∈ ∆A, y ∈ ∆B such that σk` = xk y` for all
k , ` ∈ {1,2}.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

7 / 32

Sensible ‘equilibrium’ would be the strategy profile distribution

σ =

(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.

There are no x ∈ ∆A, y ∈ ∆B such that σk` = xk y` for all
k , ` ∈ {1,2}.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

7 / 32

Sensible ‘equilibrium’ would be the strategy profile distribution

σ =

(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
There are no x ∈ ∆A, y ∈ ∆B such that σk` = xk y` for all
k , ` ∈ {1,2}.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

7 / 32

Sensible ‘equilibrium’ would be the strategy profile distribution

σ =

(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
There are no x ∈ ∆A, y ∈ ∆B such that σk` = xk y` for all
k , ` ∈ {1,2}.

Idea is to introduce traffic light (mediator or trusted third party).

Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

7 / 32

Sensible ‘equilibrium’ would be the strategy profile distribution

σ =

(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
There are no x ∈ ∆A, y ∈ ∆B such that σk` = xk y` for all
k , ` ∈ {1,2}.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.

Gives realization as recommendation to the players.
Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

7 / 32

Sensible ‘equilibrium’ would be the strategy profile distribution

σ =

(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
There are no x ∈ ∆A, y ∈ ∆B such that σk` = xk y` for all
k , ` ∈ {1,2}.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

7 / 32

Sensible ‘equilibrium’ would be the strategy profile distribution

σ =

(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
There are no x ∈ ∆A, y ∈ ∆B such that σk` = xk y` for all
k , ` ∈ {1,2}.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

7 / 32

Sensible ‘equilibrium’ would be the strategy profile distribution

σ =

(
0 1

2
1
2 0

)
.

Cannot be achieved as mixed equilibrium.
There are no x ∈ ∆A, y ∈ ∆B such that σk` = xk y` for all
k , ` ∈ {1,2}.

Idea is to introduce traffic light (mediator or trusted third party).
Traffic light samples/draws one of the two strategy profiles from
distribution.
Gives realization as recommendation to the players.

Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do
is to follow it.

7 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.
Mediator (third party) draws sample x = (xA, xB) ∼ σ.

σ is known to Alice and Bob, but not x .
Gives private recommendation xA to Alice, and xB to Bob.

Alice and Bob do not know each other’s recommendation!
Game of Chicken is the exception to the rule.

Recommendations give players some info on which x was drawn.
Player assumes all other players play private recommendation, i.e., Alice

assumes Bob follows his recommendation (and vice versa).
In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).
Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front, nor that there is an actual third party that
samples from it.

8 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.

Mediator (third party) draws sample x = (xA, xB) ∼ σ.
σ is known to Alice and Bob, but not x .

Gives private recommendation xA to Alice, and xB to Bob.
Alice and Bob do not know each other’s recommendation!

Game of Chicken is the exception to the rule.
Recommendations give players some info on which x was drawn.

Player assumes all other players play private recommendation, i.e., Alice
assumes Bob follows his recommendation (and vice versa).

In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).
Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front, nor that there is an actual third party that
samples from it.

8 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.
Mediator (third party) draws sample x = (xA, xB) ∼ σ.

σ is known to Alice and Bob, but not x .
Gives private recommendation xA to Alice, and xB to Bob.

Alice and Bob do not know each other’s recommendation!
Game of Chicken is the exception to the rule.

Recommendations give players some info on which x was drawn.
Player assumes all other players play private recommendation, i.e., Alice

assumes Bob follows his recommendation (and vice versa).
In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).
Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front, nor that there is an actual third party that
samples from it.

8 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.
Mediator (third party) draws sample x = (xA, xB) ∼ σ.

σ is known to Alice and Bob, but not x .

Gives private recommendation xA to Alice, and xB to Bob.
Alice and Bob do not know each other’s recommendation!

Game of Chicken is the exception to the rule.
Recommendations give players some info on which x was drawn.

Player assumes all other players play private recommendation, i.e., Alice
assumes Bob follows his recommendation (and vice versa).

In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).
Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front, nor that there is an actual third party that
samples from it.

8 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.
Mediator (third party) draws sample x = (xA, xB) ∼ σ.

σ is known to Alice and Bob, but not x .
Gives private recommendation xA to Alice, and xB to Bob.

Alice and Bob do not know each other’s recommendation!
Game of Chicken is the exception to the rule.

Recommendations give players some info on which x was drawn.
Player assumes all other players play private recommendation, i.e., Alice

assumes Bob follows his recommendation (and vice versa).
In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).
Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front, nor that there is an actual third party that
samples from it.

8 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.
Mediator (third party) draws sample x = (xA, xB) ∼ σ.

σ is known to Alice and Bob, but not x .
Gives private recommendation xA to Alice, and xB to Bob.

Alice and Bob do not know each other’s recommendation!

Game of Chicken is the exception to the rule.
Recommendations give players some info on which x was drawn.

Player assumes all other players play private recommendation, i.e., Alice
assumes Bob follows his recommendation (and vice versa).

In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).
Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front, nor that there is an actual third party that
samples from it.

8 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.
Mediator (third party) draws sample x = (xA, xB) ∼ σ.

σ is known to Alice and Bob, but not x .
Gives private recommendation xA to Alice, and xB to Bob.

Alice and Bob do not know each other’s recommendation!
Game of Chicken is the exception to the rule.

Recommendations give players some info on which x was drawn.
Player assumes all other players play private recommendation, i.e., Alice

assumes Bob follows his recommendation (and vice versa).
In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).
Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front, nor that there is an actual third party that
samples from it.

8 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.
Mediator (third party) draws sample x = (xA, xB) ∼ σ.

σ is known to Alice and Bob, but not x .
Gives private recommendation xA to Alice, and xB to Bob.

Alice and Bob do not know each other’s recommendation!
Game of Chicken is the exception to the rule.

Recommendations give players some info on which x was drawn.

Player assumes all other players play private recommendation, i.e., Alice
assumes Bob follows his recommendation (and vice versa).

In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).
Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front, nor that there is an actual third party that
samples from it.

8 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.
Mediator (third party) draws sample x = (xA, xB) ∼ σ.

σ is known to Alice and Bob, but not x .
Gives private recommendation xA to Alice, and xB to Bob.

Alice and Bob do not know each other’s recommendation!
Game of Chicken is the exception to the rule.

Recommendations give players some info on which x was drawn.
Player assumes all other players play private recommendation,

i.e., Alice
assumes Bob follows his recommendation (and vice versa).

In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).
Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front, nor that there is an actual third party that
samples from it.

8 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.
Mediator (third party) draws sample x = (xA, xB) ∼ σ.

σ is known to Alice and Bob, but not x .
Gives private recommendation xA to Alice, and xB to Bob.

Alice and Bob do not know each other’s recommendation!
Game of Chicken is the exception to the rule.

Recommendations give players some info on which x was drawn.
Player assumes all other players play private recommendation, i.e., Alice

assumes Bob follows his recommendation (and vice versa).

In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).
Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front, nor that there is an actual third party that
samples from it.

8 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.
Mediator (third party) draws sample x = (xA, xB) ∼ σ.

σ is known to Alice and Bob, but not x .
Gives private recommendation xA to Alice, and xB to Bob.

Alice and Bob do not know each other’s recommendation!
Game of Chicken is the exception to the rule.

Recommendations give players some info on which x was drawn.
Player assumes all other players play private recommendation, i.e., Alice

assumes Bob follows his recommendation (and vice versa).
In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).
Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front, nor that there is an actual third party that
samples from it.

8 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.
Mediator (third party) draws sample x = (xA, xB) ∼ σ.

σ is known to Alice and Bob, but not x .
Gives private recommendation xA to Alice, and xB to Bob.

Alice and Bob do not know each other’s recommendation!
Game of Chicken is the exception to the rule.

Recommendations give players some info on which x was drawn.
Player assumes all other players play private recommendation, i.e., Alice

assumes Bob follows his recommendation (and vice versa).
In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).

Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front, nor that there is an actual third party that
samples from it.

8 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.
Mediator (third party) draws sample x = (xA, xB) ∼ σ.

σ is known to Alice and Bob, but not x .
Gives private recommendation xA to Alice, and xB to Bob.

Alice and Bob do not know each other’s recommendation!
Game of Chicken is the exception to the rule.

Recommendations give players some info on which x was drawn.
Player assumes all other players play private recommendation, i.e., Alice

assumes Bob follows his recommendation (and vice versa).
In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).
Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front,

nor that there is an actual third party that
samples from it.

8 / 32

Correlated equilibrium (CE), informal

Correlated equilibrium σ : SA × SB → [0,1] can be seen as follows.
Mediator (third party) draws sample x = (xA, xB) ∼ σ.

σ is known to Alice and Bob, but not x .
Gives private recommendation xA to Alice, and xB to Bob.

Alice and Bob do not know each other’s recommendation!
Game of Chicken is the exception to the rule.

Recommendations give players some info on which x was drawn.
Player assumes all other players play private recommendation, i.e., Alice

assumes Bob follows his recommendation (and vice versa).
In CE, no player has incentive to deviate given its recommendation.

Remark
We will later see no-regret algorithms whose output is a coarse
correlated equilibrium (similar algorithms exist converging to CE).
Therefore, for (C)CE, it’s not always necessary that all players know
the distribution σ up front, nor that there is an actual third party that
samples from it.

8 / 32

Example
Distribution over strategy profiles is given by

σ =

(
σ11 σ12 σ13
σ21 σ22 σ23

)
=

(
0 1/8 1/8

2/8 1/8 3/8

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Suppose Alice gets second row a2 as recommendation.
This gives Alice a (conditional) probability distribution ρ for column
privately recommended to Bob:

Column b1 with probability
2
8

2
8 + 1

8 + 3
8

= 2
6 .

Column b2 with probability
1
8

2
8 + 1

8 + 3
8

= 1
6 .

Column b3 with probability
3
8

2
8 + 1

8 + 3
8

= 3
6 .

Assuming distribution ρ over Bob’s recommendation, notion of CE says
Alice should have no incentive to deviate to first row a1 (in expectation).

Eρ[Row a2] = 3× 2/6 + 0× 1/6 + 1× 3/6 = 9/6.
Eρ[Row a1] = 0× 2/6 + 1× 1/6 + 2× 3/6 = 7/6.

σ as above is not a CE!

9 / 32

Example
Distribution over strategy profiles is given by

σ =

(
σ11 σ12 σ13
σ21 σ22 σ23

)
=

(
0 1/8 1/8

2/8 1/8 3/8

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Suppose Alice gets second row a2 as recommendation.

This gives Alice a (conditional) probability distribution ρ for column
privately recommended to Bob:

Column b1 with probability
2
8

2
8 + 1

8 + 3
8

= 2
6 .

Column b2 with probability
1
8

2
8 + 1

8 + 3
8

= 1
6 .

Column b3 with probability
3
8

2
8 + 1

8 + 3
8

= 3
6 .

Assuming distribution ρ over Bob’s recommendation, notion of CE says
Alice should have no incentive to deviate to first row a1 (in expectation).

Eρ[Row a2] = 3× 2/6 + 0× 1/6 + 1× 3/6 = 9/6.
Eρ[Row a1] = 0× 2/6 + 1× 1/6 + 2× 3/6 = 7/6.

σ as above is not a CE!

9 / 32

Example
Distribution over strategy profiles is given by

σ =

(
σ11 σ12 σ13
σ21 σ22 σ23

)
=

(
0 1/8 1/8

2/8 1/8 3/8

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Suppose Alice gets second row a2 as recommendation.
This gives Alice a (conditional) probability distribution ρ for column
privately recommended to Bob:

Column b1 with probability
2
8

2
8 + 1

8 + 3
8

= 2
6 .

Column b2 with probability
1
8

2
8 + 1

8 + 3
8

= 1
6 .

Column b3 with probability
3
8

2
8 + 1

8 + 3
8

= 3
6 .

Assuming distribution ρ over Bob’s recommendation, notion of CE says
Alice should have no incentive to deviate to first row a1 (in expectation).

Eρ[Row a2] = 3× 2/6 + 0× 1/6 + 1× 3/6 = 9/6.
Eρ[Row a1] = 0× 2/6 + 1× 1/6 + 2× 3/6 = 7/6.

σ as above is not a CE!

9 / 32

Example
Distribution over strategy profiles is given by

σ =

(
σ11 σ12 σ13
σ21 σ22 σ23

)
=

(
0 1/8 1/8

2/8 1/8 3/8

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Suppose Alice gets second row a2 as recommendation.
This gives Alice a (conditional) probability distribution ρ for column
privately recommended to Bob:

Column b1 with probability
2
8

2
8 + 1

8 + 3
8

= 2
6 .

Column b2 with probability
1
8

2
8 + 1

8 + 3
8

= 1
6 .

Column b3 with probability
3
8

2
8 + 1

8 + 3
8

= 3
6 .

Assuming distribution ρ over Bob’s recommendation, notion of CE says
Alice should have no incentive to deviate to first row a1 (in expectation).

Eρ[Row a2] = 3× 2/6 + 0× 1/6 + 1× 3/6 = 9/6.
Eρ[Row a1] = 0× 2/6 + 1× 1/6 + 2× 3/6 = 7/6.

σ as above is not a CE!

9 / 32

Example
Distribution over strategy profiles is given by

σ =

(
σ11 σ12 σ13
σ21 σ22 σ23

)
=

(
0 1/8 1/8

2/8 1/8 3/8

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Suppose Alice gets second row a2 as recommendation.
This gives Alice a (conditional) probability distribution ρ for column
privately recommended to Bob:

Column b1 with probability
2
8

2
8 + 1

8 + 3
8

= 2
6 .

Column b2 with probability
1
8

2
8 + 1

8 + 3
8

= 1
6 .

Column b3 with probability
3
8

2
8 + 1

8 + 3
8

= 3
6 .

Assuming distribution ρ over Bob’s recommendation, notion of CE says
Alice should have no incentive to deviate to first row a1 (in expectation).

Eρ[Row a2] = 3× 2/6 + 0× 1/6 + 1× 3/6 = 9/6.
Eρ[Row a1] = 0× 2/6 + 1× 1/6 + 2× 3/6 = 7/6.

σ as above is not a CE!

9 / 32

Example
Distribution over strategy profiles is given by

σ =

(
σ11 σ12 σ13
σ21 σ22 σ23

)
=

(
0 1/8 1/8

2/8 1/8 3/8

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Suppose Alice gets second row a2 as recommendation.
This gives Alice a (conditional) probability distribution ρ for column
privately recommended to Bob:

Column b1 with probability
2
8

2
8 + 1

8 + 3
8

= 2
6 .

Column b2 with probability
1
8

2
8 + 1

8 + 3
8

= 1
6 .

Column b3 with probability
3
8

2
8 + 1

8 + 3
8

= 3
6 .

Assuming distribution ρ over Bob’s recommendation, notion of CE says
Alice should have no incentive to deviate to first row a1 (in expectation).

Eρ[Row a2] = 3× 2/6 + 0× 1/6 + 1× 3/6 = 9/6.
Eρ[Row a1] = 0× 2/6 + 1× 1/6 + 2× 3/6 = 7/6.

σ as above is not a CE!

9 / 32

Example
Distribution over strategy profiles is given by

σ =

(
σ11 σ12 σ13
σ21 σ22 σ23

)
=

(
0 1/8 1/8

2/8 1/8 3/8

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Suppose Alice gets second row a2 as recommendation.
This gives Alice a (conditional) probability distribution ρ for column
privately recommended to Bob:

Column b1 with probability
2
8

2
8 + 1

8 + 3
8

= 2
6 .

Column b2 with probability
1
8

2
8 + 1

8 + 3
8

= 1
6 .

Column b3 with probability
3
8

2
8 + 1

8 + 3
8

= 3
6 .

Assuming distribution ρ over Bob’s recommendation,

notion of CE says
Alice should have no incentive to deviate to first row a1 (in expectation).

Eρ[Row a2] = 3× 2/6 + 0× 1/6 + 1× 3/6 = 9/6.
Eρ[Row a1] = 0× 2/6 + 1× 1/6 + 2× 3/6 = 7/6.

σ as above is not a CE!

9 / 32

Example
Distribution over strategy profiles is given by

σ =

(
σ11 σ12 σ13
σ21 σ22 σ23

)
=

(
0 1/8 1/8

2/8 1/8 3/8

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Suppose Alice gets second row a2 as recommendation.
This gives Alice a (conditional) probability distribution ρ for column
privately recommended to Bob:

Column b1 with probability
2
8

2
8 + 1

8 + 3
8

= 2
6 .

Column b2 with probability
1
8

2
8 + 1

8 + 3
8

= 1
6 .

Column b3 with probability
3
8

2
8 + 1

8 + 3
8

= 3
6 .

Assuming distribution ρ over Bob’s recommendation, notion of CE says
Alice should have no incentive to deviate to first row a1

(in expectation).
Eρ[Row a2] = 3× 2/6 + 0× 1/6 + 1× 3/6 = 9/6.
Eρ[Row a1] = 0× 2/6 + 1× 1/6 + 2× 3/6 = 7/6.

σ as above is not a CE!

9 / 32

Example
Distribution over strategy profiles is given by

σ =

(
σ11 σ12 σ13
σ21 σ22 σ23

)
=

(
0 1/8 1/8

2/8 1/8 3/8

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Suppose Alice gets second row a2 as recommendation.
This gives Alice a (conditional) probability distribution ρ for column
privately recommended to Bob:

Column b1 with probability
2
8

2
8 + 1

8 + 3
8

= 2
6 .

Column b2 with probability
1
8

2
8 + 1

8 + 3
8

= 1
6 .

Column b3 with probability
3
8

2
8 + 1

8 + 3
8

= 3
6 .

Assuming distribution ρ over Bob’s recommendation, notion of CE says
Alice should have no incentive to deviate to first row a1 (in expectation).

Eρ[Row a2] = 3× 2/6 + 0× 1/6 + 1× 3/6 = 9/6.
Eρ[Row a1] = 0× 2/6 + 1× 1/6 + 2× 3/6 = 7/6.

σ as above is not a CE!

9 / 32

Example
Distribution over strategy profiles is given by

σ =

(
σ11 σ12 σ13
σ21 σ22 σ23

)
=

(
0 1/8 1/8

2/8 1/8 3/8

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Suppose Alice gets second row a2 as recommendation.
This gives Alice a (conditional) probability distribution ρ for column
privately recommended to Bob:

Column b1 with probability
2
8

2
8 + 1

8 + 3
8

= 2
6 .

Column b2 with probability
1
8

2
8 + 1

8 + 3
8

= 1
6 .

Column b3 with probability
3
8

2
8 + 1

8 + 3
8

= 3
6 .

Assuming distribution ρ over Bob’s recommendation, notion of CE says
Alice should have no incentive to deviate to first row a1 (in expectation).

Eρ[Row a2] = 3× 2/6 + 0× 1/6 + 1× 3/6 = 9/6.

Eρ[Row a1] = 0× 2/6 + 1× 1/6 + 2× 3/6 = 7/6.
σ as above is not a CE!

9 / 32

Example
Distribution over strategy profiles is given by

σ =

(
σ11 σ12 σ13
σ21 σ22 σ23

)
=

(
0 1/8 1/8

2/8 1/8 3/8

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Suppose Alice gets second row a2 as recommendation.
This gives Alice a (conditional) probability distribution ρ for column
privately recommended to Bob:

Column b1 with probability
2
8

2
8 + 1

8 + 3
8

= 2
6 .

Column b2 with probability
1
8

2
8 + 1

8 + 3
8

= 1
6 .

Column b3 with probability
3
8

2
8 + 1

8 + 3
8

= 3
6 .

Assuming distribution ρ over Bob’s recommendation, notion of CE says
Alice should have no incentive to deviate to first row a1 (in expectation).

Eρ[Row a2] = 3× 2/6 + 0× 1/6 + 1× 3/6 = 9/6.
Eρ[Row a1] = 0× 2/6 + 1× 1/6 + 2× 3/6 = 7/6.

σ as above is not a CE!

9 / 32

Example
Distribution over strategy profiles is given by

σ =

(
σ11 σ12 σ13
σ21 σ22 σ23

)
=

(
0 1/8 1/8

2/8 1/8 3/8

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Suppose Alice gets second row a2 as recommendation.
This gives Alice a (conditional) probability distribution ρ for column
privately recommended to Bob:

Column b1 with probability
2
8

2
8 + 1

8 + 3
8

= 2
6 .

Column b2 with probability
1
8

2
8 + 1

8 + 3
8

= 1
6 .

Column b3 with probability
3
8

2
8 + 1

8 + 3
8

= 3
6 .

Assuming distribution ρ over Bob’s recommendation, notion of CE says
Alice should have no incentive to deviate to first row a1 (in expectation).

Eρ[Row a2] = 3× 2/6 + 0× 1/6 + 1× 3/6 = 9/6.
Eρ[Row a1] = 0× 2/6 + 1× 1/6 + 2× 3/6 = 7/6.

σ as above is not a CE!

9 / 32

Example
Distribution over strategy profiles is given by

σ =

(
σ11 σ12 σ13
σ21 σ22 σ23

)
=

(
0 1/8 1/8

2/8 1/8 3/8

) b1 b2 b3

a1 (0,2) (1,0) (2,1)

a2 (3,0) (0,1) (1,4)

Suppose Alice gets second row a2 as recommendation.
This gives Alice a (conditional) probability distribution ρ for column
privately recommended to Bob:

Column b1 with probability
2
8

2
8 + 1

8 + 3
8

= 2
6 .

Column b2 with probability
1
8

2
8 + 1

8 + 3
8

= 1
6 .

Column b3 with probability
3
8

2
8 + 1

8 + 3
8

= 3
6 .

Assuming distribution ρ over Bob’s recommendation, notion of CE says
Alice should have no incentive to deviate to first row a1 (in expectation).

Eρ[Row a2] = 3× 2/6 + 0× 1/6 + 1× 3/6 = 9/6.
Eρ[Row a1] = 0× 2/6 + 1× 1/6 + 2× 3/6 = 7/6.

σ as above is not a CE!
9 / 32

(Coarse) correlated equilibrium

Definition (Correlated equilibrium (CE))
A distribution σ on ×iSi is a correlated equilibrium if for every i ∈ N and
ti ∈ Si , and every unilateral deviation t ′i ∈ Si , it holds that

Ex∼σ [Ci(x) | xi = ti] ≤ Ex∼σ
[
Ci(t ′i , x−i) | xi = ti

]
.

Set-up for coarse correlated equilibrium is similar, but you do not get
private recommendation from mediator.

Definition (Coarse correlated equilibrium (CCE))
A distribution σ on ×iSi is a coarse correlated equilibrium if for every
i ∈ N, and every unilateral deviation t ′i ∈ Si , it holds that

Ex∼σ [Ci(x)] ≤ Ex∼σ
[
Ci(t ′i , x−i)

]
.

Exercise: Prove that every CE is also CCE.
(Hint: Use “Law of total expectation”, i.e., E[X] = E

[
E[X |Y]

]
.)

10 / 32

(Coarse) correlated equilibrium

Definition (Correlated equilibrium (CE))
A distribution σ on ×iSi is a correlated equilibrium if for every i ∈ N and
ti ∈ Si , and every unilateral deviation t ′i ∈ Si , it holds that

Ex∼σ [Ci(x) | xi = ti] ≤ Ex∼σ
[
Ci(t ′i , x−i) | xi = ti

]
.

Set-up for coarse correlated equilibrium is similar, but you do not get
private recommendation from mediator.

Definition (Coarse correlated equilibrium (CCE))
A distribution σ on ×iSi is a coarse correlated equilibrium if for every
i ∈ N, and every unilateral deviation t ′i ∈ Si , it holds that

Ex∼σ [Ci(x)] ≤ Ex∼σ
[
Ci(t ′i , x−i)

]
.

Exercise: Prove that every CE is also CCE.
(Hint: Use “Law of total expectation”, i.e., E[X] = E

[
E[X |Y]

]
.)

10 / 32

(Coarse) correlated equilibrium

Definition (Correlated equilibrium (CE))
A distribution σ on ×iSi is a correlated equilibrium if for every i ∈ N and
ti ∈ Si , and every unilateral deviation t ′i ∈ Si , it holds that

Ex∼σ [Ci(x) | xi = ti] ≤ Ex∼σ
[
Ci(t ′i , x−i) | xi = ti

]
.

Set-up for coarse correlated equilibrium is similar, but you do not get
private recommendation from mediator.

Definition (Coarse correlated equilibrium (CCE))
A distribution σ on ×iSi is a coarse correlated equilibrium if for every
i ∈ N, and every unilateral deviation t ′i ∈ Si , it holds that

Ex∼σ [Ci(x)] ≤ Ex∼σ
[
Ci(t ′i , x−i)

]
.

Exercise: Prove that every CE is also CCE.
(Hint: Use “Law of total expectation”, i.e., E[X] = E

[
E[X |Y]

]
.)

10 / 32

(Coarse) correlated equilibrium

Definition (Correlated equilibrium (CE))
A distribution σ on ×iSi is a correlated equilibrium if for every i ∈ N and
ti ∈ Si , and every unilateral deviation t ′i ∈ Si , it holds that

Ex∼σ [Ci(x) | xi = ti] ≤ Ex∼σ
[
Ci(t ′i , x−i) | xi = ti

]
.

Set-up for coarse correlated equilibrium is similar, but you do not get
private recommendation from mediator.

Definition (Coarse correlated equilibrium (CCE))
A distribution σ on ×iSi is a coarse correlated equilibrium if for every
i ∈ N, and every unilateral deviation t ′i ∈ Si , it holds that

Ex∼σ [Ci(x)] ≤ Ex∼σ
[
Ci(t ′i , x−i)

]
.

Exercise: Prove that every CE is also CCE.

(Hint: Use “Law of total expectation”, i.e., E[X] = E
[
E[X |Y]

]
.)

10 / 32

(Coarse) correlated equilibrium

Definition (Correlated equilibrium (CE))
A distribution σ on ×iSi is a correlated equilibrium if for every i ∈ N and
ti ∈ Si , and every unilateral deviation t ′i ∈ Si , it holds that

Ex∼σ [Ci(x) | xi = ti] ≤ Ex∼σ
[
Ci(t ′i , x−i) | xi = ti

]
.

Set-up for coarse correlated equilibrium is similar, but you do not get
private recommendation from mediator.

Definition (Coarse correlated equilibrium (CCE))
A distribution σ on ×iSi is a coarse correlated equilibrium if for every
i ∈ N, and every unilateral deviation t ′i ∈ Si , it holds that

Ex∼σ [Ci(x)] ≤ Ex∼σ
[
Ci(t ′i , x−i)

]
.

Exercise: Prove that every CE is also CCE.
(Hint: Use “Law of total expectation”, i.e., E[X] = E

[
E[X |Y]

]
.)

10 / 32

Final remark

Remember MNE is pair of mixed strategies (x , y) that yields product
distribution σ over strategy profiles.

MNE through the lens of CE
MNE is special case of CE, where recommendation of mediator gives
no extra information.

Conditional distribution ρ that Alice constructs for Bob’s private
recommendation is the same for every row recommended to her.

It is just the mixed strategy y of Bob!
That is, the recommendation is not relevant for Alice.

Exercise: Check this yourself!

11 / 32

Final remark
Remember MNE is pair of mixed strategies (x , y) that yields product
distribution σ over strategy profiles.

MNE through the lens of CE
MNE is special case of CE, where recommendation of mediator gives
no extra information.

Conditional distribution ρ that Alice constructs for Bob’s private
recommendation is the same for every row recommended to her.

It is just the mixed strategy y of Bob!
That is, the recommendation is not relevant for Alice.

Exercise: Check this yourself!

11 / 32

Final remark
Remember MNE is pair of mixed strategies (x , y) that yields product
distribution σ over strategy profiles.

MNE through the lens of CE

MNE is special case of CE, where recommendation of mediator gives
no extra information.

Conditional distribution ρ that Alice constructs for Bob’s private
recommendation is the same for every row recommended to her.

It is just the mixed strategy y of Bob!
That is, the recommendation is not relevant for Alice.

Exercise: Check this yourself!

11 / 32

Final remark
Remember MNE is pair of mixed strategies (x , y) that yields product
distribution σ over strategy profiles.

MNE through the lens of CE
MNE is special case of CE, where recommendation of mediator gives
no extra information.

Conditional distribution ρ that Alice constructs for Bob’s private
recommendation is the same for every row recommended to her.

It is just the mixed strategy y of Bob!
That is, the recommendation is not relevant for Alice.

Exercise: Check this yourself!

11 / 32

Final remark
Remember MNE is pair of mixed strategies (x , y) that yields product
distribution σ over strategy profiles.

MNE through the lens of CE
MNE is special case of CE, where recommendation of mediator gives
no extra information.

Conditional distribution ρ that Alice constructs for Bob’s private
recommendation is the same for every row recommended to her.

It is just the mixed strategy y of Bob!
That is, the recommendation is not relevant for Alice.

Exercise: Check this yourself!

11 / 32

Final remark
Remember MNE is pair of mixed strategies (x , y) that yields product
distribution σ over strategy profiles.

MNE through the lens of CE
MNE is special case of CE, where recommendation of mediator gives
no extra information.

Conditional distribution ρ that Alice constructs for Bob’s private
recommendation is the same for every row recommended to her.

It is just the mixed strategy y of Bob!

That is, the recommendation is not relevant for Alice.

Exercise: Check this yourself!

11 / 32

Final remark
Remember MNE is pair of mixed strategies (x , y) that yields product
distribution σ over strategy profiles.

MNE through the lens of CE
MNE is special case of CE, where recommendation of mediator gives
no extra information.

Conditional distribution ρ that Alice constructs for Bob’s private
recommendation is the same for every row recommended to her.

It is just the mixed strategy y of Bob!
That is, the recommendation is not relevant for Alice.

Exercise: Check this yourself!

11 / 32

Final remark
Remember MNE is pair of mixed strategies (x , y) that yields product
distribution σ over strategy profiles.

MNE through the lens of CE
MNE is special case of CE, where recommendation of mediator gives
no extra information.

Conditional distribution ρ that Alice constructs for Bob’s private
recommendation is the same for every row recommended to her.

It is just the mixed strategy y of Bob!
That is, the recommendation is not relevant for Alice.

Exercise: Check this yourself!

11 / 32

Computation of correlated equilibrium

12 / 32

Linear program for computing CE

Once again, linear programming comes to the rescue...

Theorem
For a given finite game Γ, there is a linear program that computes a
correlated equilibrium σ : ×iSi → [0,1] in time polynomial in | ×i Si | and
the input size of the cost functions.

LP has one variable σs for every strategy profile s ∈ ×iSi .
Polynomial number of variables if number of players |N| is assumed
to be constant.

For two-player games, note that |SA × SB| = mn.

Conditions in definition CE can be modeled as linear program.
We will do the 2-player case, and focus on Alice.

13 / 32

Linear program for computing CE

Once again, linear programming comes to the rescue...

Theorem
For a given finite game Γ, there is a linear program that computes a
correlated equilibrium σ : ×iSi → [0,1] in time polynomial in | ×i Si | and
the input size of the cost functions.

LP has one variable σs for every strategy profile s ∈ ×iSi .
Polynomial number of variables if number of players |N| is assumed
to be constant.

For two-player games, note that |SA × SB| = mn.

Conditions in definition CE can be modeled as linear program.
We will do the 2-player case, and focus on Alice.

13 / 32

Linear program for computing CE

Once again, linear programming comes to the rescue...

Theorem
For a given finite game Γ, there is a linear program that computes a
correlated equilibrium σ : ×iSi → [0,1] in time polynomial in | ×i Si | and
the input size of the cost functions.

LP has one variable σs for every strategy profile s ∈ ×iSi .
Polynomial number of variables if number of players |N| is assumed
to be constant.

For two-player games, note that |SA × SB| = mn.

Conditions in definition CE can be modeled as linear program.
We will do the 2-player case, and focus on Alice.

13 / 32

Linear program for computing CE

Once again, linear programming comes to the rescue...

Theorem
For a given finite game Γ, there is a linear program that computes a
correlated equilibrium σ : ×iSi → [0,1] in time polynomial in | ×i Si | and
the input size of the cost functions.

LP has one variable σs for every strategy profile s ∈ ×iSi .

Polynomial number of variables if number of players |N| is assumed
to be constant.

For two-player games, note that |SA × SB| = mn.

Conditions in definition CE can be modeled as linear program.
We will do the 2-player case, and focus on Alice.

13 / 32

Linear program for computing CE

Once again, linear programming comes to the rescue...

Theorem
For a given finite game Γ, there is a linear program that computes a
correlated equilibrium σ : ×iSi → [0,1] in time polynomial in | ×i Si | and
the input size of the cost functions.

LP has one variable σs for every strategy profile s ∈ ×iSi .
Polynomial number of variables if number of players |N| is assumed
to be constant.

For two-player games, note that |SA × SB| = mn.

Conditions in definition CE can be modeled as linear program.
We will do the 2-player case, and focus on Alice.

13 / 32

Linear program for computing CE

Once again, linear programming comes to the rescue...

Theorem
For a given finite game Γ, there is a linear program that computes a
correlated equilibrium σ : ×iSi → [0,1] in time polynomial in | ×i Si | and
the input size of the cost functions.

LP has one variable σs for every strategy profile s ∈ ×iSi .
Polynomial number of variables if number of players |N| is assumed
to be constant.

For two-player games, note that |SA × SB| = mn.

Conditions in definition CE can be modeled as linear program.
We will do the 2-player case, and focus on Alice.

13 / 32

Linear program for computing CE

Once again, linear programming comes to the rescue...

Theorem
For a given finite game Γ, there is a linear program that computes a
correlated equilibrium σ : ×iSi → [0,1] in time polynomial in | ×i Si | and
the input size of the cost functions.

LP has one variable σs for every strategy profile s ∈ ×iSi .
Polynomial number of variables if number of players |N| is assumed
to be constant.

For two-player games, note that |SA × SB| = mn.

Conditions in definition CE can be modeled as linear program.

We will do the 2-player case, and focus on Alice.

13 / 32

Linear program for computing CE

Once again, linear programming comes to the rescue...

Theorem
For a given finite game Γ, there is a linear program that computes a
correlated equilibrium σ : ×iSi → [0,1] in time polynomial in | ×i Si | and
the input size of the cost functions.

LP has one variable σs for every strategy profile s ∈ ×iSi .
Polynomial number of variables if number of players |N| is assumed
to be constant.

For two-player games, note that |SA × SB| = mn.

Conditions in definition CE can be modeled as linear program.
We will do the 2-player case, and focus on Alice.

13 / 32

Definition (Correlated equilibrium (for Alice))
Distribution σ on SA × SB is correlated equilibrium if for every
“recommendation” ak ∈ SA and deviation ak ′ it holds, with x = (xA, xB),
that

Ex∼σ [CA(xA, xB) | xA = ak] ≤ Ex∼σ [CA(ak ′ , xB) | xA = ak] .

LP will have variables σk` for k = 1, . . . ,m, ` = 1, . . . ,n.
Linear constraints for Alice
Fix “recommended row” ak ∈ SA and “deviation” ak ′ ∈ SA. Now,

Ex∼σ [CA(xA, xB) | xA = ak] =
∑

`=1,...,n

CA(ak ,b`)P[x = (xA, xB)|xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)
σk`∑
r σkr

=
1∑
r σkr

∑
`=1,...,n

CA(ak ,b`)σk`

Ex∼σ [CA(ak ′ , xB) | xA = ak] =
∑

`=1,...,n

CA(ak ′ ,b`)P[x = (xA, xB)|xA = ak]

=
1∑
r σkr

∑
`=1,...,n

CA(ak ′ ,b`)σk`

14 / 32

Definition (Correlated equilibrium (for Alice))
Distribution σ on SA × SB is correlated equilibrium if for every
“recommendation” ak ∈ SA and deviation ak ′ it holds, with x = (xA, xB),
that

Ex∼σ [CA(xA, xB) | xA = ak] ≤ Ex∼σ [CA(ak ′ , xB) | xA = ak] .

LP will have variables σk` for k = 1, . . . ,m, ` = 1, . . . ,n.
Linear constraints for Alice
Fix “recommended row” ak ∈ SA and “deviation” ak ′ ∈ SA. Now,

Ex∼σ [CA(xA, xB) | xA = ak] =
∑

`=1,...,n

CA(ak ,b`)P[x = (xA, xB)|xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)
σk`∑
r σkr

=
1∑
r σkr

∑
`=1,...,n

CA(ak ,b`)σk`

Ex∼σ [CA(ak ′ , xB) | xA = ak] =
∑

`=1,...,n

CA(ak ′ ,b`)P[x = (xA, xB)|xA = ak]

=
1∑
r σkr

∑
`=1,...,n

CA(ak ′ ,b`)σk`

14 / 32

Definition (Correlated equilibrium (for Alice))
Distribution σ on SA × SB is correlated equilibrium if for every
“recommendation” ak ∈ SA and deviation ak ′ it holds, with x = (xA, xB),
that

Ex∼σ [CA(xA, xB) | xA = ak] ≤ Ex∼σ [CA(ak ′ , xB) | xA = ak] .

LP will have variables σk` for k = 1, . . . ,m, ` = 1, . . . ,n.

Linear constraints for Alice
Fix “recommended row” ak ∈ SA and “deviation” ak ′ ∈ SA. Now,

Ex∼σ [CA(xA, xB) | xA = ak] =
∑

`=1,...,n

CA(ak ,b`)P[x = (xA, xB)|xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)
σk`∑
r σkr

=
1∑
r σkr

∑
`=1,...,n

CA(ak ,b`)σk`

Ex∼σ [CA(ak ′ , xB) | xA = ak] =
∑

`=1,...,n

CA(ak ′ ,b`)P[x = (xA, xB)|xA = ak]

=
1∑
r σkr

∑
`=1,...,n

CA(ak ′ ,b`)σk`

14 / 32

Definition (Correlated equilibrium (for Alice))
Distribution σ on SA × SB is correlated equilibrium if for every
“recommendation” ak ∈ SA and deviation ak ′ it holds, with x = (xA, xB),
that

Ex∼σ [CA(xA, xB) | xA = ak] ≤ Ex∼σ [CA(ak ′ , xB) | xA = ak] .

LP will have variables σk` for k = 1, . . . ,m, ` = 1, . . . ,n.

Linear constraints for Alice

Fix “recommended row” ak ∈ SA and “deviation” ak ′ ∈ SA. Now,
Ex∼σ [CA(xA, xB) | xA = ak] =

∑
`=1,...,n

CA(ak ,b`)P[x = (xA, xB)|xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)
σk`∑
r σkr

=
1∑
r σkr

∑
`=1,...,n

CA(ak ,b`)σk`

Ex∼σ [CA(ak ′ , xB) | xA = ak] =
∑

`=1,...,n

CA(ak ′ ,b`)P[x = (xA, xB)|xA = ak]

=
1∑
r σkr

∑
`=1,...,n

CA(ak ′ ,b`)σk`

14 / 32

Definition (Correlated equilibrium (for Alice))
Distribution σ on SA × SB is correlated equilibrium if for every
“recommendation” ak ∈ SA and deviation ak ′ it holds, with x = (xA, xB),
that

Ex∼σ [CA(xA, xB) | xA = ak] ≤ Ex∼σ [CA(ak ′ , xB) | xA = ak] .

LP will have variables σk` for k = 1, . . . ,m, ` = 1, . . . ,n.

Linear constraints for Alice
Fix “recommended row” ak ∈ SA

and “deviation” ak ′ ∈ SA. Now,
Ex∼σ [CA(xA, xB) | xA = ak] =

∑
`=1,...,n

CA(ak ,b`)P[x = (xA, xB)|xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)
σk`∑
r σkr

=
1∑
r σkr

∑
`=1,...,n

CA(ak ,b`)σk`

Ex∼σ [CA(ak ′ , xB) | xA = ak] =
∑

`=1,...,n

CA(ak ′ ,b`)P[x = (xA, xB)|xA = ak]

=
1∑
r σkr

∑
`=1,...,n

CA(ak ′ ,b`)σk`

14 / 32

Definition (Correlated equilibrium (for Alice))
Distribution σ on SA × SB is correlated equilibrium if for every
“recommendation” ak ∈ SA and deviation ak ′ it holds, with x = (xA, xB),
that

Ex∼σ [CA(xA, xB) | xA = ak] ≤ Ex∼σ [CA(ak ′ , xB) | xA = ak] .

LP will have variables σk` for k = 1, . . . ,m, ` = 1, . . . ,n.

Linear constraints for Alice
Fix “recommended row” ak ∈ SA and “deviation” ak ′ ∈ SA.

Now,
Ex∼σ [CA(xA, xB) | xA = ak] =

∑
`=1,...,n

CA(ak ,b`)P[x = (xA, xB)|xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)
σk`∑
r σkr

=
1∑
r σkr

∑
`=1,...,n

CA(ak ,b`)σk`

Ex∼σ [CA(ak ′ , xB) | xA = ak] =
∑

`=1,...,n

CA(ak ′ ,b`)P[x = (xA, xB)|xA = ak]

=
1∑
r σkr

∑
`=1,...,n

CA(ak ′ ,b`)σk`

14 / 32

Definition (Correlated equilibrium (for Alice))
Distribution σ on SA × SB is correlated equilibrium if for every
“recommendation” ak ∈ SA and deviation ak ′ it holds, with x = (xA, xB),
that

Ex∼σ [CA(xA, xB) | xA = ak] ≤ Ex∼σ [CA(ak ′ , xB) | xA = ak] .

LP will have variables σk` for k = 1, . . . ,m, ` = 1, . . . ,n.

Linear constraints for Alice
Fix “recommended row” ak ∈ SA and “deviation” ak ′ ∈ SA. Now,

Ex∼σ [CA(xA, xB) | xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)P[x = (xA, xB)|xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)
σk`∑
r σkr

=
1∑
r σkr

∑
`=1,...,n

CA(ak ,b`)σk`

Ex∼σ [CA(ak ′ , xB) | xA = ak] =
∑

`=1,...,n

CA(ak ′ ,b`)P[x = (xA, xB)|xA = ak]

=
1∑
r σkr

∑
`=1,...,n

CA(ak ′ ,b`)σk`

14 / 32

Definition (Correlated equilibrium (for Alice))
Distribution σ on SA × SB is correlated equilibrium if for every
“recommendation” ak ∈ SA and deviation ak ′ it holds, with x = (xA, xB),
that

Ex∼σ [CA(xA, xB) | xA = ak] ≤ Ex∼σ [CA(ak ′ , xB) | xA = ak] .

LP will have variables σk` for k = 1, . . . ,m, ` = 1, . . . ,n.

Linear constraints for Alice
Fix “recommended row” ak ∈ SA and “deviation” ak ′ ∈ SA. Now,

Ex∼σ [CA(xA, xB) | xA = ak] =
∑

`=1,...,n

CA(ak ,b`)P[x = (xA, xB)|xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)
σk`∑
r σkr

=
1∑
r σkr

∑
`=1,...,n

CA(ak ,b`)σk`

Ex∼σ [CA(ak ′ , xB) | xA = ak] =
∑

`=1,...,n

CA(ak ′ ,b`)P[x = (xA, xB)|xA = ak]

=
1∑
r σkr

∑
`=1,...,n

CA(ak ′ ,b`)σk`

14 / 32

Definition (Correlated equilibrium (for Alice))
Distribution σ on SA × SB is correlated equilibrium if for every
“recommendation” ak ∈ SA and deviation ak ′ it holds, with x = (xA, xB),
that

Ex∼σ [CA(xA, xB) | xA = ak] ≤ Ex∼σ [CA(ak ′ , xB) | xA = ak] .

LP will have variables σk` for k = 1, . . . ,m, ` = 1, . . . ,n.

Linear constraints for Alice
Fix “recommended row” ak ∈ SA and “deviation” ak ′ ∈ SA. Now,

Ex∼σ [CA(xA, xB) | xA = ak] =
∑

`=1,...,n

CA(ak ,b`)P[x = (xA, xB)|xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)
σk`∑
r σkr

=
1∑
r σkr

∑
`=1,...,n

CA(ak ,b`)σk`

Ex∼σ [CA(ak ′ , xB) | xA = ak] =
∑

`=1,...,n

CA(ak ′ ,b`)P[x = (xA, xB)|xA = ak]

=
1∑
r σkr

∑
`=1,...,n

CA(ak ′ ,b`)σk`

14 / 32

Definition (Correlated equilibrium (for Alice))
Distribution σ on SA × SB is correlated equilibrium if for every
“recommendation” ak ∈ SA and deviation ak ′ it holds, with x = (xA, xB),
that

Ex∼σ [CA(xA, xB) | xA = ak] ≤ Ex∼σ [CA(ak ′ , xB) | xA = ak] .

LP will have variables σk` for k = 1, . . . ,m, ` = 1, . . . ,n.

Linear constraints for Alice
Fix “recommended row” ak ∈ SA and “deviation” ak ′ ∈ SA. Now,

Ex∼σ [CA(xA, xB) | xA = ak] =
∑

`=1,...,n

CA(ak ,b`)P[x = (xA, xB)|xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)
σk`∑
r σkr

=
1∑
r σkr

∑
`=1,...,n

CA(ak ,b`)σk`

Ex∼σ [CA(ak ′ , xB) | xA = ak] =
∑

`=1,...,n

CA(ak ′ ,b`)P[x = (xA, xB)|xA = ak]

=
1∑
r σkr

∑
`=1,...,n

CA(ak ′ ,b`)σk`

14 / 32

Definition (Correlated equilibrium (for Alice))
Distribution σ on SA × SB is correlated equilibrium if for every
“recommendation” ak ∈ SA and deviation ak ′ it holds, with x = (xA, xB),
that

Ex∼σ [CA(xA, xB) | xA = ak] ≤ Ex∼σ [CA(ak ′ , xB) | xA = ak] .

LP will have variables σk` for k = 1, . . . ,m, ` = 1, . . . ,n.

Linear constraints for Alice
Fix “recommended row” ak ∈ SA and “deviation” ak ′ ∈ SA. Now,

Ex∼σ [CA(xA, xB) | xA = ak] =
∑

`=1,...,n

CA(ak ,b`)P[x = (xA, xB)|xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)
σk`∑
r σkr

=
1∑
r σkr

∑
`=1,...,n

CA(ak ,b`)σk`

Ex∼σ [CA(ak ′ , xB) | xA = ak] =

∑
`=1,...,n

CA(ak ′ ,b`)P[x = (xA, xB)|xA = ak]

=
1∑
r σkr

∑
`=1,...,n

CA(ak ′ ,b`)σk`

14 / 32

Definition (Correlated equilibrium (for Alice))
Distribution σ on SA × SB is correlated equilibrium if for every
“recommendation” ak ∈ SA and deviation ak ′ it holds, with x = (xA, xB),
that

Ex∼σ [CA(xA, xB) | xA = ak] ≤ Ex∼σ [CA(ak ′ , xB) | xA = ak] .

LP will have variables σk` for k = 1, . . . ,m, ` = 1, . . . ,n.

Linear constraints for Alice
Fix “recommended row” ak ∈ SA and “deviation” ak ′ ∈ SA. Now,

Ex∼σ [CA(xA, xB) | xA = ak] =
∑

`=1,...,n

CA(ak ,b`)P[x = (xA, xB)|xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)
σk`∑
r σkr

=
1∑
r σkr

∑
`=1,...,n

CA(ak ,b`)σk`

Ex∼σ [CA(ak ′ , xB) | xA = ak] =
∑

`=1,...,n

CA(ak ′ ,b`)P[x = (xA, xB)|xA = ak]

=
1∑
r σkr

∑
`=1,...,n

CA(ak ′ ,b`)σk`

14 / 32

Definition (Correlated equilibrium (for Alice))
Distribution σ on SA × SB is correlated equilibrium if for every
“recommendation” ak ∈ SA and deviation ak ′ it holds, with x = (xA, xB),
that

Ex∼σ [CA(xA, xB) | xA = ak] ≤ Ex∼σ [CA(ak ′ , xB) | xA = ak] .

LP will have variables σk` for k = 1, . . . ,m, ` = 1, . . . ,n.

Linear constraints for Alice
Fix “recommended row” ak ∈ SA and “deviation” ak ′ ∈ SA. Now,

Ex∼σ [CA(xA, xB) | xA = ak] =
∑

`=1,...,n

CA(ak ,b`)P[x = (xA, xB)|xA = ak]

=
∑

`=1,...,n

CA(ak ,b`)
σk`∑
r σkr

=
1∑
r σkr

∑
`=1,...,n

CA(ak ,b`)σk`

Ex∼σ [CA(ak ′ , xB) | xA = ak] =
∑

`=1,...,n

CA(ak ′ ,b`)P[x = (xA, xB)|xA = ak]

=
1∑
r σkr

∑
`=1,...,n

CA(ak ′ ,b`)σk`

14 / 32

Conditions in (1) for Alice and Bob are equivalent to∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA

∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB

Note that these are linear constraints in variables σk`.

Linear program is now as follows

max 0
s.t.

∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB∑
k,`

σk` = 1

σk` ≥ 0 ∀ak ∈ SA,b` ∈ SB

15 / 32

Conditions in (1) for Alice and Bob are equivalent to∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB

Note that these are linear constraints in variables σk`.

Linear program is now as follows

max 0
s.t.

∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB∑
k,`

σk` = 1

σk` ≥ 0 ∀ak ∈ SA,b` ∈ SB

15 / 32

Conditions in (1) for Alice and Bob are equivalent to∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB

Note that these are linear constraints in variables σk`.

Linear program is now as follows

max 0
s.t.

∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB∑
k,`

σk` = 1

σk` ≥ 0 ∀ak ∈ SA,b` ∈ SB

15 / 32

Conditions in (1) for Alice and Bob are equivalent to∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB

Note that these are linear constraints in variables σk`.

Linear program is now as follows

max 0
s.t.

∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB∑
k,`

σk` = 1

σk` ≥ 0 ∀ak ∈ SA,b` ∈ SB

15 / 32

max 0
s.t.

∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB∑
k,`

σk` = 1

σk` ≥ 0 ∀ak ∈ SA,b` ∈ SB

This is a feasiblity LP, i.e., the goal is to find a feasible solution of
the linear system above.
We know at least one solution exists by Nash’s theorem

Remember that every MNE is also CE.

Why not use the LP for computing MNE? We would need additional
non-linear constraint enforcing that σ is product distribution.

16 / 32

max 0
s.t.

∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB∑
k,`

σk` = 1

σk` ≥ 0 ∀ak ∈ SA,b` ∈ SB

This is a feasiblity LP, i.e., the goal is to find a feasible solution of
the linear system above.

We know at least one solution exists by Nash’s theorem
Remember that every MNE is also CE.

Why not use the LP for computing MNE? We would need additional
non-linear constraint enforcing that σ is product distribution.

16 / 32

max 0
s.t.

∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB∑
k,`

σk` = 1

σk` ≥ 0 ∀ak ∈ SA,b` ∈ SB

This is a feasiblity LP, i.e., the goal is to find a feasible solution of
the linear system above.
We know at least one solution exists by Nash’s theorem

Remember that every MNE is also CE.

Why not use the LP for computing MNE? We would need additional
non-linear constraint enforcing that σ is product distribution.

16 / 32

max 0
s.t.

∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB∑
k,`

σk` = 1

σk` ≥ 0 ∀ak ∈ SA,b` ∈ SB

This is a feasiblity LP, i.e., the goal is to find a feasible solution of
the linear system above.
We know at least one solution exists by Nash’s theorem

Remember that every MNE is also CE.

Why not use the LP for computing MNE? We would need additional
non-linear constraint enforcing that σ is product distribution.

16 / 32

max 0
s.t.

∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB∑
k,`

σk` = 1

σk` ≥ 0 ∀ak ∈ SA,b` ∈ SB

This is a feasiblity LP, i.e., the goal is to find a feasible solution of
the linear system above.
We know at least one solution exists by Nash’s theorem

Remember that every MNE is also CE.

Why not use the LP for computing MNE?

We would need additional
non-linear constraint enforcing that σ is product distribution.

16 / 32

max 0
s.t.

∑
`=1,...,n

CA(ak ,b`)σk` ≤
∑

`=1,...,n

CA(ak ′ ,b`)σk` ∀ak ,ak ′ ∈ SA∑
k=1,...,m

CB(ak ,b`)σk` ≤
∑

k=1,...,m

CB(ak ,b`′)σk` ∀b`,b`′ ∈ SB∑
k,`

σk` = 1

σk` ≥ 0 ∀ak ∈ SA,b` ∈ SB

This is a feasiblity LP, i.e., the goal is to find a feasible solution of
the linear system above.
We know at least one solution exists by Nash’s theorem

Remember that every MNE is also CE.

Why not use the LP for computing MNE? We would need additional
non-linear constraint enforcing that σ is product distribution.

16 / 32

For general finite game Γ = (N, (Si), (Ci)), linear program is as follows.

max 0
s.t.

∑
s−i∈S−i

Ci (si , s−i)σ(si , s−i)

≤
∑

s−i∈S−i

Ci (s′i , s−i)σ(si , s−i) ∀i ∈ N and si , s′i ∈ Si∑
s∈×iSi

σ(s) = 1

σ(s) ≥ 0 ∀s ∈ ×iSi .

We use notation S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.
And s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

17 / 32

For general finite game Γ = (N, (Si), (Ci)), linear program is as follows.

max 0
s.t.

∑
s−i∈S−i

Ci (si , s−i)σ(si , s−i)

≤
∑

s−i∈S−i

Ci (s′i , s−i)σ(si , s−i) ∀i ∈ N and si , s′i ∈ Si∑
s∈×iSi

σ(s) = 1

σ(s) ≥ 0 ∀s ∈ ×iSi .

We use notation S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.

And s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

17 / 32

For general finite game Γ = (N, (Si), (Ci)), linear program is as follows.

max 0
s.t.

∑
s−i∈S−i

Ci (si , s−i)σ(si , s−i)

≤
∑

s−i∈S−i

Ci (s′i , s−i)σ(si , s−i) ∀i ∈ N and si , s′i ∈ Si∑
s∈×iSi

σ(s) = 1

σ(s) ≥ 0 ∀s ∈ ×iSi .

We use notation S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.
And s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

17 / 32

For general finite game Γ = (N, (Si), (Ci)), linear program is as follows.

max 0
s.t.

∑
s−i∈S−i

Ci (si , s−i)σ(si , s−i)

≤
∑

s−i∈S−i

Ci (s′i , s−i)σ(si , s−i) ∀i ∈ N and si , s′i ∈ Si∑
s∈×iSi

σ(s) = 1

σ(s) ≥ 0 ∀s ∈ ×iSi .

We use notation S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.
And s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

17 / 32

No-regret dynamics

18 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.
(Looking ahead: Players will converge to CCE.)

The game dynamics
Game is repeated for T rounds. In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.
Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].
Strategy a(t) is drawn according to p(t).

Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark. What should the benchmark be?

19 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.
(Looking ahead: Players will converge to CCE.)

The game dynamics
Game is repeated for T rounds. In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.
Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].
Strategy a(t) is drawn according to p(t).

Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark. What should the benchmark be?

19 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.

(Looking ahead: Players will converge to CCE.)

The game dynamics
Game is repeated for T rounds. In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.
Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].
Strategy a(t) is drawn according to p(t).

Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark. What should the benchmark be?

19 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.
(Looking ahead: Players will converge to CCE.)

The game dynamics
Game is repeated for T rounds. In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.
Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].
Strategy a(t) is drawn according to p(t).

Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark. What should the benchmark be?

19 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.
(Looking ahead: Players will converge to CCE.)

The game dynamics

Game is repeated for T rounds. In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.
Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].
Strategy a(t) is drawn according to p(t).

Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark. What should the benchmark be?

19 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.
(Looking ahead: Players will converge to CCE.)

The game dynamics
Game is repeated for T rounds.

In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.
Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].
Strategy a(t) is drawn according to p(t).

Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark. What should the benchmark be?

19 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.
(Looking ahead: Players will converge to CCE.)

The game dynamics
Game is repeated for T rounds. In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.
Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].
Strategy a(t) is drawn according to p(t).

Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark. What should the benchmark be?

19 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.
(Looking ahead: Players will converge to CCE.)

The game dynamics
Game is repeated for T rounds. In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.

Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].
Strategy a(t) is drawn according to p(t).

Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark. What should the benchmark be?

19 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.
(Looking ahead: Players will converge to CCE.)

The game dynamics
Game is repeated for T rounds. In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.
Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].

Strategy a(t) is drawn according to p(t).
Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark. What should the benchmark be?

19 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.
(Looking ahead: Players will converge to CCE.)

The game dynamics
Game is repeated for T rounds. In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.
Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].
Strategy a(t) is drawn according to p(t).

Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark. What should the benchmark be?

19 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.
(Looking ahead: Players will converge to CCE.)

The game dynamics
Game is repeated for T rounds. In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.
Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].
Strategy a(t) is drawn according to p(t).

Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark. What should the benchmark be?

19 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.
(Looking ahead: Players will converge to CCE.)

The game dynamics
Game is repeated for T rounds. In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.
Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].
Strategy a(t) is drawn according to p(t).

Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark. What should the benchmark be?

19 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.
(Looking ahead: Players will converge to CCE.)

The game dynamics
Game is repeated for T rounds. In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.
Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].
Strategy a(t) is drawn according to p(t).

Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark.

What should the benchmark be?

19 / 32

The model

Alice, with strategy set SA = {a1, . . . ,am}, plays “game” against
adversary.

Adversary will be used to represent other players later on.
(Looking ahead: Players will converge to CCE.)

The game dynamics
Game is repeated for T rounds. In every round t = 1, . . . ,T :

Alice picks prob. distr. p(t) = (p(t)
1 , . . . ,p(t)

m) over {a1, . . . ,am}.
Adversary picks cost vector c(t) : {a1, . . . ,am} → [0,1].
Strategy a(t) is drawn according to p(t).

Alice incurs cost c(t)(a(t)) and gets to know cost vector c(t).

Goal of Alice is to minimize average cost
1
T

T∑
t=1

c(t)(a(t))

against a benchmark. What should the benchmark be?
19 / 32

Best choices in hindsight

Would be natural to compare against best choices in hindsight, i.e.,
1
T

T∑
t=1

min
a∈SA

c(t)(a(t)).

Alice’s cost if she would have put all prob. mass on strategy minimizing
cost vector c(t), in every step t .

Said differently, Alice’s best choice if adversary would have to
announce cost vector first.

“Regret” of Alice, for given realization a(1), . . . ,a(T), would then be defined as

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)
Alice has no (or vanishing) regret if, in expectation, α(T)→ 0 when
T →∞.

We next illustrate that, under the definition α(T), vanishing regret cannot be
achieved. (We will give an alternative definition afterwards.)

20 / 32

Best choices in hindsight

Would be natural to compare against best choices in hindsight, i.e.,

1
T

T∑
t=1

min
a∈SA

c(t)(a(t)).

Alice’s cost if she would have put all prob. mass on strategy minimizing
cost vector c(t), in every step t .

Said differently, Alice’s best choice if adversary would have to
announce cost vector first.

“Regret” of Alice, for given realization a(1), . . . ,a(T), would then be defined as

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)
Alice has no (or vanishing) regret if, in expectation, α(T)→ 0 when
T →∞.

We next illustrate that, under the definition α(T), vanishing regret cannot be
achieved. (We will give an alternative definition afterwards.)

20 / 32

Best choices in hindsight

Would be natural to compare against best choices in hindsight, i.e.,
1
T

T∑
t=1

min
a∈SA

c(t)(a(t)).

Alice’s cost if she would have put all prob. mass on strategy minimizing
cost vector c(t), in every step t .

Said differently, Alice’s best choice if adversary would have to
announce cost vector first.

“Regret” of Alice, for given realization a(1), . . . ,a(T), would then be defined as

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)
Alice has no (or vanishing) regret if, in expectation, α(T)→ 0 when
T →∞.

We next illustrate that, under the definition α(T), vanishing regret cannot be
achieved. (We will give an alternative definition afterwards.)

20 / 32

Best choices in hindsight

Would be natural to compare against best choices in hindsight, i.e.,
1
T

T∑
t=1

min
a∈SA

c(t)(a(t)).

Alice’s cost if she would have put all prob. mass on strategy minimizing
cost vector c(t), in every step t .

Said differently, Alice’s best choice if adversary would have to
announce cost vector first.

“Regret” of Alice, for given realization a(1), . . . ,a(T), would then be defined as

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)
Alice has no (or vanishing) regret if, in expectation, α(T)→ 0 when
T →∞.

We next illustrate that, under the definition α(T), vanishing regret cannot be
achieved. (We will give an alternative definition afterwards.)

20 / 32

Best choices in hindsight

Would be natural to compare against best choices in hindsight, i.e.,
1
T

T∑
t=1

min
a∈SA

c(t)(a(t)).

Alice’s cost if she would have put all prob. mass on strategy minimizing
cost vector c(t), in every step t .

Said differently, Alice’s best choice if adversary would have to
announce cost vector first.

“Regret” of Alice, for given realization a(1), . . . ,a(T), would then be defined as

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)
Alice has no (or vanishing) regret if, in expectation, α(T)→ 0 when
T →∞.

We next illustrate that, under the definition α(T), vanishing regret cannot be
achieved. (We will give an alternative definition afterwards.)

20 / 32

Best choices in hindsight

Would be natural to compare against best choices in hindsight, i.e.,
1
T

T∑
t=1

min
a∈SA

c(t)(a(t)).

Alice’s cost if she would have put all prob. mass on strategy minimizing
cost vector c(t), in every step t .

Said differently, Alice’s best choice if adversary would have to
announce cost vector first.

“Regret” of Alice, for given realization a(1), . . . ,a(T), would then be defined as

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)
Alice has no (or vanishing) regret if, in expectation, α(T)→ 0 when
T →∞.

We next illustrate that, under the definition α(T), vanishing regret cannot be
achieved. (We will give an alternative definition afterwards.)

20 / 32

Best choices in hindsight

Would be natural to compare against best choices in hindsight, i.e.,
1
T

T∑
t=1

min
a∈SA

c(t)(a(t)).

Alice’s cost if she would have put all prob. mass on strategy minimizing
cost vector c(t), in every step t .

Said differently, Alice’s best choice if adversary would have to
announce cost vector first.

“Regret” of Alice, for given realization a(1), . . . ,a(T), would then be defined as

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)

Alice has no (or vanishing) regret if, in expectation, α(T)→ 0 when
T →∞.

We next illustrate that, under the definition α(T), vanishing regret cannot be
achieved. (We will give an alternative definition afterwards.)

20 / 32

Best choices in hindsight

Would be natural to compare against best choices in hindsight, i.e.,
1
T

T∑
t=1

min
a∈SA

c(t)(a(t)).

Alice’s cost if she would have put all prob. mass on strategy minimizing
cost vector c(t), in every step t .

Said differently, Alice’s best choice if adversary would have to
announce cost vector first.

“Regret” of Alice, for given realization a(1), . . . ,a(T), would then be defined as

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)
Alice has no (or vanishing) regret if, in expectation, α(T)→ 0 when
T →∞.

We next illustrate that, under the definition α(T), vanishing regret cannot be
achieved. (We will give an alternative definition afterwards.)

20 / 32

Best choices in hindsight

Would be natural to compare against best choices in hindsight, i.e.,
1
T

T∑
t=1

min
a∈SA

c(t)(a(t)).

Alice’s cost if she would have put all prob. mass on strategy minimizing
cost vector c(t), in every step t .

Said differently, Alice’s best choice if adversary would have to
announce cost vector first.

“Regret” of Alice, for given realization a(1), . . . ,a(T), would then be defined as

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)
Alice has no (or vanishing) regret if, in expectation, α(T)→ 0 when
T →∞.

We next illustrate that, under the definition α(T), vanishing regret cannot be
achieved. (We will give an alternative definition afterwards.)

20 / 32

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)

Example
Suppose Alice has two actions a and b. In every round, when Alice
chooses p(t) = (p(t)

a ,p(t)
b), adversary sets

c(t) = (c(t)(a), c(t)(b)) =

{
(1,0) p(t)

a ≥ 1/2
(0,1) p(t)

b > 1/2
.

Expected cost in round t is at least 1/2.
Best choice in hindsight gives cost of zero in round t .

Expected regret α(T) is at least 1/2 for every T .

Is there another “sensible” regret definition yielding non-trivial results?

21 / 32

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)

Example
Suppose Alice has two actions a and b. In every round, when Alice
chooses p(t) = (p(t)

a ,p(t)
b), adversary sets

c(t) = (c(t)(a), c(t)(b)) =

{
(1,0) p(t)

a ≥ 1/2
(0,1) p(t)

b > 1/2
.

Expected cost in round t is at least 1/2.
Best choice in hindsight gives cost of zero in round t .

Expected regret α(T) is at least 1/2 for every T .

Is there another “sensible” regret definition yielding non-trivial results?

21 / 32

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)

Example
Suppose Alice has two actions a and b. In every round, when Alice
chooses p(t) = (p(t)

a ,p(t)
b), adversary sets

c(t) = (c(t)(a), c(t)(b)) =

{
(1,0) p(t)

a ≥ 1/2
(0,1) p(t)

b > 1/2
.

Expected cost in round t is at least 1/2.

Best choice in hindsight gives cost of zero in round t .

Expected regret α(T) is at least 1/2 for every T .

Is there another “sensible” regret definition yielding non-trivial results?

21 / 32

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)

Example
Suppose Alice has two actions a and b. In every round, when Alice
chooses p(t) = (p(t)

a ,p(t)
b), adversary sets

c(t) = (c(t)(a), c(t)(b)) =

{
(1,0) p(t)

a ≥ 1/2
(0,1) p(t)

b > 1/2
.

Expected cost in round t is at least 1/2.
Best choice in hindsight gives cost of zero in round t .

Expected regret α(T) is at least 1/2 for every T .

Is there another “sensible” regret definition yielding non-trivial results?

21 / 32

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)

Example
Suppose Alice has two actions a and b. In every round, when Alice
chooses p(t) = (p(t)

a ,p(t)
b), adversary sets

c(t) = (c(t)(a), c(t)(b)) =

{
(1,0) p(t)

a ≥ 1/2
(0,1) p(t)

b > 1/2
.

Expected cost in round t is at least 1/2.
Best choice in hindsight gives cost of zero in round t .

Expected regret α(T) is at least 1/2 for every T .

Is there another “sensible” regret definition yielding non-trivial results?

21 / 32

α(T) =
1
T

(
T∑

t=1

c(t)(a(t))−
T∑

t=1

min
a∈SA

c(t)(a)

)

Example
Suppose Alice has two actions a and b. In every round, when Alice
chooses p(t) = (p(t)

a ,p(t)
b), adversary sets

c(t) = (c(t)(a), c(t)(b)) =

{
(1,0) p(t)

a ≥ 1/2
(0,1) p(t)

b > 1/2
.

Expected cost in round t is at least 1/2.
Best choice in hindsight gives cost of zero in round t .

Expected regret α(T) is at least 1/2 for every T .

Is there another “sensible” regret definition yielding non-trivial results?21 / 32

Best fixed strategy in hindsight

Another possibility is to compare with best fixed strategy in hindsight, i.e.,

min
a∈SA

1
T

T∑
t=1

c(t)(a).

We interchange “minimum” and “summation”.
Cost if Alice would have been allowed to switch to (fixed) strategy a in
every step.

This is still w.r.t. to adversarial cost vectors chosen by adversary
based on prob. distributions p(t).

Definition (Regret)
For given prob. distr. p(1), . . . ,p(T) and adversarial cost vectors c(1), . . . , c(T),
the (time-averaged) regret of Alice is defined as

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)
,

where a(t) is sample according to distribution p(t). Alice has no regret (w.r.t.
chosen distributions) if ρ(T)→ 0 when T →∞, in expectation.

22 / 32

Best fixed strategy in hindsight

Another possibility is to compare with best fixed strategy in hindsight, i.e.,

min
a∈SA

1
T

T∑
t=1

c(t)(a).

We interchange “minimum” and “summation”.
Cost if Alice would have been allowed to switch to (fixed) strategy a in
every step.

This is still w.r.t. to adversarial cost vectors chosen by adversary
based on prob. distributions p(t).

Definition (Regret)
For given prob. distr. p(1), . . . ,p(T) and adversarial cost vectors c(1), . . . , c(T),
the (time-averaged) regret of Alice is defined as

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)
,

where a(t) is sample according to distribution p(t). Alice has no regret (w.r.t.
chosen distributions) if ρ(T)→ 0 when T →∞, in expectation.

22 / 32

Best fixed strategy in hindsight

Another possibility is to compare with best fixed strategy in hindsight, i.e.,

min
a∈SA

1
T

T∑
t=1

c(t)(a).

We interchange “minimum” and “summation”.
Cost if Alice would have been allowed to switch to (fixed) strategy a in
every step.

This is still w.r.t. to adversarial cost vectors chosen by adversary
based on prob. distributions p(t).

Definition (Regret)
For given prob. distr. p(1), . . . ,p(T) and adversarial cost vectors c(1), . . . , c(T),
the (time-averaged) regret of Alice is defined as

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)
,

where a(t) is sample according to distribution p(t). Alice has no regret (w.r.t.
chosen distributions) if ρ(T)→ 0 when T →∞, in expectation.

22 / 32

Best fixed strategy in hindsight

Another possibility is to compare with best fixed strategy in hindsight, i.e.,

min
a∈SA

1
T

T∑
t=1

c(t)(a).

We interchange “minimum” and “summation”.

Cost if Alice would have been allowed to switch to (fixed) strategy a in
every step.

This is still w.r.t. to adversarial cost vectors chosen by adversary
based on prob. distributions p(t).

Definition (Regret)
For given prob. distr. p(1), . . . ,p(T) and adversarial cost vectors c(1), . . . , c(T),
the (time-averaged) regret of Alice is defined as

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)
,

where a(t) is sample according to distribution p(t). Alice has no regret (w.r.t.
chosen distributions) if ρ(T)→ 0 when T →∞, in expectation.

22 / 32

Best fixed strategy in hindsight

Another possibility is to compare with best fixed strategy in hindsight, i.e.,

min
a∈SA

1
T

T∑
t=1

c(t)(a).

We interchange “minimum” and “summation”.
Cost if Alice would have been allowed to switch to (fixed) strategy a in
every step.

This is still w.r.t. to adversarial cost vectors chosen by adversary
based on prob. distributions p(t).

Definition (Regret)
For given prob. distr. p(1), . . . ,p(T) and adversarial cost vectors c(1), . . . , c(T),
the (time-averaged) regret of Alice is defined as

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)
,

where a(t) is sample according to distribution p(t). Alice has no regret (w.r.t.
chosen distributions) if ρ(T)→ 0 when T →∞, in expectation.

22 / 32

Best fixed strategy in hindsight

Another possibility is to compare with best fixed strategy in hindsight, i.e.,

min
a∈SA

1
T

T∑
t=1

c(t)(a).

We interchange “minimum” and “summation”.
Cost if Alice would have been allowed to switch to (fixed) strategy a in
every step.

This is still w.r.t. to adversarial cost vectors chosen by adversary
based on prob. distributions p(t).

Definition (Regret)
For given prob. distr. p(1), . . . ,p(T) and adversarial cost vectors c(1), . . . , c(T),
the (time-averaged) regret of Alice is defined as

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)
,

where a(t) is sample according to distribution p(t). Alice has no regret (w.r.t.
chosen distributions) if ρ(T)→ 0 when T →∞, in expectation.

22 / 32

Best fixed strategy in hindsight

Another possibility is to compare with best fixed strategy in hindsight, i.e.,

min
a∈SA

1
T

T∑
t=1

c(t)(a).

We interchange “minimum” and “summation”.
Cost if Alice would have been allowed to switch to (fixed) strategy a in
every step.

This is still w.r.t. to adversarial cost vectors chosen by adversary
based on prob. distributions p(t).

Definition (Regret)
For given prob. distr. p(1), . . . ,p(T) and adversarial cost vectors c(1), . . . , c(T),
the (time-averaged) regret of Alice is defined as

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)
,

where a(t) is sample according to distribution p(t).

Alice has no regret (w.r.t.
chosen distributions) if ρ(T)→ 0 when T →∞, in expectation.

22 / 32

Best fixed strategy in hindsight

Another possibility is to compare with best fixed strategy in hindsight, i.e.,

min
a∈SA

1
T

T∑
t=1

c(t)(a).

We interchange “minimum” and “summation”.
Cost if Alice would have been allowed to switch to (fixed) strategy a in
every step.

This is still w.r.t. to adversarial cost vectors chosen by adversary
based on prob. distributions p(t).

Definition (Regret)
For given prob. distr. p(1), . . . ,p(T) and adversarial cost vectors c(1), . . . , c(T),
the (time-averaged) regret of Alice is defined as

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)
,

where a(t) is sample according to distribution p(t). Alice has no regret (w.r.t.
chosen distributions) if ρ(T)→ 0 when T →∞, in expectation.

22 / 32

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)

More general, “Alice” is called an online decision making algorithm.
Such an algorithm can use cost vectors c(1), . . . , c(t), distributions
p(1), . . . ,p(t), and realizations a(t), to define distribution p(t+1).
Adversary can use the same information, including the chosen
p(t+1), to define adversarial cost vector c(t+1).

Theorem
There exist no-regret (online decision making) algorithms with

ρ(T) = O
(√

log(m)/T
)

where m is the number of strategies.

T = O(log(m)/ε2) steps enough to get regret below ε.
Will later see Multiplicative Weights (MW) algorithm achieving this.

23 / 32

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)

More general, “Alice” is called an online decision making algorithm.

Such an algorithm can use cost vectors c(1), . . . , c(t), distributions
p(1), . . . ,p(t), and realizations a(t), to define distribution p(t+1).
Adversary can use the same information, including the chosen
p(t+1), to define adversarial cost vector c(t+1).

Theorem
There exist no-regret (online decision making) algorithms with

ρ(T) = O
(√

log(m)/T
)

where m is the number of strategies.

T = O(log(m)/ε2) steps enough to get regret below ε.
Will later see Multiplicative Weights (MW) algorithm achieving this.

23 / 32

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)

More general, “Alice” is called an online decision making algorithm.
Such an algorithm can use cost vectors c(1), . . . , c(t), distributions
p(1), . . . ,p(t), and realizations a(t), to define distribution p(t+1).

Adversary can use the same information, including the chosen
p(t+1), to define adversarial cost vector c(t+1).

Theorem
There exist no-regret (online decision making) algorithms with

ρ(T) = O
(√

log(m)/T
)

where m is the number of strategies.

T = O(log(m)/ε2) steps enough to get regret below ε.
Will later see Multiplicative Weights (MW) algorithm achieving this.

23 / 32

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)

More general, “Alice” is called an online decision making algorithm.
Such an algorithm can use cost vectors c(1), . . . , c(t), distributions
p(1), . . . ,p(t), and realizations a(t), to define distribution p(t+1).
Adversary can use the same information, including the chosen
p(t+1), to define adversarial cost vector c(t+1).

Theorem
There exist no-regret (online decision making) algorithms with

ρ(T) = O
(√

log(m)/T
)

where m is the number of strategies.

T = O(log(m)/ε2) steps enough to get regret below ε.
Will later see Multiplicative Weights (MW) algorithm achieving this.

23 / 32

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)

More general, “Alice” is called an online decision making algorithm.
Such an algorithm can use cost vectors c(1), . . . , c(t), distributions
p(1), . . . ,p(t), and realizations a(t), to define distribution p(t+1).
Adversary can use the same information, including the chosen
p(t+1), to define adversarial cost vector c(t+1).

Theorem
There exist no-regret (online decision making) algorithms with

ρ(T) = O
(√

log(m)/T
)

where m is the number of strategies.

T = O(log(m)/ε2) steps enough to get regret below ε.
Will later see Multiplicative Weights (MW) algorithm achieving this.

23 / 32

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)

More general, “Alice” is called an online decision making algorithm.
Such an algorithm can use cost vectors c(1), . . . , c(t), distributions
p(1), . . . ,p(t), and realizations a(t), to define distribution p(t+1).
Adversary can use the same information, including the chosen
p(t+1), to define adversarial cost vector c(t+1).

Theorem
There exist no-regret (online decision making) algorithms with

ρ(T) = O
(√

log(m)/T
)

where m is the number of strategies.

T = O(log(m)/ε2) steps enough to get regret below ε.

Will later see Multiplicative Weights (MW) algorithm achieving this.

23 / 32

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)

More general, “Alice” is called an online decision making algorithm.
Such an algorithm can use cost vectors c(1), . . . , c(t), distributions
p(1), . . . ,p(t), and realizations a(t), to define distribution p(t+1).
Adversary can use the same information, including the chosen
p(t+1), to define adversarial cost vector c(t+1).

Theorem
There exist no-regret (online decision making) algorithms with

ρ(T) = O
(√

log(m)/T
)

where m is the number of strategies.

T = O(log(m)/ε2) steps enough to get regret below ε.
Will later see Multiplicative Weights (MW) algorithm achieving this.

23 / 32

ρ(T) =
1
T

(
T∑

t=1

c(t)(a(t))− min
a∈SA

T∑
t=1

c(t)(a)

)

More general, “Alice” is called an online decision making algorithm.
Such an algorithm can use cost vectors c(1), . . . , c(t), distributions
p(1), . . . ,p(t), and realizations a(t), to define distribution p(t+1).
Adversary can use the same information, including the chosen
p(t+1), to define adversarial cost vector c(t+1).

Theorem
There exist no-regret (online decision making) algorithms with

ρ(T) = O
(√

log(m)/T
)

where m is the number of strategies.

T = O(log(m)/ε2) steps enough to get regret below ε.
Will later see Multiplicative Weights (MW) algorithm achieving this.

23 / 32

No-regret dynamics
Convergence to (approximate) CCE

24 / 32

No-regret player dynamics

Let Γ = (N, (Si), (Ci)), with Ci : ×jSj → [0,1], and assume every i ∈ N is
equipped with no-regret algorithm Ai .

At this point, consider the Ai as “blackbox” algorithms.

We write mi = |Si | for number of strategies of player i ∈ N.

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

That is, σ(t)
−i : S−i → [0,1] is prob. distribution given by σ(t)

−i (s−i) =
∏

j 6=i p(t)
j,sj

,
where s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

Remember S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.

25 / 32

No-regret player dynamics

Let Γ = (N, (Si), (Ci)), with Ci : ×jSj → [0,1], and assume every i ∈ N is
equipped with no-regret algorithm Ai .

At this point, consider the Ai as “blackbox” algorithms.

We write mi = |Si | for number of strategies of player i ∈ N.

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

That is, σ(t)
−i : S−i → [0,1] is prob. distribution given by σ(t)

−i (s−i) =
∏

j 6=i p(t)
j,sj

,
where s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

Remember S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.

25 / 32

No-regret player dynamics

Let Γ = (N, (Si), (Ci)), with Ci : ×jSj → [0,1], and assume every i ∈ N is
equipped with no-regret algorithm Ai .

At this point, consider the Ai as “blackbox” algorithms.

We write mi = |Si | for number of strategies of player i ∈ N.

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

That is, σ(t)
−i : S−i → [0,1] is prob. distribution given by σ(t)

−i (s−i) =
∏

j 6=i p(t)
j,sj

,
where s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

Remember S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.

25 / 32

No-regret player dynamics

Let Γ = (N, (Si), (Ci)), with Ci : ×jSj → [0,1], and assume every i ∈ N is
equipped with no-regret algorithm Ai .

At this point, consider the Ai as “blackbox” algorithms.

We write mi = |Si | for number of strategies of player i ∈ N.

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

That is, σ(t)
−i : S−i → [0,1] is prob. distribution given by σ(t)

−i (s−i) =
∏

j 6=i p(t)
j,sj

,
where s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

Remember S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.

25 / 32

No-regret player dynamics

Let Γ = (N, (Si), (Ci)), with Ci : ×jSj → [0,1], and assume every i ∈ N is
equipped with no-regret algorithm Ai .

At this point, consider the Ai as “blackbox” algorithms.

We write mi = |Si | for number of strategies of player i ∈ N.

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

That is, σ(t)
−i : S−i → [0,1] is prob. distribution given by σ(t)

−i (s−i) =
∏

j 6=i p(t)
j,sj

,
where s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

Remember S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.

25 / 32

No-regret player dynamics

Let Γ = (N, (Si), (Ci)), with Ci : ×jSj → [0,1], and assume every i ∈ N is
equipped with no-regret algorithm Ai .

At this point, consider the Ai as “blackbox” algorithms.

We write mi = |Si | for number of strategies of player i ∈ N.

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .

The adversarial cost vector c(t)
i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

That is, σ(t)
−i : S−i → [0,1] is prob. distribution given by σ(t)

−i (s−i) =
∏

j 6=i p(t)
j,sj

,
where s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

Remember S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.

25 / 32

No-regret player dynamics

Let Γ = (N, (Si), (Ci)), with Ci : ×jSj → [0,1], and assume every i ∈ N is
equipped with no-regret algorithm Ai .

At this point, consider the Ai as “blackbox” algorithms.

We write mi = |Si | for number of strategies of player i ∈ N.

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

That is, σ(t)
−i : S−i → [0,1] is prob. distribution given by σ(t)

−i (s−i) =
∏

j 6=i p(t)
j,sj

,
where s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

Remember S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.

25 / 32

No-regret player dynamics

Let Γ = (N, (Si), (Ci)), with Ci : ×jSj → [0,1], and assume every i ∈ N is
equipped with no-regret algorithm Ai .

At this point, consider the Ai as “blackbox” algorithms.

We write mi = |Si | for number of strategies of player i ∈ N.

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

That is, σ(t)
−i : S−i → [0,1] is prob. distribution given by σ(t)

−i (s−i) =
∏

j 6=i p(t)
j,sj

,
where s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

Remember S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.

25 / 32

No-regret player dynamics

Let Γ = (N, (Si), (Ci)), with Ci : ×jSj → [0,1], and assume every i ∈ N is
equipped with no-regret algorithm Ai .

At this point, consider the Ai as “blackbox” algorithms.

We write mi = |Si | for number of strategies of player i ∈ N.

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.

Strategy a(t) ∼ p(t)
i is drawn, and player i incurs corresponding cost.

That is, σ(t)
−i : S−i → [0,1] is prob. distribution given by σ(t)

−i (s−i) =
∏

j 6=i p(t)
j,sj

,
where s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

Remember S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.

25 / 32

No-regret player dynamics

Let Γ = (N, (Si), (Ci)), with Ci : ×jSj → [0,1], and assume every i ∈ N is
equipped with no-regret algorithm Ai .

At this point, consider the Ai as “blackbox” algorithms.

We write mi = |Si | for number of strategies of player i ∈ N.

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

That is, σ(t)
−i : S−i → [0,1] is prob. distribution given by σ(t)

−i (s−i) =
∏

j 6=i p(t)
j,sj

,
where s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

Remember S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.

25 / 32

No-regret player dynamics

Let Γ = (N, (Si), (Ci)), with Ci : ×jSj → [0,1], and assume every i ∈ N is
equipped with no-regret algorithm Ai .

At this point, consider the Ai as “blackbox” algorithms.

We write mi = |Si | for number of strategies of player i ∈ N.

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

That is, σ(t)
−i : S−i → [0,1] is prob. distribution given by σ(t)

−i (s−i) =
∏

j 6=i p(t)
j,sj

,

where s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

Remember S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.

25 / 32

No-regret player dynamics

Let Γ = (N, (Si), (Ci)), with Ci : ×jSj → [0,1], and assume every i ∈ N is
equipped with no-regret algorithm Ai .

At this point, consider the Ai as “blackbox” algorithms.

We write mi = |Si | for number of strategies of player i ∈ N.

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

That is, σ(t)
−i : S−i → [0,1] is prob. distribution given by σ(t)

−i (s−i) =
∏

j 6=i p(t)
j,sj

,
where s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

Remember S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|.

25 / 32

No-regret player dynamics

Let Γ = (N, (Si), (Ci)), with Ci : ×jSj → [0,1], and assume every i ∈ N is
equipped with no-regret algorithm Ai .

At this point, consider the Ai as “blackbox” algorithms.

We write mi = |Si | for number of strategies of player i ∈ N.

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

That is, σ(t)
−i : S−i → [0,1] is prob. distribution given by σ(t)

−i (s−i) =
∏

j 6=i p(t)
j,sj

,
where s−i = (s1, . . . , si−1, si+1, . . . , s|N|) ∈ S−i .

Remember S−i = S1 × · · · × Si−1 × Si+1 × · · · × S|N|. 25 / 32

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

Set σ(t) =
∏

j p(t)
j and let σT = 1

T

∑T
t=1 σ

(t) be the time average of all
production distributions obtained in steps t = 1, . . . ,T .

Theorem
The time average σT is a ρi (T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci (s)] ≤ Es∼σT [Ci (s′i , s−i)] + ρi (T)

for i ∈ N and fixed s′i ∈ Si .

26 / 32

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .

The adversarial cost vector c(t)
i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

Set σ(t) =
∏

j p(t)
j and let σT = 1

T

∑T
t=1 σ

(t) be the time average of all
production distributions obtained in steps t = 1, . . . ,T .

Theorem
The time average σT is a ρi (T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci (s)] ≤ Es∼σT [Ci (s′i , s−i)] + ρi (T)

for i ∈ N and fixed s′i ∈ Si .

26 / 32

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

Set σ(t) =
∏

j p(t)
j and let σT = 1

T

∑T
t=1 σ

(t) be the time average of all
production distributions obtained in steps t = 1, . . . ,T .

Theorem
The time average σT is a ρi (T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci (s)] ≤ Es∼σT [Ci (s′i , s−i)] + ρi (T)

for i ∈ N and fixed s′i ∈ Si .

26 / 32

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

Set σ(t) =
∏

j p(t)
j and let σT = 1

T

∑T
t=1 σ

(t) be the time average of all
production distributions obtained in steps t = 1, . . . ,T .

Theorem
The time average σT is a ρi (T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci (s)] ≤ Es∼σT [Ci (s′i , s−i)] + ρi (T)

for i ∈ N and fixed s′i ∈ Si .

26 / 32

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

Set σ(t) =
∏

j p(t)
j and let σT = 1

T

∑T
t=1 σ

(t) be the time average of all
production distributions obtained in steps t = 1, . . . ,T .

Theorem
The time average σT is a ρi (T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci (s)] ≤ Es∼σT [Ci (s′i , s−i)] + ρi (T)

for i ∈ N and fixed s′i ∈ Si .

26 / 32

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

Set σ(t) =
∏

j p(t)
j and let σT = 1

T

∑T
t=1 σ

(t) be the time average of all
production distributions obtained in steps t = 1, . . . ,T .

Theorem
The time average σT is a ρi (T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci (s)] ≤ Es∼σT [Ci (s′i , s−i)] + ρi (T)

for i ∈ N and fixed s′i ∈ Si .

26 / 32

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

Set σ(t) =
∏

j p(t)
j and let

σT = 1
T

∑T
t=1 σ

(t) be the time average of all
production distributions obtained in steps t = 1, . . . ,T .

Theorem
The time average σT is a ρi (T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci (s)] ≤ Es∼σT [Ci (s′i , s−i)] + ρi (T)

for i ∈ N and fixed s′i ∈ Si .

26 / 32

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

Set σ(t) =
∏

j p(t)
j and let σT = 1

T

∑T
t=1 σ

(t) be the time average of all
production distributions obtained in steps t = 1, . . . ,T .

Theorem
The time average σT is a ρi (T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci (s)] ≤ Es∼σT [Ci (s′i , s−i)] + ρi (T)

for i ∈ N and fixed s′i ∈ Si .

26 / 32

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

Set σ(t) =
∏

j p(t)
j and let σT = 1

T

∑T
t=1 σ

(t) be the time average of all
production distributions obtained in steps t = 1, . . . ,T .

Theorem
The time average σT is a ρi (T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci (s)] ≤ Es∼σT [Ci (s′i , s−i)] + ρi (T)

for i ∈ N and fixed s′i ∈ Si .

26 / 32

Theorem
The time average σT is a ρi(T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci(s)] ≤ Es∼σT

[
Ci(s′i , s−i)

]
+ ρi(T)

for i ∈ N and fixed s′i ∈ Si .

Proof (sketch): First note that expected cost Eti∼p(t)
i

[
c(t)

i (ti)
]

incurred by
player i in round t boils down to Es∼σ(t) [Ci (s)]. Then

Es∼σT [Ci (s)] =
1
T

T∑
t=1

Ea∼p(t)
i

[
c(t)

i (a)
]

(time average)

= min
si∈Si

1
T

T∑
t=1

c(t)
i (si) + ρi (T) (definition of ρi (T))

= min
si∈Si

1
T

T∑
t=1

Es(t)
−i∼σ

(t)
−i

Ci

(
si , s

(t)
−i

)
+ ρi (T) (definition of c(t)

i)

≤ 1
T

T∑
t=1

Es(t)∼σ(t)Ci

(
s′i , s

(t)
−i

)
+ ρi (T) (plugging in fixed s′i)

= Es∼σT Ci (s′i , s−i) + ρi (T) (time average)

27 / 32

Theorem
The time average σT is a ρi(T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci(s)] ≤ Es∼σT

[
Ci(s′i , s−i)

]
+ ρi(T)

for i ∈ N and fixed s′i ∈ Si .

Proof (sketch):

First note that expected cost Eti∼p(t)
i

[
c(t)

i (ti)
]

incurred by
player i in round t boils down to Es∼σ(t) [Ci (s)]. Then

Es∼σT [Ci (s)] =
1
T

T∑
t=1

Ea∼p(t)
i

[
c(t)

i (a)
]

(time average)

= min
si∈Si

1
T

T∑
t=1

c(t)
i (si) + ρi (T) (definition of ρi (T))

= min
si∈Si

1
T

T∑
t=1

Es(t)
−i∼σ

(t)
−i

Ci

(
si , s

(t)
−i

)
+ ρi (T) (definition of c(t)

i)

≤ 1
T

T∑
t=1

Es(t)∼σ(t)Ci

(
s′i , s

(t)
−i

)
+ ρi (T) (plugging in fixed s′i)

= Es∼σT Ci (s′i , s−i) + ρi (T) (time average)

27 / 32

Theorem
The time average σT is a ρi(T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci(s)] ≤ Es∼σT

[
Ci(s′i , s−i)

]
+ ρi(T)

for i ∈ N and fixed s′i ∈ Si .

Proof (sketch): First note that expected cost Eti∼p(t)
i

[
c(t)

i (ti)
]

incurred by
player i in round t boils down to Es∼σ(t) [Ci (s)].

Then

Es∼σT [Ci (s)] =
1
T

T∑
t=1

Ea∼p(t)
i

[
c(t)

i (a)
]

(time average)

= min
si∈Si

1
T

T∑
t=1

c(t)
i (si) + ρi (T) (definition of ρi (T))

= min
si∈Si

1
T

T∑
t=1

Es(t)
−i∼σ

(t)
−i

Ci

(
si , s

(t)
−i

)
+ ρi (T) (definition of c(t)

i)

≤ 1
T

T∑
t=1

Es(t)∼σ(t)Ci

(
s′i , s

(t)
−i

)
+ ρi (T) (plugging in fixed s′i)

= Es∼σT Ci (s′i , s−i) + ρi (T) (time average)

27 / 32

Theorem
The time average σT is a ρi(T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci(s)] ≤ Es∼σT

[
Ci(s′i , s−i)

]
+ ρi(T)

for i ∈ N and fixed s′i ∈ Si .

Proof (sketch): First note that expected cost Eti∼p(t)
i

[
c(t)

i (ti)
]

incurred by
player i in round t boils down to Es∼σ(t) [Ci (s)]. Then

Es∼σT [Ci (s)]

=
1
T

T∑
t=1

Ea∼p(t)
i

[
c(t)

i (a)
]

(time average)

= min
si∈Si

1
T

T∑
t=1

c(t)
i (si) + ρi (T) (definition of ρi (T))

= min
si∈Si

1
T

T∑
t=1

Es(t)
−i∼σ

(t)
−i

Ci

(
si , s

(t)
−i

)
+ ρi (T) (definition of c(t)

i)

≤ 1
T

T∑
t=1

Es(t)∼σ(t)Ci

(
s′i , s

(t)
−i

)
+ ρi (T) (plugging in fixed s′i)

= Es∼σT Ci (s′i , s−i) + ρi (T) (time average)

27 / 32

Theorem
The time average σT is a ρi(T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci(s)] ≤ Es∼σT

[
Ci(s′i , s−i)

]
+ ρi(T)

for i ∈ N and fixed s′i ∈ Si .

Proof (sketch): First note that expected cost Eti∼p(t)
i

[
c(t)

i (ti)
]

incurred by
player i in round t boils down to Es∼σ(t) [Ci (s)]. Then

Es∼σT [Ci (s)] =
1
T

T∑
t=1

Ea∼p(t)
i

[
c(t)

i (a)
]

(time average)

= min
si∈Si

1
T

T∑
t=1

c(t)
i (si) + ρi (T) (definition of ρi (T))

= min
si∈Si

1
T

T∑
t=1

Es(t)
−i∼σ

(t)
−i

Ci

(
si , s

(t)
−i

)
+ ρi (T) (definition of c(t)

i)

≤ 1
T

T∑
t=1

Es(t)∼σ(t)Ci

(
s′i , s

(t)
−i

)
+ ρi (T) (plugging in fixed s′i)

= Es∼σT Ci (s′i , s−i) + ρi (T) (time average)

27 / 32

Theorem
The time average σT is a ρi(T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci(s)] ≤ Es∼σT

[
Ci(s′i , s−i)

]
+ ρi(T)

for i ∈ N and fixed s′i ∈ Si .

Proof (sketch): First note that expected cost Eti∼p(t)
i

[
c(t)

i (ti)
]

incurred by
player i in round t boils down to Es∼σ(t) [Ci (s)]. Then

Es∼σT [Ci (s)] =
1
T

T∑
t=1

Ea∼p(t)
i

[
c(t)

i (a)
]

(time average)

= min
si∈Si

1
T

T∑
t=1

c(t)
i (si) + ρi (T) (definition of ρi (T))

= min
si∈Si

1
T

T∑
t=1

Es(t)
−i∼σ

(t)
−i

Ci

(
si , s

(t)
−i

)
+ ρi (T) (definition of c(t)

i)

≤ 1
T

T∑
t=1

Es(t)∼σ(t)Ci

(
s′i , s

(t)
−i

)
+ ρi (T) (plugging in fixed s′i)

= Es∼σT Ci (s′i , s−i) + ρi (T) (time average)

27 / 32

Theorem
The time average σT is a ρi(T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci(s)] ≤ Es∼σT

[
Ci(s′i , s−i)

]
+ ρi(T)

for i ∈ N and fixed s′i ∈ Si .

Proof (sketch): First note that expected cost Eti∼p(t)
i

[
c(t)

i (ti)
]

incurred by
player i in round t boils down to Es∼σ(t) [Ci (s)]. Then

Es∼σT [Ci (s)] =
1
T

T∑
t=1

Ea∼p(t)
i

[
c(t)

i (a)
]

(time average)

= min
si∈Si

1
T

T∑
t=1

c(t)
i (si) + ρi (T) (definition of ρi (T))

= min
si∈Si

1
T

T∑
t=1

Es(t)
−i∼σ

(t)
−i

Ci

(
si , s

(t)
−i

)
+ ρi (T) (definition of c(t)

i)

≤ 1
T

T∑
t=1

Es(t)∼σ(t)Ci

(
s′i , s

(t)
−i

)
+ ρi (T) (plugging in fixed s′i)

= Es∼σT Ci (s′i , s−i) + ρi (T) (time average)

27 / 32

Theorem
The time average σT is a ρi(T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci(s)] ≤ Es∼σT

[
Ci(s′i , s−i)

]
+ ρi(T)

for i ∈ N and fixed s′i ∈ Si .

Proof (sketch): First note that expected cost Eti∼p(t)
i

[
c(t)

i (ti)
]

incurred by
player i in round t boils down to Es∼σ(t) [Ci (s)]. Then

Es∼σT [Ci (s)] =
1
T

T∑
t=1

Ea∼p(t)
i

[
c(t)

i (a)
]

(time average)

= min
si∈Si

1
T

T∑
t=1

c(t)
i (si) + ρi (T) (definition of ρi (T))

= min
si∈Si

1
T

T∑
t=1

Es(t)
−i∼σ

(t)
−i

Ci

(
si , s

(t)
−i

)
+ ρi (T) (definition of c(t)

i)

≤ 1
T

T∑
t=1

Es(t)∼σ(t)Ci

(
s′i , s

(t)
−i

)
+ ρi (T) (plugging in fixed s′i)

= Es∼σT Ci (s′i , s−i) + ρi (T) (time average)

27 / 32

Theorem
The time average σT is a ρi(T)-approximate CCE, i.e., it satisfies

Es∼σT [Ci(s)] ≤ Es∼σT

[
Ci(s′i , s−i)

]
+ ρi(T)

for i ∈ N and fixed s′i ∈ Si .

Proof (sketch): First note that expected cost Eti∼p(t)
i

[
c(t)

i (ti)
]

incurred by
player i in round t boils down to Es∼σ(t) [Ci (s)]. Then

Es∼σT [Ci (s)] =
1
T

T∑
t=1

Ea∼p(t)
i

[
c(t)

i (a)
]

(time average)

= min
si∈Si

1
T

T∑
t=1

c(t)
i (si) + ρi (T) (definition of ρi (T))

= min
si∈Si

1
T

T∑
t=1

Es(t)
−i∼σ

(t)
−i

Ci

(
si , s

(t)
−i

)
+ ρi (T) (definition of c(t)

i)

≤ 1
T

T∑
t=1

Es(t)∼σ(t)Ci

(
s′i , s

(t)
−i

)
+ ρi (T) (plugging in fixed s′i)

= Es∼σT Ci (s′i , s−i) + ρi (T) (time average)

27 / 32

No-regret dynamics
Multiplicative Weights algorithm

28 / 32

No-regret dynamics

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

We next give promised MW algorithm that can be used for the Ai , and
that has the no-regret property. That is, in expectation,

ρi(T) =
1
T

(
T∑

t=1

c(t)
i (a(t))− min

a∈Si

T∑
t=1

c(t)
i (a)

)
→ 0

where a(t) ∼ p(t)
i .

29 / 32

No-regret dynamics

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .

The adversarial cost vector c(t)
i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

We next give promised MW algorithm that can be used for the Ai , and
that has the no-regret property. That is, in expectation,

ρi(T) =
1
T

(
T∑

t=1

c(t)
i (a(t))− min

a∈Si

T∑
t=1

c(t)
i (a)

)
→ 0

where a(t) ∼ p(t)
i .

29 / 32

No-regret dynamics

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

We next give promised MW algorithm that can be used for the Ai , and
that has the no-regret property. That is, in expectation,

ρi(T) =
1
T

(
T∑

t=1

c(t)
i (a(t))− min

a∈Si

T∑
t=1

c(t)
i (a)

)
→ 0

where a(t) ∼ p(t)
i .

29 / 32

No-regret dynamics

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

We next give promised MW algorithm that can be used for the Ai , and
that has the no-regret property. That is, in expectation,

ρi(T) =
1
T

(
T∑

t=1

c(t)
i (a(t))− min

a∈Si

T∑
t=1

c(t)
i (a)

)
→ 0

where a(t) ∼ p(t)
i .

29 / 32

No-regret dynamics

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

We next give promised MW algorithm that can be used for the Ai , and
that has the no-regret property. That is, in expectation,

ρi(T) =
1
T

(
T∑

t=1

c(t)
i (a(t))− min

a∈Si

T∑
t=1

c(t)
i (a)

)
→ 0

where a(t) ∼ p(t)
i .

29 / 32

No-regret dynamics

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

We next give promised MW algorithm that can be used for the Ai ,

and
that has the no-regret property. That is, in expectation,

ρi(T) =
1
T

(
T∑

t=1

c(t)
i (a(t))− min

a∈Si

T∑
t=1

c(t)
i (a)

)
→ 0

where a(t) ∼ p(t)
i .

29 / 32

No-regret dynamics

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

We next give promised MW algorithm that can be used for the Ai , and
that has the no-regret property.

That is, in expectation,

ρi(T) =
1
T

(
T∑

t=1

c(t)
i (a(t))− min

a∈Si

T∑
t=1

c(t)
i (a)

)
→ 0

where a(t) ∼ p(t)
i .

29 / 32

No-regret dynamics

No-regret (player) dynamics
In every round t = 1, . . . ,T , every player i ∈ N does the following:

Use Ai to compute prob. distr. p(t)
i = (p(t)

i,1, . . . ,p
(t)
i,mi

) over Si .
The adversarial cost vector c(t)

i : Si → [0,1] is defined as

c(t)
i (a) = Es(t)

−i∼σ
(t)
−i

Ci

(
a, s(t)
−i

)
∀a ∈ Si

where σ(t)
−i is product distribution formed by the p(t)

j with j ∈ N \ {i}.
Strategy a(t) ∼ p(t)

i is drawn, and player i incurs corresponding cost.

We next give promised MW algorithm that can be used for the Ai , and
that has the no-regret property. That is, in expectation,

ρi(T) =
1
T

(
T∑

t=1

c(t)
i (a(t))− min

a∈Si

T∑
t=1

c(t)
i (a)

)
→ 0

where a(t) ∼ p(t)
i .

29 / 32

Multiplicative Weights (MW) algorithm

Fix player i ∈ N.

The MW algorithm maintains weight w (t)
a for every a ∈ Si

and chooses distribution for round t as

p(t)
i,a =

w (t)
a∑

r∈Si
w (t)

r

.

Weight update procedure
Given is input parameter η ∈ (0,1/2].

Initial weights are set at w (1)
a = 1 for a ∈ Si (uniform distribution over Si).

For round t = 1, . . . ,T :
After seeing cost vector c(t)

i , weights for round t + 1 are defined as

w (t+1)
a = (1− η)c(t)

i (a) · w (t)
a

High cost strategies get smaller (relative) weight in next round.

Theorem (Littlestone and Warmuth, 1994)
MW algorithm, with η =

√
log(mi)/T , has regret ρi (T) ≤ 2

√
log(mi)/T

30 / 32

Multiplicative Weights (MW) algorithm

Fix player i ∈ N. The MW algorithm maintains weight w (t)
a for every a ∈ Si

and chooses distribution for round t as

p(t)
i,a =

w (t)
a∑

r∈Si
w (t)

r

.

Weight update procedure
Given is input parameter η ∈ (0,1/2].

Initial weights are set at w (1)
a = 1 for a ∈ Si (uniform distribution over Si).

For round t = 1, . . . ,T :
After seeing cost vector c(t)

i , weights for round t + 1 are defined as

w (t+1)
a = (1− η)c(t)

i (a) · w (t)
a

High cost strategies get smaller (relative) weight in next round.

Theorem (Littlestone and Warmuth, 1994)
MW algorithm, with η =

√
log(mi)/T , has regret ρi (T) ≤ 2

√
log(mi)/T

30 / 32

Multiplicative Weights (MW) algorithm

Fix player i ∈ N. The MW algorithm maintains weight w (t)
a for every a ∈ Si

and chooses distribution for round t as

p(t)
i,a =

w (t)
a∑

r∈Si
w (t)

r

.

Weight update procedure
Given is input parameter η ∈ (0,1/2].

Initial weights are set at w (1)
a = 1 for a ∈ Si (uniform distribution over Si).

For round t = 1, . . . ,T :
After seeing cost vector c(t)

i , weights for round t + 1 are defined as

w (t+1)
a = (1− η)c(t)

i (a) · w (t)
a

High cost strategies get smaller (relative) weight in next round.

Theorem (Littlestone and Warmuth, 1994)
MW algorithm, with η =

√
log(mi)/T , has regret ρi (T) ≤ 2

√
log(mi)/T

30 / 32

Multiplicative Weights (MW) algorithm

Fix player i ∈ N. The MW algorithm maintains weight w (t)
a for every a ∈ Si

and chooses distribution for round t as

p(t)
i,a =

w (t)
a∑

r∈Si
w (t)

r

.

Weight update procedure

Given is input parameter η ∈ (0,1/2].

Initial weights are set at w (1)
a = 1 for a ∈ Si (uniform distribution over Si).

For round t = 1, . . . ,T :
After seeing cost vector c(t)

i , weights for round t + 1 are defined as

w (t+1)
a = (1− η)c(t)

i (a) · w (t)
a

High cost strategies get smaller (relative) weight in next round.

Theorem (Littlestone and Warmuth, 1994)
MW algorithm, with η =

√
log(mi)/T , has regret ρi (T) ≤ 2

√
log(mi)/T

30 / 32

Multiplicative Weights (MW) algorithm

Fix player i ∈ N. The MW algorithm maintains weight w (t)
a for every a ∈ Si

and chooses distribution for round t as

p(t)
i,a =

w (t)
a∑

r∈Si
w (t)

r

.

Weight update procedure
Given is input parameter η ∈ (0,1/2].

Initial weights are set at w (1)
a = 1 for a ∈ Si (uniform distribution over Si).

For round t = 1, . . . ,T :
After seeing cost vector c(t)

i , weights for round t + 1 are defined as

w (t+1)
a = (1− η)c(t)

i (a) · w (t)
a

High cost strategies get smaller (relative) weight in next round.

Theorem (Littlestone and Warmuth, 1994)
MW algorithm, with η =

√
log(mi)/T , has regret ρi (T) ≤ 2

√
log(mi)/T

30 / 32

Multiplicative Weights (MW) algorithm

Fix player i ∈ N. The MW algorithm maintains weight w (t)
a for every a ∈ Si

and chooses distribution for round t as

p(t)
i,a =

w (t)
a∑

r∈Si
w (t)

r

.

Weight update procedure
Given is input parameter η ∈ (0,1/2].

Initial weights are set at w (1)
a = 1 for a ∈ Si (uniform distribution over Si).

For round t = 1, . . . ,T :
After seeing cost vector c(t)

i , weights for round t + 1 are defined as

w (t+1)
a = (1− η)c(t)

i (a) · w (t)
a

High cost strategies get smaller (relative) weight in next round.

Theorem (Littlestone and Warmuth, 1994)
MW algorithm, with η =

√
log(mi)/T , has regret ρi (T) ≤ 2

√
log(mi)/T

30 / 32

Multiplicative Weights (MW) algorithm

Fix player i ∈ N. The MW algorithm maintains weight w (t)
a for every a ∈ Si

and chooses distribution for round t as

p(t)
i,a =

w (t)
a∑

r∈Si
w (t)

r

.

Weight update procedure
Given is input parameter η ∈ (0,1/2].

Initial weights are set at w (1)
a = 1 for a ∈ Si (uniform distribution over Si).

For round t = 1, . . . ,T :

After seeing cost vector c(t)
i , weights for round t + 1 are defined as

w (t+1)
a = (1− η)c(t)

i (a) · w (t)
a

High cost strategies get smaller (relative) weight in next round.

Theorem (Littlestone and Warmuth, 1994)
MW algorithm, with η =

√
log(mi)/T , has regret ρi (T) ≤ 2

√
log(mi)/T

30 / 32

Multiplicative Weights (MW) algorithm

Fix player i ∈ N. The MW algorithm maintains weight w (t)
a for every a ∈ Si

and chooses distribution for round t as

p(t)
i,a =

w (t)
a∑

r∈Si
w (t)

r

.

Weight update procedure
Given is input parameter η ∈ (0,1/2].

Initial weights are set at w (1)
a = 1 for a ∈ Si (uniform distribution over Si).

For round t = 1, . . . ,T :
After seeing cost vector c(t)

i , weights for round t + 1 are defined as

w (t+1)
a = (1− η)c(t)

i (a) · w (t)
a

High cost strategies get smaller (relative) weight in next round.

Theorem (Littlestone and Warmuth, 1994)
MW algorithm, with η =

√
log(mi)/T , has regret ρi (T) ≤ 2

√
log(mi)/T

30 / 32

Multiplicative Weights (MW) algorithm

Fix player i ∈ N. The MW algorithm maintains weight w (t)
a for every a ∈ Si

and chooses distribution for round t as

p(t)
i,a =

w (t)
a∑

r∈Si
w (t)

r

.

Weight update procedure
Given is input parameter η ∈ (0,1/2].

Initial weights are set at w (1)
a = 1 for a ∈ Si (uniform distribution over Si).

For round t = 1, . . . ,T :
After seeing cost vector c(t)

i , weights for round t + 1 are defined as

w (t+1)
a = (1− η)c(t)

i (a) · w (t)
a

High cost strategies get smaller (relative) weight in next round.

Theorem (Littlestone and Warmuth, 1994)
MW algorithm, with η =

√
log(mi)/T , has regret ρi (T) ≤ 2

√
log(mi)/T

30 / 32

Multiplicative Weights (MW) algorithm

Fix player i ∈ N. The MW algorithm maintains weight w (t)
a for every a ∈ Si

and chooses distribution for round t as

p(t)
i,a =

w (t)
a∑

r∈Si
w (t)

r

.

Weight update procedure
Given is input parameter η ∈ (0,1/2].

Initial weights are set at w (1)
a = 1 for a ∈ Si (uniform distribution over Si).

For round t = 1, . . . ,T :
After seeing cost vector c(t)

i , weights for round t + 1 are defined as

w (t+1)
a = (1− η)c(t)

i (a) · w (t)
a

High cost strategies get smaller (relative) weight in next round.

Theorem (Littlestone and Warmuth, 1994)
MW algorithm, with η =

√
log(mi)/T , has regret ρi (T) ≤ 2

√
log(mi)/T

30 / 32

Multiplicative Weights (MW) algorithm

Fix player i ∈ N. The MW algorithm maintains weight w (t)
a for every a ∈ Si

and chooses distribution for round t as

p(t)
i,a =

w (t)
a∑

r∈Si
w (t)

r

.

Weight update procedure
Given is input parameter η ∈ (0,1/2].

Initial weights are set at w (1)
a = 1 for a ∈ Si (uniform distribution over Si).

For round t = 1, . . . ,T :
After seeing cost vector c(t)

i , weights for round t + 1 are defined as

w (t+1)
a = (1− η)c(t)

i (a) · w (t)
a

High cost strategies get smaller (relative) weight in next round.

Theorem (Littlestone and Warmuth, 1994)
MW algorithm, with η =

√
log(mi)/T , has regret ρi (T) ≤ 2

√
log(mi)/T

30 / 32

Overview

31 / 32

Hierarchy of equilibrium concepts

PNE
Exists in any congestion game

MNE

Exists in any finite game, but hard to compute

CE

Computationally tractable

CCE

Easily computable with no-regret dynamics

Final remarks
CE can also be obtained through certain player dynamics.

See, e.g., Chapter 18 [R2016].

Recall that PoA bounds, that we derived for PNE, extend to CCE
by means of the smoothness framework.

32 / 32

Hierarchy of equilibrium concepts

PNE
Exists in any congestion game

MNE

Exists in any finite game, but hard to compute

CE

Computationally tractable

CCE

Easily computable with no-regret dynamics

Final remarks

CE can also be obtained through certain player dynamics.
See, e.g., Chapter 18 [R2016].

Recall that PoA bounds, that we derived for PNE, extend to CCE
by means of the smoothness framework.

32 / 32

Hierarchy of equilibrium concepts

PNE
Exists in any congestion game

MNE

Exists in any finite game, but hard to compute

CE

Computationally tractable

CCE

Easily computable with no-regret dynamics

Final remarks
CE can also be obtained through certain player dynamics.

See, e.g., Chapter 18 [R2016].

Recall that PoA bounds, that we derived for PNE, extend to CCE
by means of the smoothness framework.

32 / 32

Hierarchy of equilibrium concepts

PNE
Exists in any congestion game

MNE

Exists in any finite game, but hard to compute

CE

Computationally tractable

CCE

Easily computable with no-regret dynamics

Final remarks
CE can also be obtained through certain player dynamics.

See, e.g., Chapter 18 [R2016].

Recall that PoA bounds, that we derived for PNE, extend to CCE
by means of the smoothness framework.

32 / 32

Hierarchy of equilibrium concepts

PNE
Exists in any congestion game

MNE

Exists in any finite game, but hard to compute

CE

Computationally tractable

CCE

Easily computable with no-regret dynamics

Final remarks
CE can also be obtained through certain player dynamics.

See, e.g., Chapter 18 [R2016].

Recall that PoA bounds, that we derived for PNE, extend to CCE
by means of the smoothness framework.

32 / 32

