Topics in Algorithmic Game Theory and Economics

Pieter Kleer

Max Planck Institute for Informatics Saarland Informatics Campus

December 16, 2020

Lecture 6 Finite games III - Computation of CE and CCE

Finite (cost minimization) game $\Gamma = (N, (S_i)_{i \in N}, (C_i)_{i \in N})$ consists of:

Finite set *N* of players.

- Finite set *N* of players.
- Finite strategy set \mathcal{S}_i for every player $i \in \mathcal{N}$.

- Finite set *N* of players.
- Finite strategy set \mathcal{S}_i for every player $i \in \mathcal{N}$.
- Cost function C_i : $\times_j S_j \to \mathbb{R}$ for every $i \in \mathbb{N}$.

- Finite set *N* of players.
- Finite strategy set \mathcal{S}_i for every player $i \in \mathcal{N}$.
- Cost function C_i : $\times_j S_j \to \mathbb{R}$ for every $i \in \mathbb{N}$.

Two-player game (A, B) given by matrices $A, B \in \mathbb{R}^{m \times n}$.

• Row player Alice and column player Bob independently choose strategy $x \in \Delta_A$ and $y \in \Delta_B$.

Two-player game (A, B) given by matrices $A, B \in \mathbb{R}^{m \times n}$.

• Row player Alice and column player Bob independently choose strategy $x \in \Delta_A$ and $y \in \Delta_B$.

Gives product distribution $\sigma_{X,Y}$: $S_A \times S_B \rightarrow [0,1]$ over strategy profiles:

Two-player game (A, B) given by matrices $A, B \in \mathbb{R}^{m \times n}$.

• Row player Alice and column player Bob independently choose strategy $x \in \Delta_A$ and $y \in \Delta_B$.

Gives product distribution $\sigma_{x,y}$: $S_A \times S_B \rightarrow [0, 1]$ over strategy profiles:

 $\sigma_{\mathsf{x},\mathsf{y}}(\mathsf{a}_k,\mathsf{b}_\ell) = \sigma_{\mathsf{k}\ell} = \mathsf{x}_\mathsf{k}\mathsf{y}_\ell$ for $\mathsf{k}=1,\ldots,m$ and $\ell=1,\ldots,n.$

Two-player game (A, B) given by matrices $A, B \in \mathbb{R}^{m \times n}$.

• Row player Alice and column player Bob independently choose strategy $x \in \Delta_A$ and $y \in \Delta_B$.

Gives product distribution $\sigma_{x,y}$: $S_A \times S_B \rightarrow [0, 1]$ over strategy profiles:

 $\sigma_{\mathsf{x},\mathsf{y}}(\mathsf{a}_k,\mathsf{b}_\ell) = \sigma_{\mathsf{k}\ell} = \mathsf{x}_\mathsf{k}\mathsf{y}_\ell$ for $\mathsf{k}=1,\ldots,m$ and $\ell=1,\ldots,n.$

Two-player game (A, B) given by matrices $A, B \in \mathbb{R}^{m \times n}$.

• Row player Alice and column player Bob independently choose strategy $x \in \Delta_A$ and $y \in \Delta_B$.

Gives product distribution $\sigma_{x,y}$: $S_A \times S_B \rightarrow [0, 1]$ over strategy profiles:

 $\sigma_{\mathsf{x},\mathsf{y}}(\mathsf{a}_k,\mathsf{b}_\ell) = \sigma_{\mathsf{k}\ell} = \mathsf{x}_\mathsf{k}\mathsf{y}_\ell$ for $\mathsf{k}=1,\ldots,m$ and $\ell=1,\ldots,n.$

Then expected cost (for Alice) $C_A(\sigma_{X,Y})$ is

Two-player game (A, B) given by matrices $A, B \in \mathbb{R}^{m \times n}$.

• Row player Alice and column player Bob independently choose strategy $x \in \Delta_A$ and $y \in \Delta_B$.

Gives product distribution $\sigma_{x,y}$: $S_A \times S_B \rightarrow [0, 1]$ over strategy profiles:

 $\sigma_{\mathsf{x},\mathsf{y}}(\mathsf{a}_k,\mathsf{b}_\ell) = \sigma_{\mathsf{k}\ell} = \mathsf{x}_\mathsf{k}\mathsf{y}_\ell$ for $\mathsf{k}=1,\ldots,m$ and $\ell=1,\ldots,n.$

Example

Distribution over strategy profiles is given by \int *x*₁*y*₁ *x*₁*y*₂ *x*₁*y*₃

Then expected cost (for Alice) *CA*(σ*x*,*^y*) is

$$
x^{\mathcal{T}}Ay = \mathbb{E}_{(a_k,b_\ell)\sim\sigma_{x,y}}[C_A(a_k,b_\ell)] = \sum_{(a_k,b_\ell)\in\mathcal{S}_A\times\mathcal{S}_B}\sigma_{k\ell}C_A(a_k,b_\ell)
$$

Two-player game (A, B) given by matrices $A, B \in \mathbb{R}^{m \times n}$.

• Row player Alice and column player Bob independently choose strategy $x \in \Delta_A$ and $y \in \Delta_B$.

Gives product distribution $\sigma_{x,y}$: $S_A \times S_B \rightarrow [0, 1]$ over strategy profiles:

 $\sigma_{\mathsf{x},\mathsf{y}}(\mathsf{a}_k,\mathsf{b}_\ell) = \sigma_{\mathsf{k}\ell} = \mathsf{x}_\mathsf{k}\mathsf{y}_\ell$ for $\mathsf{k}=1,\ldots,m$ and $\ell=1,\ldots,n.$

Example

Distribution over strategy profiles is given by \int *x*₁*y*₁ *x*₁*y*₂ *x*₁*y*₃

Then expected cost (for Alice) $C_A(\sigma_{X,V})$ is

$$
x^{\mathcal{T}}Ay = \mathbb{E}_{(a_k,b_\ell)\sim\sigma_{X,Y}}[C_A(a_k,b_\ell)] = \sum_{(a_k,b_\ell)\in\mathcal{S}_A\times\mathcal{S}_B}\sigma_{k\ell}C_A(a_k,b_\ell)
$$

• Remember that $A_{k\ell} = C_A(a_k, b_\ell)$.

Beyond mixed strategies

We have seen the following equilibrium concepts:

We have seen the following equilibrium concepts:

• PNE: Strategy profile $s = (s_A, s_B) \in S_A \times S_B$.

We have seen the following equilibrium concepts:

- PNE: Strategy profile $s = (s_A, s_B) \in S_A \times S_B$.
	- **•** Gives indicator distribution σ over $S_A \times S_B$ with

$$
\sigma(t) = \left\{ \begin{array}{ll} 1 & t = s \\ 0 & t \neq s \end{array} \right..
$$

We have seen the following equilibrium concepts:

- PNE: Strategy profile $s = (s_A, s_B) \in S_A \times S_B$.
	- **•** Gives indicator distribution σ over $S_A \times S_B$ with

$$
\sigma(t) = \left\{ \begin{array}{ll} 1 & t = s \\ 0 & t \neq s \end{array} \right..
$$

• MNE: Mixed strategies (x, y) with $x \in \Delta_A$, $y \in \Delta_B$.

We have seen the following equilibrium concepts:

- PNE: Strategy profile $s = (s_A, s_B) \in S_A \times S_B$.
	- **•** Gives indicator distribution σ over $S_A \times S_B$ with

$$
\sigma(t) = \left\{ \begin{array}{ll} 1 & t = s \\ 0 & t \neq s \end{array} \right..
$$

• MNE: Mixed strategies (x, y) with $x \in \Delta_A$, $y \in \Delta_B$. **Gives product distribution** σ over $S_A \times S_B$, where

$$
\sigma(\mathbf{a}_k,\mathbf{b}_\ell)=\sigma_{k\ell}=x_ky_\ell.
$$

We have seen the following equilibrium concepts:

- PNE: Strategy profile $s = (s_A, s_B) \in S_A \times S_B$.
	- **•** Gives indicator distribution σ over $S_A \times S_B$ with

$$
\sigma(t) = \left\{ \begin{array}{ll} 1 & t = s \\ 0 & t \neq s \end{array} \right..
$$

• MNE: Mixed strategies (x, y) with $x \in \Delta_A$, $y \in \Delta_B$. **Gives product distribution** σ over $S_A \times S_B$, where

$$
\sigma(\mathbf{a}_k,\mathbf{b}_\ell)=\sigma_{k\ell}=x_ky_\ell.
$$

(C)CE: (Coarse) correlated equilibrium will be defined as general distribution σ **over** $S_A \times S_B$.

We have seen the following equilibrium concepts:

- PNE: Strategy profile $s = (s_A, s_B) \in S_A \times S_B$.
	- **•** Gives indicator distribution σ over $S_A \times S_B$ with

$$
\sigma(t) = \left\{ \begin{array}{ll} 1 & t = s \\ 0 & t \neq s \end{array} \right..
$$

• MNE: Mixed strategies (x, y) with $x \in \Delta_A$, $y \in \Delta_B$. **Gives product distribution** σ over $S_A \times S_B$, where

$$
\sigma(a_k,b_\ell)=\sigma_{k\ell}=x_ky_\ell.
$$

- **(C)CE: (Coarse) correlated equilibrium will be defined as general distribution** σ **over** $S_A \times S_B$.
	- I.e., not induced by specific player actions.

Game of Chicken

Alice and Bob both approach an intersection.

Game of Chicken

Alice and Bob both approach an intersection.

● Two PNEs: (Stop, Go), (Go, Stop).

Game of Chicken

Alice and Bob both approach an intersection.

- Two PNEs: (Stop, Go), (Go, Stop).
- One MNE: Both players randomize over Stop and Go.

Game of Chicken

Alice and Bob both approach an intersection.

- Two PNEs: (Stop, Go), (Go, Stop).
- One MNE: Both players randomize over Stop and Go.

Game of Chicken

Alice and Bob both approach an intersection.

- Two PNEs: (Stop, Go), (Go, Stop).
- One MNE: Both players randomize over Stop and Go.

Distributions over strategy profiles (*a*, *b*) for these equilibria are

$$
\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}
$$

.

$$
\sigma = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}.
$$

$$
\sigma = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}.
$$

Cannot be achieved as mixed equilibrium.

$$
\sigma = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}.
$$

Cannot be achieved as mixed equilibrium.

• There are **no** $x \in \Delta_A$, $y \in \Delta_B$ such that $\sigma_{k\ell} = x_k y_\ell$ for all $k, \ell \in \{1, 2\}.$

$$
\sigma = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}.
$$

• Cannot be achieved as mixed equilibrium.

• There are **no** $x \in \Delta_A$, $y \in \Delta_B$ such that $\sigma_{k\ell} = x_k y_\ell$ for all $k, \ell \in \{1, 2\}.$

Idea is to introduce traffic light (mediator or trusted third party).

$$
\sigma = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}.
$$

Cannot be achieved as mixed equilibrium.

• There are **no** $x \in \Delta_A$, $y \in \Delta_B$ such that $\sigma_{k\ell} = x_k y_\ell$ for all $k, \ell \in \{1, 2\}.$

Idea is to introduce traffic light (mediator or trusted third party).

Traffic light samples/draws one of the two strategy profiles from distribution.

$$
\sigma = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}.
$$

• Cannot be achieved as mixed equilibrium.

• There are **no** $x \in \Delta_A$, $y \in \Delta_B$ such that $\sigma_{k\ell} = x_k y_\ell$ for all $k, \ell \in \{1, 2\}.$

Idea is to introduce traffic light (mediator or trusted third party).

- Traffic light samples/draws one of the two strategy profiles from distribution.
- **•** Gives realization as recommendation to the players.

$$
\sigma = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}.
$$

• Cannot be achieved as mixed equilibrium.

• There are **no** $x \in \Delta_A$, $y \in \Delta_B$ such that $\sigma_{k\ell} = x_k y_\ell$ for all $k, \ell \in \{1, 2\}.$

Idea is to introduce traffic light (mediator or trusted third party).

- Traffic light samples/draws one of the two strategy profiles from distribution.
- **•** Gives realization as recommendation to the players.
	- Tells Alice to go and Bob to stop (or vice versa)

$$
\sigma = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}.
$$

Cannot be achieved as mixed equilibrium.

• There are **no** $x \in \Delta_A$, $y \in \Delta_B$ such that $\sigma_{k\ell} = x_k y_\ell$ for all $k, \ell \in \{1, 2\}.$

Idea is to introduce traffic light (mediator or trusted third party).

- Traffic light samples/draws one of the two strategy profiles from distribution.
- **•** Gives realization as recommendation to the players.
	- Tells Alice to go and Bob to stop (or vice versa)

Conditioned on this recommendation, the best thing for a player to do is to follow it.

Correlated equilibrium (CE), informal

Correlated equilibrium (CE), informal

Correlated equilibrium $\sigma : S_A \times S_B \to [0, 1]$ can be seen as follows.
Correlated equilibrium $\sigma : S_A \times S_B \to [0, 1]$ can be seen as follows. \bullet Mediator (third party) draws sample $x = (x_A, x_B) \sim \sigma$.

Correlated equilibrium $\sigma : S_A \times S_B \to [0, 1]$ can be seen as follows.

- Mediator (third party) draws sample $x = (x_A, x_B) \sim \sigma$.
	- σ is known to Alice and Bob, but not *x*.

Correlated equilibrium σ : $S_A \times S_B \rightarrow [0, 1]$ can be seen as follows.

- Mediator (third party) draws sample $x = (x_A, x_B) \sim \sigma$.
	- \bullet σ is known to Alice and Bob, but not *x*.
- Gives private recommendation x_A to Alice, and x_B to Bob.

Correlated equilibrium σ : $S_A \times S_B \rightarrow [0, 1]$ can be seen as follows.

- Mediator (third party) draws sample $x = (x_A, x_B) \sim \sigma$.
	- σ is known to Alice and Bob, but not *x*.
- Gives private recommendation x_A to Alice, and x_B to Bob.

Alice and Bob do not know each other's recommendation!

Correlated equilibrium σ : $S_A \times S_B \rightarrow [0, 1]$ can be seen as follows.

- Mediator (third party) draws sample $x = (x_A, x_B) \sim \sigma$.
	- \bullet σ is known to Alice and Bob, but not *x*.
- Gives private recommendation x_A to Alice, and x_B to Bob.
	- Alice and Bob do not know each other's recommendation!
		- Game of Chicken is the exception to the rule.

Correlated equilibrium σ : $S_A \times S_B \rightarrow [0, 1]$ can be seen as follows.

- Mediator (third party) draws sample $x = (x_A, x_B) \sim \sigma$.
	- \bullet σ is known to Alice and Bob, but not *x*.
- Gives private recommendation x_A to Alice, and x_B to Bob.
	- Alice and Bob do not know each other's recommendation!
		- Game of Chicken is the exception to the rule.
- **•** Recommendations give players some info on which x was drawn.

Correlated equilibrium σ : $S_A \times S_B \rightarrow [0, 1]$ can be seen as follows.

- Mediator (third party) draws sample $x = (x_A, x_B) \sim \sigma$.
	- \bullet σ is known to Alice and Bob, but not *x*.
- Gives private recommendation x_A to Alice, and x_B to Bob.
	- Alice and Bob do not know each other's recommendation!
		- Game of Chicken is the exception to the rule.
- **•** Recommendations give players some info on which x was drawn.

Player assumes all other players play private recommendation,

Correlated equilibrium σ : $S_A \times S_B \rightarrow [0, 1]$ can be seen as follows.

- Mediator (third party) draws sample $x = (x_A, x_B) \sim \sigma$.
	- \bullet σ is known to Alice and Bob, but not *x*.
- Gives private recommendation x_A to Alice, and x_B to Bob.
	- Alice and Bob do not know each other's recommendation!
		- Game of Chicken is the exception to the rule.
- **•** Recommendations give players some info on which x was drawn.

Player assumes all other players play private recommendation, i.e., Alice assumes Bob follows his recommendation (and vice versa).

Correlated equilibrium σ : $S_A \times S_B \rightarrow [0, 1]$ can be seen as follows.

- Mediator (third party) draws sample $x = (x_A, x_B) \sim \sigma$.
	- \bullet σ is known to Alice and Bob, but not *x*.
- Gives private recommendation x_A to Alice, and x_B to Bob.
	- Alice and Bob do not know each other's recommendation!
		- Game of Chicken is the exception to the rule.
- **•** Recommendations give players some info on which x was drawn.

Player assumes all other players play private recommendation, i.e., Alice assumes Bob follows his recommendation (and vice versa).

In CE, no player has incentive to deviate given its recommendation.

Correlated equilibrium σ : $S_A \times S_B \rightarrow [0, 1]$ can be seen as follows.

- Mediator (third party) draws sample $x = (x_A, x_B) \sim \sigma$.
	- \bullet σ is known to Alice and Bob, but not *x*.
- Gives private recommendation x_A to Alice, and x_B to Bob.
	- Alice and Bob do not know each other's recommendation!
		- **Game of Chicken is the exception to the rule.**
- **•** Recommendations give players some info on which x was drawn.

Player assumes all other players play private recommendation, i.e., Alice assumes Bob follows his recommendation (and vice versa).

In CE, no player has incentive to deviate given its recommendation.

Remark

We will later see no-regret algorithms whose output is a coarse correlated equilibrium (similar algorithms exist converging to CE).

Correlated equilibrium σ : $S_A \times S_B \rightarrow [0, 1]$ can be seen as follows.

- Mediator (third party) draws sample $x = (x_A, x_B) \sim \sigma$.
	- \bullet σ is known to Alice and Bob, but not *x*.
- Gives private recommendation x_A to Alice, and x_B to Bob.
	- Alice and Bob do not know each other's recommendation!
		- Game of Chicken is the exception to the rule.
- **•** Recommendations give players some info on which x was drawn.

Player assumes all other players play private recommendation, i.e., Alice assumes Bob follows his recommendation (and vice versa).

In CE, no player has incentive to deviate given its recommendation.

Remark

We will later see no-regret algorithms whose output is a coarse correlated equilibrium (similar algorithms exist converging to CE). Therefore, for (C)CE, it's not always necessary that all players know the distribution σ up front,

Correlated equilibrium σ : $S_A \times S_B \rightarrow [0, 1]$ can be seen as follows.

- Mediator (third party) draws sample $x = (x_A, x_B) \sim \sigma$.
	- \bullet σ is known to Alice and Bob, but not *x*.
- Gives private recommendation x_A to Alice, and x_B to Bob.
	- Alice and Bob do not know each other's recommendation!
		- Game of Chicken is the exception to the rule.
- **•** Recommendations give players some info on which x was drawn.

Player assumes all other players play private recommendation, i.e., Alice assumes Bob follows his recommendation (and vice versa).

In CE, no player has incentive to deviate given its recommendation.

Remark

We will later see no-regret algorithms whose output is a coarse correlated equilibrium (similar algorithms exist converging to CE). Therefore, for (C)CE, it's not always necessary that all players know the distribution σ up front, nor that there is an actual third party that samples from it.

$$
\sigma=\begin{pmatrix}\sigma_{11}&\sigma_{12}&\sigma_{13}\\ \sigma_{21}&\sigma_{22}&\sigma_{23}\end{pmatrix}=\begin{pmatrix}0&1/8&1/8\\ 2/8&1/8&3/8\end{pmatrix}
$$

Distribution over strategy profiles is given by

$$
\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{pmatrix} = \begin{pmatrix} 0 & 1/8 & 1/8 \\ 2/8 & 1/8 & 3/8 \end{pmatrix}
$$

• Suppose Alice gets second row a_2 as recommendation.

 b_1 b_2 b_3 $a_1 \mid (0, 2) \mid (1, 0) \mid (2, 1)$ a_2 (3, 0) (0, 1)

Distribution over strategy profiles is given by

$$
\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{pmatrix} = \begin{pmatrix} 0 & 1/8 & 1/8 \\ 2/8 & 1/8 & 3/8 \end{pmatrix}
$$

- **•** Suppose Alice gets second row a_2 as recommendation.
- **•** This gives Alice a (conditional) probability distribution ρ for column privately recommended to Bob:

 b_1 b_2 b_3 $a_1 \mid (0, 2) \mid (1, 0) \mid (2, 1)$ $(3, 0)$ $(0, 1)$

$$
\sigma=\begin{pmatrix}\sigma_{11}&\sigma_{12}&\sigma_{13}\\ \sigma_{21}&\sigma_{22}&\sigma_{23}\end{pmatrix}=\begin{pmatrix}0&1/8&1/8\\ 2/8&1/8&3/8\end{pmatrix}
$$

$$
\begin{array}{|c|c|c|c|} \hline & b_1 & b_2 & b_3 \\ \hline a_1 & (0,2) & (1,0) & (2,1) \\ \hline a_2 & (3,0) & (0,1) & (1,4) \\ \hline \end{array}
$$

- **•** Suppose Alice gets second row a_2 as recommendation.
- **•** This gives Alice a (conditional) probability distribution ρ for column privately recommended to Bob:
	- Column b_1 with probability

$$
\frac{\frac{2}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{2}{6}.
$$

Distribution over strategy profiles is given by

$$
\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{pmatrix} = \begin{pmatrix} 0 & 1/8 & 1/8 \\ 2/8 & 1/8 & 3/8 \end{pmatrix}
$$

- **•** Suppose Alice gets second row a_2 as recommendation.
- **•** This gives Alice a (conditional) probability distribution ρ for column privately recommended to Bob:
	- Column b_1 with probability
	- Column b_2 with probability

$$
\frac{\frac{2}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{2}{6}.
$$

$$
\frac{\frac{1}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{1}{6}.
$$

 b_1 b_2 b_3 a_1 (0, 2) (1, 0) (2, 1) $(3, 0)$ $(0, 1)$

Distribution over strategy profiles is given by

$$
\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{pmatrix} = \begin{pmatrix} 0 & 1/8 & 1/8 \\ 2/8 & 1/8 & 3/8 \end{pmatrix}
$$

- **•** Suppose Alice gets second row a_2 as recommendation.
- This gives Alice a (conditional) probability distribution ρ for column \bullet privately recommended to Bob:
	- Column b_1 with probability
	- Column b_2 with probability
	- Column b_3 with probability

$$
\frac{\frac{2}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{2}{6}.
$$

$$
\frac{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}}{\frac{3}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{1}{6}.
$$

$$
\frac{2}{8} + \frac{1}{8} + \frac{3}{8} = \frac{3}{6}.
$$

 b_1 b_2 b_3 a_1 (0, 2) (1, 0) (2, 1) $(3, 0)$ $(0, 1)$

Distribution over strategy profiles is given by

$$
\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{pmatrix} = \begin{pmatrix} 0 & 1/8 & 1/8 \\ 2/8 & 1/8 & 3/8 \end{pmatrix}
$$

$$
\begin{array}{|c|c|c|c|} \hline & b_1 & b_2 & b_3 \\ \hline a_1 & (0,2) & (1,0) & (2,1) \\ \hline a_2 & (3,0) & (0,1) & (1,4) \\ \hline \end{array}
$$

- **•** Suppose Alice gets second row a_2 as recommendation.
- **•** This gives Alice a (conditional) probability distribution ρ for column privately recommended to Bob:
	- Column b_1 with probability
	- Column b_2 with probability
	- Column b_3 with probability

$$
\frac{\frac{2}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{2}{6}.
$$

$$
\frac{\frac{1}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{1}{6}.
$$

$$
\frac{\frac{1}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{3}{6}.
$$

• Assuming distribution ρ **over Bob's recommendation,**

Distribution over strategy profiles is given by

$$
\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{pmatrix} = \begin{pmatrix} 0 & 1/8 & 1/8 \\ 2/8 & 1/8 & 3/8 \end{pmatrix}
$$

- **•** Suppose Alice gets second row a_2 as recommendation.
- This gives Alice a (conditional) probability distribution ρ for column \bullet privately recommended to Bob:
	- Column b_1 with probability
	- Column b_2 with probability
	- Column b_3 with probability

$$
\frac{\frac{2}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{2}{6}.
$$

$$
\frac{\frac{1}{8} + \frac{1}{8}}{\frac{3}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{1}{6}.
$$

$$
\frac{2}{8} + \frac{1}{8} + \frac{3}{8} = \frac{3}{6}.
$$

• Assuming distribution ρ over Bob's recommendation, notion of CE says Alice should have no incentive to deviate to first row *a*¹

 b_1 b_2 b_3 a_1 (0, 2) (1, 0) (2, 1) $(3, 0)$ $(0, 1)$

Distribution over strategy profiles is given by

$$
\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{pmatrix} = \begin{pmatrix} 0 & 1/8 & 1/8 \\ 2/8 & 1/8 & 3/8 \end{pmatrix}
$$

- **•** Suppose Alice gets second row a_2 as recommendation.
- This gives Alice a (conditional) probability distribution ρ for column \bullet privately recommended to Bob:
	- Column b_1 with probability
	- Column b_2 with probability
	- Column b_3 with probability

$$
\frac{\frac{2}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{2}{6}.
$$

$$
\frac{\frac{1}{8} + \frac{1}{8}}{\frac{3}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{1}{6}.
$$

$$
\frac{2}{8} + \frac{1}{8} + \frac{3}{8} = \frac{3}{6}.
$$

• Assuming distribution ρ over Bob's recommendation, notion of CE says Alice should have no incentive to deviate to first row a_1 (in expectation).

 b_1 b_2 b_3 a_1 (0, 2) (1, 0) (2, 1) $(3, 0)$ $(0, 1)$

- $\sigma=\begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13}\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{pmatrix}=\begin{pmatrix} 0 & 1/8 & 1/8\ 2/8 & 1/8 & 3/8 \end{pmatrix}$ 2/8 1/8 3/8 \setminus
- b_1 b_2 b_3 $(0, 2)$ $(1, 0)$ $(2, 1)$ $\boxed{a_2 \mid (3,0) \mid (0,1)}$
- **•** Suppose Alice gets second row a_2 as recommendation.
- **•** This gives Alice a (conditional) probability distribution ρ for column privately recommended to Bob:
	- Column b_1 with probability
	- Column b_2 with probability
	- Column b_3 with probability

$$
\frac{\frac{2}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{2}{6}.
$$

$$
\frac{\frac{1}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{1}{6}.
$$

$$
\frac{\frac{1}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{3}{6}.
$$

- **•** Assuming distribution ρ over Bob's recommendation, notion of CE says Alice should have no incentive to deviate to first row a_1 (in expectation).
	- $\bullet \mathbb{E}_{q}[\text{Row }a_{2}]=3\times 2/6+0\times 1/6+1\times 3/6=9/6.$

- $\sigma=\begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13}\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{pmatrix}=\begin{pmatrix} 0 & 1/8 & 1/8\ 2/8 & 1/8 & 3/8 \end{pmatrix}$ 2/8 1/8 3/8 \setminus
- b_1 b_2 b_3 $(0, 2)$ $(1, 0)$ $(2, 1)$ $\boxed{a_2 \ (3,0) \ (0,1)}$
- **•** Suppose Alice gets second row a_2 as recommendation.
- **•** This gives Alice a (conditional) probability distribution ρ for column privately recommended to Bob:
	- Column b_1 with probability
	- Column b_2 with probability
	- Column b_3 with probability

$$
\frac{\frac{2}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{2}{6}.
$$

$$
\frac{\frac{1}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{1}{6}.
$$

$$
\frac{\frac{1}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{3}{6}.
$$

- **•** Assuming distribution ρ over Bob's recommendation, notion of CE says Alice should have no incentive to deviate to first row a_1 (in expectation).
	- $\bullet \mathbb{E}_{q}[\text{Row }a_{2}]=3\times 2/6+0\times 1/6+1\times 3/6=9/6.$
	- $\bullet \mathbb{E}_{q}[\text{Row } a_1] = 0 \times 2/6 + 1 \times 1/6 + 2 \times 3/6 = 7/6.$

- $\sigma=\begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13}\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{pmatrix}=\begin{pmatrix} 0 & 1/8 & 1/8\ 2/8 & 1/8 & 3/8 \end{pmatrix}$ 2/8 1/8 3/8 \setminus
- b_1 b_2 b_3 $(0, 2)$ $(1, 0)$ $(2, 1)$ $\boxed{a_2 \ (3,0) \ (0,1)}$
- **•** Suppose Alice gets second row a_2 as recommendation.
- **•** This gives Alice a (conditional) probability distribution ρ for column privately recommended to Bob:
	- Column b_1 with probability
	- Column b_2 with probability
	- Column b_3 with probability

$$
\frac{\frac{2}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{2}{6}.
$$

$$
\frac{\frac{1}{8} + \frac{1}{8} + \frac{3}{8}}{\frac{3}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{1}{6}.
$$

- **•** Assuming distribution ρ over Bob's recommendation, notion of CE says Alice should have no incentive to deviate to first row a_1 (in expectation).
	- $\bullet \mathbb{E}_{q}[\text{Row }a_{2}]=3\times 2/6+0\times 1/6+1\times 3/6=9/6.$
	- $\bullet \mathbb{E}_{q}[\text{Row } a_1] = 0 \times 2/6 + 1 \times 1/6 + 2 \times 3/6 = 7/6.$

Distribution over strategy profiles is given by

$$
\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{pmatrix} = \begin{pmatrix} 0 & 1/8 & 1/8 \\ 2/8 & 1/8 & 3/8 \end{pmatrix}
$$

$$
\begin{array}{|c|c|c|c|} \hline & b_1 & b_2 & b_3 \\ \hline a_1 & (0,2) & (1,0) & (2,1) \\ a_2 & (3,0) & (0,1) & (1,4) \\ \hline \end{array}
$$

- **•** Suppose Alice gets second row a_2 as recommendation.
- **•** This gives Alice a (conditional) probability distribution ρ for column privately recommended to Bob:
	- Column b_1 with probability
	- Column b_2 with probability
	- Column b_3 with probability

$$
\frac{\frac{2}{8}}{\frac{2}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{2}{6}.
$$

$$
\frac{\frac{1}{8} + \frac{1}{8} + \frac{3}{8}}{\frac{3}{8} + \frac{1}{8} + \frac{3}{8}} = \frac{1}{6}.
$$

• Assuming distribution ρ over Bob's recommendation, notion of CE says Alice should have no incentive to deviate to first row a_1 (in expectation).

•
$$
\mathbb{E}_{\rho}[\text{Row } a_2] = 3 \times 2/6 + 0 \times 1/6 + 1 \times 3/6 = 9/6.
$$

• $\mathbb{E}_{\rho}[\text{Row }a_1] = 0 \times 2/6 + 1 \times 1/6 + 2 \times 3/6 = 7/6.$

σ *as above is not a CE!*

A distribution σ on $\times_i {\mathcal S}_i$ is a correlated equilibrium if for every $i\in {\mathcal N}$ and $t_i \in \mathcal{S}_i$, and every unilateral deviation $t'_i \in \mathcal{S}_i$, it holds that $\mathbb{E}_{X \sim \sigma} [C_i(X) | X_i = t_i] \leq \mathbb{E}_{X \sim \sigma} [C_i(t'_i, X_{-i}) | X_i = t_i].$

A distribution σ on $\times_i {\mathcal S}_i$ is a correlated equilibrium if for every $i\in {\mathcal N}$ and $t_i \in \mathcal{S}_i$, and every unilateral deviation $t'_i \in \mathcal{S}_i$, it holds that

$$
\mathbb{E}_{x \sim \sigma} [C_i(x) \mid x_i = t_i] \leq \mathbb{E}_{x \sim \sigma} [C_i(t'_i, x_{-i}) \mid x_i = t_i].
$$

Set-up for coarse correlated equilibrium is similar, but you do not get private recommendation from mediator.

A distribution σ on $\times_i {\mathcal S}_i$ is a correlated equilibrium if for every $i\in {\mathcal N}$ and $t_i \in \mathcal{S}_i$, and every unilateral deviation $t'_i \in \mathcal{S}_i$, it holds that

$$
\mathbb{E}_{x \sim \sigma} [C_i(x) \mid x_i = t_i] \leq \mathbb{E}_{x \sim \sigma} [C_i(t'_i, x_{-i}) \mid x_i = t_i].
$$

Set-up for coarse correlated equilibrium is similar, but you do not get private recommendation from mediator.

Definition (Coarse correlated equilibrium (CCE))

A distribution σ on $\times_i \mathcal{S}_i$ is a coarse correlated equilibrium if for every $i \in \mathcal{N}$, and every unilateral deviation $t'_i \in \mathcal{S}_i$, it holds that $\mathbb{E}_{X \sim \sigma}\left[C_i(X)\right] \leq \mathbb{E}_{X \sim \sigma}\left[C_i(t_i', X_{-i})\right].$

A distribution σ on $\times_i {\mathcal S}_i$ is a correlated equilibrium if for every $i\in {\mathcal N}$ and $t_i \in \mathcal{S}_i$, and every unilateral deviation $t'_i \in \mathcal{S}_i$, it holds that

$$
\mathbb{E}_{x \sim \sigma} [C_i(x) \mid x_i = t_i] \leq \mathbb{E}_{x \sim \sigma} [C_i(t'_i, x_{-i}) \mid x_i = t_i].
$$

Set-up for coarse correlated equilibrium is similar, but you do not get private recommendation from mediator.

Definition (Coarse correlated equilibrium (CCE))

A distribution σ on $\times_i \mathcal{S}_i$ is a coarse correlated equilibrium if for every $i \in \mathcal{N}$, and every unilateral deviation $t'_i \in \mathcal{S}_i$, it holds that $\mathbb{E}_{X \sim \sigma}\left[C_i(X)\right] \leq \mathbb{E}_{X \sim \sigma}\left[C_i(t_i', X_{-i})\right].$

Exercise: Prove that every CE is also CCE.

A distribution σ on $\times_i {\mathcal S}_i$ is a correlated equilibrium if for every $i\in {\mathcal N}$ and $t_i \in \mathcal{S}_i$, and every unilateral deviation $t'_i \in \mathcal{S}_i$, it holds that

$$
\mathbb{E}_{x \sim \sigma} [C_i(x) \mid x_i = t_i] \leq \mathbb{E}_{x \sim \sigma} [C_i(t'_i, x_{-i}) \mid x_i = t_i].
$$

Set-up for coarse correlated equilibrium is similar, but you do not get private recommendation from mediator.

Definition (Coarse correlated equilibrium (CCE))

A distribution σ on $\times_i \mathcal{S}_i$ is a coarse correlated equilibrium if for every $i \in \mathcal{N}$, and every unilateral deviation $t'_i \in \mathcal{S}_i$, it holds that $\mathbb{E}_{X \sim \sigma}\left[C_i(X)\right] \leq \mathbb{E}_{X \sim \sigma}\left[C_i(t_i', X_{-i})\right].$

Exercise: Prove that every CE is also CCE. (Hint: Use "Law of total expectation", i.e., $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]].$

Remember MNE is pair of mixed strategies (*x*, *y*) that yields product distribution σ over strategy profiles.

Remember MNE is pair of mixed strategies (*x*, *y*) that yields product distribution σ over strategy profiles.

MNE through the lens of CE

Remember MNE is pair of mixed strategies (*x*, *y*) that yields product distribution σ over strategy profiles.

MNE through the lens of CE

MNE is special case of CE, where recommendation of mediator gives no extra information.

Remember MNE is pair of mixed strategies (*x*, *y*) that yields product distribution σ over strategy profiles.

MNE through the lens of CE

MNE is special case of CE, where recommendation of mediator gives no extra information.

• Conditional distribution ρ that Alice constructs for Bob's private recommendation is the same for every row recommended to her.

Remember MNE is pair of mixed strategies (*x*, *y*) that yields product distribution σ over strategy profiles.

MNE through the lens of CE

MNE is special case of CE, where recommendation of mediator gives no extra information.

- **Conditional distribution** ρ that Alice constructs for Bob's private recommendation is the same for every row recommended to her.
	- It is just the mixed strategy *y* of Bob!
Final remark

Remember MNE is pair of mixed strategies (*x*, *y*) that yields product distribution σ over strategy profiles.

MNE through the lens of CE

MNE is special case of CE, where recommendation of mediator gives no extra information.

- **Conditional distribution** ρ that Alice constructs for Bob's private recommendation is the same for every row recommended to her.
	- It is just the mixed strategy *y* of Bob!
	- That is, the recommendation is not relevant for Alice.

Final remark

Remember MNE is pair of mixed strategies (*x*, *y*) that yields product distribution σ over strategy profiles.

MNE through the lens of CE

MNE is special case of CE, where recommendation of mediator gives no extra information.

- **Conditional distribution** ρ that Alice constructs for Bob's private recommendation is the same for every row recommended to her.
	- It is just the mixed strategy *y* of Bob!
	- That is, the recommendation is not relevant for Alice.

Exercise: Check this yourself!

Computation of correlated equilibrium

Once again, linear programming comes to the rescue...

Once again, linear programming comes to the rescue...

Theorem

For a given finite game Γ*, there is a linear program that computes a correlated equilibrium* σ : ×*i*S*ⁱ* → [0, 1] *in time polynomial in* | ×*ⁱ* S*ⁱ* | *and the input size of the cost functions.*

Once again, linear programming comes to the rescue...

Theorem

For a given finite game Γ*, there is a linear program that computes a correlated equilibrium* σ : ×*i*S*ⁱ* → [0, 1] *in time polynomial in* | ×*ⁱ* S*ⁱ* | *and the input size of the cost functions.*

LP has one variable $\sigma_{\bm{s}}$ for every strategy profile $\bm{s}\in\times_i\mathcal{S}_i.$

Once again, linear programming comes to the rescue...

Theorem

For a given finite game Γ*, there is a linear program that computes a correlated equilibrium* σ : ×*i*S*ⁱ* → [0, 1] *in time polynomial in* | ×*ⁱ* S*ⁱ* | *and the input size of the cost functions.*

- LP has one variable $\sigma_{\bm{s}}$ for every strategy profile $\bm{s}\in\times_i\mathcal{S}_i.$
	- Polynomial number of variables if number of players |*N*| is assumed to be constant.

Once again, linear programming comes to the rescue...

Theorem

For a given finite game Γ*, there is a linear program that computes a correlated equilibrium* σ : ×*i*S*ⁱ* → [0, 1] *in time polynomial in* | ×*ⁱ* S*ⁱ* | *and the input size of the cost functions.*

- LP has one variable $\sigma_{\bm{s}}$ for every strategy profile $\bm{s}\in\times_i\mathcal{S}_i.$
	- Polynomial number of variables if number of players |*N*| is assumed to be constant.
- For two-player games, note that $|S_A \times S_B| = mn$.

Once again, linear programming comes to the rescue...

Theorem

For a given finite game Γ*, there is a linear program that computes a correlated equilibrium* σ : ×*i*S*ⁱ* → [0, 1] *in time polynomial in* | ×*ⁱ* S*ⁱ* | *and the input size of the cost functions.*

- LP has one variable $\sigma_{\bm{s}}$ for every strategy profile $\bm{s}\in\times_i\mathcal{S}_i.$
	- Polynomial number of variables if number of players |*N*| is assumed to be constant.
- For two-player games, note that $|S_A \times S_B| = mn$.

Conditions in definition CE can be modeled as linear program.

Once again, linear programming comes to the rescue...

Theorem

For a given finite game Γ*, there is a linear program that computes a correlated equilibrium* σ : ×*i*S*ⁱ* → [0, 1] *in time polynomial in* | ×*ⁱ* S*ⁱ* | *and the input size of the cost functions.*

- LP has one variable $\sigma_{\bm{s}}$ for every strategy profile $\bm{s}\in\times_i\mathcal{S}_i.$
	- Polynomial number of variables if number of players |*N*| is assumed to be constant.
- For two-player games, note that $|S_A \times S_B| = mn$.

Conditions in definition CE can be modeled as linear program.

We will do the 2-player case, and focus on Alice.

Distribution σ on $S_A \times S_B$ is correlated equilibrium if for every "recommendation" $a_k \in S_A$ and deviation $a_{k'}$ it holds, with $x = (x_A, x_B)$, that

Distribution σ on $S_A \times S_B$ is correlated equilibrium if for every "recommendation" $a_k \in S_A$ and deviation $a_{k'}$ it holds, with $x = (x_A, x_B)$, that

$$
\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \leq \mathbb{E}_{x \sim \sigma} \left[C_A(a_{k'}, x_B) \mid x_A = a_k \right].
$$

Distribution σ on $S_A \times S_B$ is correlated equilibrium if for every "recommendation" $a_k \in S_A$ and deviation $a_{k'}$ it holds, with $x = (x_A, x_B)$, that

$$
\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \leq \mathbb{E}_{x \sim \sigma} \left[C_A(a_{k'}, x_B) \mid x_A = a_k \right].
$$

LP will have variables $\sigma_{k\ell}$ for $k = 1, \ldots, m, \ell = 1, \ldots, n$.

Distribution σ on $S_A \times S_B$ is correlated equilibrium if for every "recommendation" $a_k \in S_A$ and deviation $a_{k'}$ it holds, with $x = (x_A, x_B)$, that

$$
\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \leq \mathbb{E}_{x \sim \sigma} \left[C_A(a_{k'}, x_B) \mid x_A = a_k \right].
$$

LP will have variables $\sigma_{k\ell}$ for $k = 1, \ldots, m, \ell = 1, \ldots, n$. **Linear constraints for Alice**

Distribution σ on $S_A \times S_B$ is correlated equilibrium if for every "recommendation" $a_k \in S_A$ and deviation $a_{k'}$ it holds, with $x = (x_A, x_B)$, that

$$
\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \leq \mathbb{E}_{x \sim \sigma} \left[C_A(a_{k'}, x_B) \mid x_A = a_k \right].
$$

LP will have variables $\sigma_{k\ell}$ for $k = 1, \ldots, m, \ell = 1, \ldots, n$.

Linear constraints for Alice Fix "recommended row" $a_k \in S_A$

Distribution σ on $S_A \times S_B$ is correlated equilibrium if for every "recommendation" $a_k \in S_A$ and deviation $a_{k'}$ it holds, with $x = (x_A, x_B)$, that

$$
\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \leq \mathbb{E}_{x \sim \sigma} \left[C_A(a_{k'}, x_B) \mid x_A = a_k \right].
$$

LP will have variables $\sigma_{k\ell}$ for $k = 1, \ldots, m, \ell = 1, \ldots, n$.

Linear constraints for Alice

Fix "recommended row" $a_k \in S_A$ and "deviation" $a_{k'} \in S_A$.

Distribution σ on $S_A \times S_B$ is correlated equilibrium if for every "recommendation" $a_k \in S_A$ and deviation $a_{k'}$ it holds, with $x = (x_A, x_B)$, that

$$
\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \leq \mathbb{E}_{x \sim \sigma} \left[C_A(a_{k'}, x_B) \mid x_A = a_k \right].
$$

LP will have variables $\sigma_{k\ell}$ for $k = 1, \ldots, m, \ell = 1, \ldots, n$.

Linear constraints for Alice

Fix "recommended row" $a_k \in \mathcal{S_A}$ and "deviation" $a_{k'} \in \mathcal{S_A}.$ Now, $\mathbb{E}_{x \sim \sigma}$ $[C_A(x_A, x_B) | x_A = a_k]$

Distribution σ on $S_A \times S_B$ is correlated equilibrium if for every "recommendation" $a_k \in S_A$ and deviation $a_{k'}$ it holds, with $x = (x_A, x_B)$, that

$$
\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \leq \mathbb{E}_{x \sim \sigma} \left[C_A(a_{k'}, x_B) \mid x_A = a_k \right].
$$

LP will have variables $\sigma_{k\ell}$ for $k = 1, \ldots, m, \ell = 1, \ldots, n$.

Linear constraints for Alice

$$
\mathbb{E}_{x \sim \sigma} [C_A(x_A, x_B) \mid x_A = a_k] = \sum_{\ell=1,...,n} C_A(a_k, b_\ell) \mathbb{P}[x = (x_A, x_B) \mid x_A = a_k]
$$

Distribution σ on $S_A \times S_B$ is correlated equilibrium if for every "recommendation" $a_k \in S_A$ and deviation $a_{k'}$ it holds, with $x = (x_A, x_B)$, that

$$
\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \leq \mathbb{E}_{x \sim \sigma} \left[C_A(a_{k'}, x_B) \mid x_A = a_k \right].
$$

LP will have variables $\sigma_{k\ell}$ for $k = 1, \ldots, m, \ell = 1, \ldots, n$.

Linear constraints for Alice

$$
\mathbb{E}_{x \sim \sigma} [C_A(x_A, x_B) | x_A = a_k] = \sum_{\ell=1,...,n} C_A(a_k, b_\ell) \mathbb{P}[x = (x_A, x_B) | x_A = a_k]
$$

=
$$
\sum_{\ell=1,...,n} C_A(a_k, b_\ell) \frac{\sigma_{k\ell}}{\sum_r \sigma_{kr}}
$$

Distribution σ on $S_A \times S_B$ is correlated equilibrium if for every "recommendation" $a_k \in S_A$ and deviation $a_{k'}$ it holds, with $x = (x_A, x_B)$, that

$$
\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \leq \mathbb{E}_{x \sim \sigma} \left[C_A(a_{k'}, x_B) \mid x_A = a_k \right].
$$

LP will have variables $\sigma_{k\ell}$ for $k = 1, \ldots, m, \ell = 1, \ldots, n$.

Linear constraints for Alice

$$
\mathbb{E}_{x \sim \sigma} [C_A(x_A, x_B) | x_A = a_k] = \sum_{\ell=1,...,n} C_A(a_k, b_\ell) \mathbb{P}[x = (x_A, x_B) | x_A = a_k]
$$

=
$$
\sum_{\ell=1,...,n} C_A(a_k, b_\ell) \frac{\sigma_{k\ell}}{\sum_r \sigma_{kr}}
$$

=
$$
\frac{1}{\sum_r \sigma_{kr}} \sum_{\ell=1,...,n} C_A(a_k, b_\ell) \sigma_{k\ell}
$$

Distribution σ on $S_A \times S_B$ is correlated equilibrium if for every "recommendation" $a_k \in S_A$ and deviation $a_{k'}$ it holds, with $x = (x_A, x_B)$, that

$$
\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \leq \mathbb{E}_{x \sim \sigma} \left[C_A(a_{k'}, x_B) \mid x_A = a_k \right].
$$

LP will have variables $\sigma_{k\ell}$ for $k = 1, \ldots, m, \ell = 1, \ldots, n$.

Linear constraints for Alice

$$
\mathbb{E}_{x \sim \sigma} [C_A(x_A, x_B) | x_A = a_k] = \sum_{\ell=1,...,n} C_A(a_k, b_\ell) \mathbb{P}[x = (x_A, x_B) | x_A = a_k]
$$

\n
$$
= \sum_{\ell=1,...,n} C_A(a_k, b_\ell) \frac{\sigma_{k\ell}}{\sum_r \sigma_{kr}}
$$

\n
$$
= \frac{1}{\sum_r \sigma_{kr}} \sum_{\ell=1,...,n} C_A(a_k, b_\ell) \sigma_{k\ell}
$$

\n
$$
\mathbb{E}_{x \sim \sigma} [C_A(a_{k'}, x_B) | x_A = a_k] =
$$

Distribution σ on $S_A \times S_B$ is correlated equilibrium if for every "recommendation" $a_k \in S_A$ and deviation $a_{k'}$ it holds, with $x = (x_A, x_B)$, that

$$
\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \leq \mathbb{E}_{x \sim \sigma} \left[C_A(a_{k'}, x_B) \mid x_A = a_k \right].
$$

LP will have variables $\sigma_{k\ell}$ for $k = 1, \ldots, m, \ell = 1, \ldots, n$.

Linear constraints for Alice Fix "recommended row" $a_k \in \mathcal{S_A}$ and "deviation" $a_{k'} \in \mathcal{S_A}.$ Now, $\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \quad = \quad \sum \quad C_A(a_k, b_\ell) \mathbb{P}[x = (x_A, x_B) | x_A = a_k]$ $\ell=1,\ldots,n$ $=\sum_{k=1}^{\infty}C_{A}(a_{k},b_{\ell})\frac{\sigma_{k\ell}}{\sum_{k}\sigma_{k\ell}}$ $\ell=1,\ldots,n$ *r* σ*kr* $=\frac{1}{\sqrt{2}}$ $\sum_{\bf r} \sigma_{\bf k r}$ \sum `=1,...,*n* $C_A(a_k, b_\ell) \sigma_{k\ell}$ $\mathbb{E}_{\mathsf{x} \sim \sigma}\left[\mathcal{C}_{\mathcal{A}}(a_{k'}, \mathsf{x}_{\mathcal{B}}) \mid \mathsf{x}_{\mathcal{A}} = a_{k}\right] \hspace{2mm} = \hspace{2mm} \sum \hspace{2mm} \mathcal{C}_{\mathcal{A}}(a_{k'}, b_{\ell})\mathbb{P}[\mathsf{x} = (\mathsf{x}_{\mathcal{A}}, \mathsf{x}_{\mathcal{B}}) | \mathsf{x}_{\mathcal{A}} = a_{k}]$ $\ell=1,\ldots,n$

Distribution σ on $S_A \times S_B$ is correlated equilibrium if for every "recommendation" $a_k \in S_A$ and deviation $a_{k'}$ it holds, with $x = (x_A, x_B)$, that

$$
\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \leq \mathbb{E}_{x \sim \sigma} \left[C_A(a_{k'}, x_B) \mid x_A = a_k \right].
$$

LP will have variables $\sigma_{k\ell}$ for $k = 1, \ldots, m, \ell = 1, \ldots, n$.

Linear constraints for Alice Fix "recommended row" $a_k \in \mathcal{S_A}$ and "deviation" $a_{k'} \in \mathcal{S_A}.$ Now, $\mathbb{E}_{x \sim \sigma} \left[C_A(x_A, x_B) \mid x_A = a_k \right] \quad = \quad \sum \quad C_A(a_k, b_\ell) \mathbb{P}[x = (x_A, x_B) | x_A = a_k]$ $\ell=1,\ldots,n$ $=\sum_{k=1}^{\infty}C_{A}(a_{k},b_{\ell})\frac{\sigma_{k\ell}}{\sum_{k}\sigma_{k\ell}}$ `=1,...,*n r* σ*kr* $=\frac{1}{\sqrt{2}}$ $\sum_{\bf r} \sigma_{\bf k r}$ \sum `=1,...,*n* $C_A(a_k, b_\ell) \sigma_{k\ell}$ $\mathbb{E}_{\mathsf{x} \sim \sigma}\left[\mathcal{C}_{\mathcal{A}}(a_{k'}, \mathsf{x}_{\mathcal{B}}) \mid \mathsf{x}_{\mathcal{A}} = a_{k}\right] \hspace{2mm} = \hspace{2mm} \sum \hspace{2mm} \mathcal{C}_{\mathcal{A}}(a_{k'}, b_{\ell})\mathbb{P}[\mathsf{x} = (\mathsf{x}_{\mathcal{A}}, \mathsf{x}_{\mathcal{B}}) | \mathsf{x}_{\mathcal{A}} = a_{k}]$ `=1,...,*n* $=\frac{1}{\sqrt{2}}$ $\sum_{\bf r} \sigma_{\bf k r}$ \sum $l=1,\ldots,n$ $C_A(a_{k'}, b_{\ell})\sigma_{k\ell}$ 14 / 32

$$
\sum_{\ell=1,...,n} C_{\mathcal{A}}(a_k,b_{\ell}) \sigma_{k\ell} \leq \sum_{\ell=1,...,n} C_{\mathcal{A}}(a_{k'},b_{\ell}) \sigma_{k\ell} \qquad \forall a_k, a_{k'} \in \mathcal{S}_{\mathcal{A}}
$$

$$
\sum_{\ell=1,...,n} C_A(a_k,b_\ell) \sigma_{k\ell} \leq \sum_{\ell=1,...,n} C_A(a_{k'},b_\ell) \sigma_{k\ell} \qquad \forall a_k, a_{k'} \in S_A
$$

$$
\sum_{k=1,...,m} C_B(a_k,b_\ell) \sigma_{k\ell} \leq \sum_{k=1,...,m} C_B(a_k,b_{\ell'}) \sigma_{k\ell} \quad \forall b_\ell, b_{\ell'} \in S_B
$$

$$
\sum_{\ell=1,...,n} C_A(a_k,b_\ell) \sigma_{k\ell} \leq \sum_{\ell=1,...,n} C_A(a_{k'},b_\ell) \sigma_{k\ell} \qquad \forall a_k, a_{k'} \in S_A
$$

$$
\sum_{k=1,...,m} C_B(a_k,b_\ell) \sigma_{k\ell} \leq \sum_{k=1,...,m} C_B(a_k,b_{\ell'}) \sigma_{k\ell} \quad \forall b_\ell, b_{\ell'} \in S_B
$$

Note that these are linear constraints in variables $\sigma_{k\ell}.$

$$
\sum_{\ell=1,...,n} C_A(a_k,b_\ell) \sigma_{k\ell} \leq \sum_{\ell=1,...,n} C_A(a_{k'},b_\ell) \sigma_{k\ell} \qquad \forall a_k,a_{k'} \in S_A
$$

$$
\sum_{k=1,...,m} C_B(a_k,b_\ell) \sigma_{k\ell} \leq \sum_{k=1,...,m} C_B(a_k,b_{\ell'}) \sigma_{k\ell} \quad \forall b_\ell,b_{\ell'} \in S_B
$$

Note that these are linear constraints in variables $\sigma_{k\ell}.$

Linear program is now as follows

$$
\begin{aligned}\n\text{max} & & & 0 \\
\text{s.t.} & & \sum_{\ell=1,...,n} C_A(a_k,b_\ell) \sigma_{k\ell} \leq \sum_{\ell=1,...,n} C_A(a_{k'},b_\ell) \sigma_{k\ell} \quad \forall a_k, a_{k'} \in \mathcal{S}_A \\
& & \sum_{k=1,...,m} C_B(a_k,b_\ell) \sigma_{k\ell} \leq \sum_{k=1,...,m} C_B(a_k,b_{\ell'}) \sigma_{k\ell} \quad \forall b_\ell, b_{\ell'} \in \mathcal{S}_B \\
& & & \sum_{\ell,\ell} \sigma_{k\ell} = 1 \quad \forall a_k \in \mathcal{S}_A, b_\ell \in \mathcal{S}_B\n\end{aligned}
$$

$$
\begin{aligned}\n\text{max} & & & 0\\ \n\text{s.t.} & & \sum_{\ell=1,\ldots,n} C_A(a_k,b_\ell) \sigma_{k\ell} \leq \sum_{\ell=1,\ldots,n} C_A(a_{k'},b_\ell) \sigma_{k\ell} \quad \forall a_k,a_{k'} \in \mathcal{S}_A\\ \n& & \sum_{k=1,\ldots,m} C_B(a_k,b_\ell) \sigma_{k\ell} \leq \sum_{k=1,\ldots,m} C_B(a_k,b_{\ell'}) \sigma_{k\ell} \quad \forall b_\ell,b_{\ell'} \in \mathcal{S}_B\\ \n& & \sum_{k,\ell} \sigma_{k\ell} = 1\\ \n\sigma_{k\ell} \geq 0 \quad \forall a_k \in \mathcal{S}_A, b_\ell \in \mathcal{S}_B\n\end{aligned}
$$

$$
\begin{aligned}\n\text{max} \quad & 0 \\
\text{s.t.} \quad & \sum_{\ell=1,\ldots,n} C_A(a_k,b_\ell)\sigma_{k\ell} \leq \sum_{\ell=1,\ldots,n} C_A(a_{k'},b_\ell)\sigma_{k\ell} \qquad \forall a_k,a_{k'} \in \mathcal{S}_A \\
& \sum_{k=1,\ldots,m} C_B(a_k,b_\ell)\sigma_{k\ell} \leq \sum_{k=1,\ldots,m} C_B(a_k,b_{\ell'})\sigma_{k\ell} \quad \forall b_\ell,b_{\ell'} \in \mathcal{S}_B \\
& \sum_{\substack{k,\ell \\ \sigma_{k\ell} \geq 0}} \sigma_{k\ell} &= 1 \qquad \qquad \forall a_k \in \mathcal{S}_A, b_\ell \in \mathcal{S}_B\n\end{aligned}
$$

This is a feasiblity LP, i.e., the goal is to find a feasible solution of the linear system above.

$$
\begin{aligned}\n\text{max} & & 0\\ \n\text{s.t.} & & \sum_{\ell=1,\ldots,n} C_A(a_k,b_\ell)\sigma_{k\ell} \leq \sum_{\ell=1,\ldots,n} C_A(a_{k'},b_\ell)\sigma_{k\ell} \quad \forall a_k, a_{k'} \in S_A\\ \n\sum_{\substack{k=1,\ldots,m \\ k,\ell}} C_B(a_k,b_\ell)\sigma_{k\ell} \leq \sum_{k=1,\ldots,m} C_B(a_k,b_{\ell'})\sigma_{k\ell} \quad \forall b_\ell, b_{\ell'} \in S_B\\ \n\sum_{\substack{k,\ell \\ \sigma_{k\ell} \geq 0}} \sigma_{k\ell} & = 1 \quad \forall a_k \in S_A, b_\ell \in S_B\n\end{aligned}
$$

- This is a feasiblity LP, i.e., the goal is to find a feasible solution of the linear system above.
- We know at least one solution exists by Nash's theorem

$$
\begin{aligned}\n\text{max} & & 0\\ \n\text{s.t.} & & \sum_{\ell=1,\ldots,n} C_A(a_k,b_\ell)\sigma_{k\ell} \leq \sum_{\ell=1,\ldots,n} C_A(a_{k'},b_\ell)\sigma_{k\ell} \quad \forall a_k, a_{k'} \in S_A\\ \n\sum_{k=1,\ldots,m} C_B(a_k,b_\ell)\sigma_{k\ell} & \leq \sum_{k=1,\ldots,m} C_B(a_k,b_{\ell'})\sigma_{k\ell} \quad \forall b_\ell, b_{\ell'} \in S_B\\ \n\sum_{k,\ell} \sigma_{k\ell} & = 1\\ \n\sigma_{k\ell} & \geq 0 \qquad \qquad \forall a_k \in S_A, b_\ell \in S_B\n\end{aligned}
$$

- This is a feasiblity LP, i.e., the goal is to find a feasible solution of the linear system above.
- We know at least one solution exists by Nash's theorem
	- Remember that every MNE is also CE.

$$
\begin{aligned}\n\text{max} & & 0\\ \n\text{s.t.} & & \sum_{\ell=1,\ldots,n} C_A(a_k,b_\ell)\sigma_{k\ell} \leq \sum_{\ell=1,\ldots,n} C_A(a_{k'},b_\ell)\sigma_{k\ell} \quad \forall a_k, a_{k'} \in S_A\\ \n\sum_{\substack{k=1,\ldots,m \\ k,\ell}} C_B(a_k,b_\ell)\sigma_{k\ell} \leq \sum_{k=1,\ldots,m} C_B(a_k,b_{\ell'})\sigma_{k\ell} \quad \forall b_\ell, b_{\ell'} \in S_B\\ \n\sum_{\substack{k,\ell \\ \sigma_{k\ell} \geq 0}} \sigma_{k\ell} & = 1 \quad \forall a_k \in S_A, b_\ell \in S_B\n\end{aligned}
$$

- This is a feasiblity LP, i.e., the goal is to find a feasible solution of the linear system above.
- We know at least one solution exists by Nash's theorem
	- Remember that every MNE is also CE.

Why not use the LP for computing MNE?

$$
\begin{aligned}\n\text{max} & & 0\\ \n\text{s.t.} & & \sum_{\ell=1,\ldots,n} C_A(a_k,b_\ell)\sigma_{k\ell} \leq \sum_{\ell=1,\ldots,n} C_A(a_{k'},b_\ell)\sigma_{k\ell} \quad \forall a_k, a_{k'} \in S_A\\ \n\sum_{\substack{k=1,\ldots,m \\ k,\ell}} C_B(a_k,b_\ell)\sigma_{k\ell} \leq \sum_{k=1,\ldots,m} C_B(a_k,b_{\ell'})\sigma_{k\ell} \quad \forall b_\ell, b_{\ell'} \in S_B\\ \n\sum_{\substack{k,\ell \\ \sigma_{k\ell} \geq 0}} \sigma_{k\ell} & = 1 \quad \forall a_k \in S_A, b_\ell \in S_B\n\end{aligned}
$$

- This is a feasiblity LP, i.e., the goal is to find a feasible solution of the linear system above.
- We know at least one solution exists by Nash's theorem • Remember that every MNE is also CE.
- *Why not use the LP for computing MNE? We would need additional non-linear constraint enforcing that* σ *is product distribution.*

For general finite game $\Gamma = (N, (S_i), (C_i))$, linear program is as follows.

$$
\begin{aligned} & \quad \text{max} \quad 0 \\ & \text{s.t.} \quad \sum_{\mathcal{S}_{-i} \in \mathcal{S}_{-i}} C_i(\mathcal{S}_i, \mathcal{S}_{-i}) \sigma(\mathcal{S}_i, \mathcal{S}_{-i}) \\ & \quad \leq \sum_{\mathcal{S}_{-i} \in \mathcal{S}_{-i}} C_i(\mathcal{S}'_i, \mathcal{S}_{-i}) \sigma(\mathcal{S}_i, \mathcal{S}_{-i}) \quad \forall i \in \mathcal{N} \text{ and } \mathcal{S}_i, \mathcal{S}'_i \in \mathcal{S}_i \\ & \quad \sum_{\mathcal{S} \in \times_i \mathcal{S}_i} \sigma(\mathcal{S}) = 1 \\ & \quad \sigma(\mathcal{S}) \geq 0 \qquad \qquad \forall \mathcal{S} \in \times_i \mathcal{S}_i. \end{aligned}
$$

For general finite game $\Gamma = (N,(\mathcal{S}_i),(C_i))$, linear program is as follows.

$$
\begin{aligned} \max \quad & 0 \\ \text{s.t.} & \quad \sum_{\mathbf{S}_{-i} \in \mathcal{S}_{-i}} C_i(\mathbf{s}_i, \mathbf{s}_{-i}) \sigma(\mathbf{s}_i, \mathbf{s}_{-i}) \\ & \quad \leq \sum_{\mathbf{S}_{-i} \in \mathcal{S}_{-i}} C_i(\mathbf{s}'_i, \mathbf{s}_{-i}) \sigma(\mathbf{s}_i, \mathbf{s}_{-i}) \quad \forall i \in \mathsf{N} \text{ and } \mathbf{s}_i, \mathbf{s}'_i \in \mathcal{S}_i \\ & \quad \sum_{\mathbf{s} \in \times_i \mathcal{S}_i} \sigma(\mathbf{s}) = 1 \\ & \quad \sigma(\mathbf{s}) \geq 0 \qquad \qquad \forall \mathbf{s} \in \times_i \mathcal{S}_i. \end{aligned}
$$

We use notation $\mathcal{S}_{-i} = \mathcal{S}_1 \times \cdots \times \mathcal{S}_{i-1} \times \mathcal{S}_{i+1} \times \cdots \times \mathcal{S}_{|\mathcal{N}|}.$
For general finite game $\Gamma = (N,(\mathcal{S}_i),(C_i))$, linear program is as follows.

$$
\begin{aligned} \max \quad & 0 \\ \text{s.t.} & \quad \sum_{\mathbf{s}_{-i} \in \mathcal{S}_{-i}} C_i(\mathbf{s}_i, \mathbf{s}_{-i}) \sigma(\mathbf{s}_i, \mathbf{s}_{-i}) \\ & \quad \leq \sum_{\mathbf{s}_{-i} \in \mathcal{S}_{-i}} C_i(\mathbf{s}'_i, \mathbf{s}_{-i}) \sigma(\mathbf{s}_i, \mathbf{s}_{-i}) \quad \forall i \in \mathsf{N} \text{ and } \mathbf{s}_i, \mathbf{s}'_i \in \mathcal{S}_i \\ & \quad \sum_{\mathbf{s} \in \times_i \mathcal{S}_i} \sigma(\mathbf{s}) = 1 \\ & \quad \sigma(\mathbf{s}) \geq 0 \qquad \qquad \forall \mathbf{s} \in \times_i \mathcal{S}_i. \end{aligned}
$$

We use notation $\mathcal{S}_{-i} = \mathcal{S}_1 \times \cdots \times \mathcal{S}_{i-1} \times \mathcal{S}_{i+1} \times \cdots \times \mathcal{S}_{|\mathcal{N}|}.$ $\mathsf{And}\; \mathsf{s}_{-i} = (\mathsf{s}_1, \ldots, \mathsf{s}_{i-1}, \mathsf{s}_{i+1}, \ldots, \mathsf{s}_{|\mathsf{N}|}) \in \mathcal{S}_{-i}.$

For general finite game $\Gamma = (N,(\mathcal{S}_i),(C_i))$, linear program is as follows.

$$
\begin{aligned} \max \quad & 0 \\ \text{s.t.} & \quad \sum_{\mathbf{s}_{-i} \in \mathcal{S}_{-i}} C_i(\mathbf{s}_i, \mathbf{s}_{-i}) \sigma(\mathbf{s}_i, \mathbf{s}_{-i}) \\ & \quad \leq \sum_{\mathbf{s}_{-i} \in \mathcal{S}_{-i}} C_i(\mathbf{s}'_i, \mathbf{s}_{-i}) \sigma(\mathbf{s}_i, \mathbf{s}_{-i}) \quad \forall i \in \mathsf{N} \text{ and } \mathbf{s}_i, \mathbf{s}'_i \in \mathcal{S}_i \\ & \quad \sum_{\mathbf{s} \in \times_i \mathcal{S}_i} \sigma(\mathbf{s}) = 1 \\ & \quad \sigma(\mathbf{s}) \geq 0 \qquad \qquad \forall \mathbf{s} \in \times_i \mathcal{S}_i. \end{aligned}
$$

We use notation $\mathcal{S}_{-i} = \mathcal{S}_1 \times \cdots \times \mathcal{S}_{i-1} \times \mathcal{S}_{i+1} \times \cdots \times \mathcal{S}_{|\mathcal{N}|}.$ $\mathsf{And}\; \mathsf{s}_{-i} = (\mathsf{s}_1, \ldots, \mathsf{s}_{i-1}, \mathsf{s}_{i+1}, \ldots, \mathsf{s}_{|\mathsf{N}|}) \in \mathcal{S}_{-i}.$

No-regret dynamics

Alice, with strategy set $S_A = \{a_1, \ldots, a_m\}$, plays "game" against adversary.

Alice, with strategy set $S_A = \{a_1, \ldots, a_m\}$, plays "game" against adversary.

Adversary will be used to represent other players later on.

Alice, with strategy set $S_A = \{a_1, \ldots, a_m\}$, plays "game" against adversary.

- Adversary will be used to represent other players later on.
- (Looking ahead: Players will converge to CCE.)

Alice, with strategy set $S_A = \{a_1, \ldots, a_m\}$, plays "game" against adversary.

- Adversary will be used to represent other players later on.
- (Looking ahead: Players will converge to CCE.)

The game dynamics

Alice, with strategy set $S_A = \{a_1, \ldots, a_m\}$, plays "game" against adversary.

- Adversary will be used to represent other players later on.
- (Looking ahead: Players will converge to CCE.)

The game dynamics

Game is repeated for *T* rounds.

Alice, with strategy set $S_A = \{a_1, \ldots, a_m\}$, plays "game" against adversary.

- Adversary will be used to represent other players later on.
- (Looking ahead: Players will converge to CCE.)

The game dynamics

Alice, with strategy set $S_A = \{a_1, \ldots, a_m\}$, plays "game" against adversary.

- Adversary will be used to represent other players later on.
- (Looking ahead: Players will converge to CCE.)

The game dynamics

Game is repeated for *T* rounds. In every round $t = 1, \ldots, T$:

Alice picks prob. distr. $\rho^{(t)} = (\rho_1^{(t)})$ $p_1^{(t)}, \ldots, p_m^{(t)}$) over $\{a_1, \ldots, a_m\}.$

Alice, with strategy set $S_A = \{a_1, \ldots, a_m\}$, plays "game" against adversary.

- Adversary will be used to represent other players later on.
- (Looking ahead: Players will converge to CCE.)

The game dynamics

- Alice picks prob. distr. $\rho^{(t)} = (\rho_1^{(t)})$ $p_1^{(t)}, \ldots, p_m^{(t)}$) over $\{a_1, \ldots, a_m\}.$
- Adversary picks cost vector $c^{(t)}$: $\{a_1, \ldots, a_m\} \rightarrow [0,1].$

Alice, with strategy set $S_A = \{a_1, \ldots, a_m\}$, plays "game" against adversary.

- Adversary will be used to represent other players later on.
- (Looking ahead: Players will converge to CCE.)

The game dynamics

- Alice picks prob. distr. $\rho^{(t)} = (\rho_1^{(t)})$ $p_1^{(t)}, \ldots, p_m^{(t)}$) over $\{a_1, \ldots, a_m\}.$
- Adversary picks cost vector $c^{(t)}$: $\{a_1, \ldots, a_m\} \rightarrow [0,1].$
- Strategy $a^{(t)}$ is drawn according to $p^{(t)}$.

Alice, with strategy set $S_A = \{a_1, \ldots, a_m\}$, plays "game" against adversary.

- Adversary will be used to represent other players later on.
- (Looking ahead: Players will converge to CCE.)

The game dynamics

- Alice picks prob. distr. $\rho^{(t)} = (\rho_1^{(t)})$ $p_1^{(t)}, \ldots, p_m^{(t)}$) over $\{a_1, \ldots, a_m\}.$
- Adversary picks cost vector $c^{(t)}$: $\{a_1, \ldots, a_m\} \rightarrow [0,1].$
- Strategy $a^{(t)}$ is drawn according to $p^{(t)}$.
	- Alice incurs cost $c^{(t)}(a^{(t)})$ and gets to know cost vector $c^{(t)}$.

Alice, with strategy set $S_A = \{a_1, \ldots, a_m\}$, plays "game" against adversary.

- Adversary will be used to represent other players later on.
- (Looking ahead: Players will converge to CCE.)

The game dynamics

- Alice picks prob. distr. $\rho^{(t)} = (\rho_1^{(t)})$ $p_1^{(t)}, \ldots, p_m^{(t)}$) over $\{a_1, \ldots, a_m\}.$
- Adversary picks cost vector $c^{(t)}$: $\{a_1, \ldots, a_m\} \rightarrow [0,1].$
- Strategy $a^{(t)}$ is drawn according to $p^{(t)}$.
	- Alice incurs cost $c^{(t)}(a^{(t)})$ and gets to know cost vector $c^{(t)}$.

Alice, with strategy set $S_A = \{a_1, \ldots, a_m\}$, plays "game" against adversary.

- Adversary will be used to represent other players later on.
- (Looking ahead: Players will converge to CCE.)

The game dynamics

Game is repeated for *T* rounds. In every round $t = 1, \ldots, T$:

- Alice picks prob. distr. $\rho^{(t)} = (\rho_1^{(t)})$ $p_1^{(t)}, \ldots, p_m^{(t)}$) over $\{a_1, \ldots, a_m\}.$
- Adversary picks cost vector $c^{(t)}$: $\{a_1, \ldots, a_m\} \rightarrow [0,1].$
- Strategy $a^{(t)}$ is drawn according to $p^{(t)}$.
	- Alice incurs cost $c^{(t)}(a^{(t)})$ and gets to know cost vector $c^{(t)}$.

Goal of Alice is to minimize average cost 1 *T* \sum *T t*=1 $c^{(t)}(a^{(t)})$

against a benchmark.

Alice, with strategy set $S_A = \{a_1, \ldots, a_m\}$, plays "game" against adversary.

- Adversary will be used to represent other players later on.
- (Looking ahead: Players will converge to CCE.)

The game dynamics

Game is repeated for *T* rounds. In every round $t = 1, \ldots, T$:

- Alice picks prob. distr. $\rho^{(t)} = (\rho_1^{(t)})$ $p_1^{(t)}, \ldots, p_m^{(t)}$) over $\{a_1, \ldots, a_m\}.$
- Adversary picks cost vector $c^{(t)}$: $\{a_1, \ldots, a_m\} \rightarrow [0,1].$
- Strategy $a^{(t)}$ is drawn according to $p^{(t)}$.
	- Alice incurs cost $c^{(t)}(a^{(t)})$ and gets to know cost vector $c^{(t)}$.

Goal of Alice is to minimize average cost 1 *T* \sum *T t*=1 $c^{(t)}(a^{(t)})$ *against a benchmark. What should the benchmark be?*

Would be natural to compare against best choices in hindsight, i.e.,

Would be natural to compare against best choices in hindsight, i.e.,

J.

$$
\frac{1}{T}\sum_{t=1}^I\min_{a\in S_A}c^{(t)}(a^{(t)}).
$$

Would be natural to compare against best choices in hindsight, i.e.,

$$
\frac{1}{T}\sum_{t=1}^T \min_{a \in S_A} c^{(t)}(a^{(t)}).
$$

Alice's cost if she would have put all prob. mass on strategy minimizing cost vector *c* (*t*) , in every step *t*.

Would be natural to compare against best choices in hindsight, i.e.,

$$
\frac{1}{T}\sum_{t=1}^T \min_{a \in S_A} c^{(t)}(a^{(t)}).
$$

- Alice's cost if she would have put all prob. mass on strategy minimizing cost vector *c* (*t*) , in every step *t*.
	- Said differently, Alice's best choice if adversary would have to announce cost vector first.

Would be natural to compare against best choices in hindsight, i.e.,

$$
\frac{1}{T}\sum_{t=1}^T \min_{a \in S_A} c^{(t)}(a^{(t)}).
$$

- Alice's cost if she would have put all prob. mass on strategy minimizing cost vector *c* (*t*) , in every step *t*.
	- Said differently, Alice's best choice if adversary would have to announce cost vector first.

"Regret" of Alice, for given realization $a^{(1)}, \ldots, a^{(T)},$ would then be defined as

Would be natural to compare against best choices in hindsight, i.e.,

$$
\frac{1}{T}\sum_{t=1}^T\min_{a\in\mathcal{S}_A}c^{(t)}(a^{(t)}).
$$

- Alice's cost if she would have put all prob. mass on strategy minimizing cost vector *c* (*t*) , in every step *t*.
	- Said differently, Alice's best choice if adversary would have to announce cost vector first.

"Regret" of Alice, for given realization $a^{(1)}, \ldots, a^{(T)},$ would then be defined as

$$
\alpha(\mathcal{T}) = \frac{1}{\mathcal{T}} \left(\sum_{t=1}^T c^{(t)}(a^{(t)}) - \sum_{t=1}^T \min_{a \in \mathcal{S}_A} c^{(t)}(a) \right)
$$

Would be natural to compare against best choices in hindsight, i.e.,

$$
\frac{1}{T}\sum_{t=1}^T\min_{a\in\mathcal{S}_A}c^{(t)}(a^{(t)}).
$$

- Alice's cost if she would have put all prob. mass on strategy minimizing cost vector *c* (*t*) , in every step *t*.
	- Said differently, Alice's best choice if adversary would have to announce cost vector first.

"Regret" of Alice, for given realization $a^{(1)}, \ldots, a^{(T)},$ would then be defined as

$$
\alpha(\mathcal{T}) = \frac{1}{\mathcal{T}} \left(\sum_{t=1}^T c^{(t)}(a^{(t)}) - \sum_{t=1}^T \min_{a \in \mathcal{S}_A} c^{(t)}(a) \right)
$$

• Alice has no (or vanishing) regret if, in expectation, $\alpha(T) \rightarrow 0$ when $\tau \rightarrow \infty$.

Would be natural to compare against best choices in hindsight, i.e.,

$$
\frac{1}{T}\sum_{t=1}^T\min_{a\in\mathcal{S}_A}c^{(t)}(a^{(t)}).
$$

- Alice's cost if she would have put all prob. mass on strategy minimizing cost vector *c* (*t*) , in every step *t*.
	- Said differently, Alice's best choice if adversary would have to announce cost vector first.

"Regret" of Alice, for given realization $a^{(1)}, \ldots, a^{(T)},$ would then be defined as

$$
\alpha(\mathcal{T}) = \frac{1}{\mathcal{T}} \left(\sum_{t=1}^T c^{(t)}(a^{(t)}) - \sum_{t=1}^T \min_{a \in \mathcal{S}_A} c^{(t)}(a) \right)
$$

• Alice has no (or vanishing) regret if, in expectation, $\alpha(T) \rightarrow 0$ when $\tau \rightarrow \infty$.

We next illustrate that, under the definition α(*T*)*, vanishing regret cannot be achieved. (We will give an alternative definition afterwards.)*

$$
\alpha(\mathcal{T}) = \frac{1}{\mathcal{T}} \left(\sum_{t=1}^{\mathcal{T}} c^{(t)}(a^{(t)}) - \sum_{t=1}^{\mathcal{T}} \min_{a \in \mathcal{S}_A} c^{(t)}(a) \right)
$$

$$
\alpha(\mathcal{T}) = \frac{1}{\mathcal{T}} \left(\sum_{t=1}^T c^{(t)}(a^{(t)}) - \sum_{t=1}^T \min_{a \in \mathcal{S}_A} c^{(t)}(a) \right)
$$

Suppose Alice has two actions *a* and *b*. In every round, when Alice $\mathcal{P}^{(t)} = (p_{a}^{(t)}, p_{b}^{(t)})$ *b*), adversary sets

$$
c^{(t)} = (c^{(t)}(a), c^{(t)}(b)) = \begin{cases} (1,0) & p_a^{(t)} \ge 1/2 \\ (0,1) & p_b^{(t)} > 1/2 \end{cases}
$$

$$
\alpha(\mathcal{T}) = \frac{1}{\mathcal{T}} \left(\sum_{t=1}^T c^{(t)}(a^{(t)}) - \sum_{t=1}^T \min_{a \in \mathcal{S}_A} c^{(t)}(a) \right)
$$

Suppose Alice has two actions *a* and *b*. In every round, when Alice $\mathcal{P}^{(t)} = (p_{a}^{(t)}, p_{b}^{(t)})$ *b*), adversary sets

$$
c^{(t)} = (c^{(t)}(a), c^{(t)}(b)) = \begin{cases} (1,0) & p_a^{(t)} \ge 1/2 \\ (0,1) & p_b^{(t)} > 1/2 \end{cases}
$$

Expected cost in round *t* is at least 1/2.

$$
\alpha(\mathcal{T}) = \frac{1}{\mathcal{T}} \left(\sum_{t=1}^{\mathcal{T}} c^{(t)}(a^{(t)}) - \sum_{t=1}^{\mathcal{T}} \min_{a \in \mathcal{S}_A} c^{(t)}(a) \right)
$$

Suppose Alice has two actions *a* and *b*. In every round, when Alice $\mathcal{P}^{(t)} = (p_{a}^{(t)}, p_{b}^{(t)})$ *b*), adversary sets

$$
c^{(t)} = (c^{(t)}(a), c^{(t)}(b)) = \begin{cases} (1,0) & p_a^{(t)} \ge 1/2 \\ (0,1) & p_b^{(t)} > 1/2 \end{cases}
$$

- Expected cost in round *t* is at least 1/2.
- Best choice in hindsight gives cost of zero in round *t*.

$$
\alpha(\mathcal{T}) = \frac{1}{\mathcal{T}} \left(\sum_{t=1}^{\mathcal{T}} c^{(t)}(a^{(t)}) - \sum_{t=1}^{\mathcal{T}} \min_{a \in \mathcal{S}_{\mathcal{A}}} c^{(t)}(a) \right)
$$

Suppose Alice has two actions *a* and *b*. In every round, when Alice $\mathcal{P}^{(t)} = (p_{a}^{(t)}, p_{b}^{(t)})$ *b*), adversary sets

$$
c^{(t)} = (c^{(t)}(a), c^{(t)}(b)) = \begin{cases} (1,0) & p_a^{(t)} \ge 1/2 \\ (0,1) & p_b^{(t)} > 1/2 \end{cases}
$$

- Expected cost in round *t* is at least 1/2.
- Best choice in hindsight gives cost of zero in round *t*.

Expected regret $\alpha(T)$ *is at least* 1/2 *for every* T.

$$
\alpha(\mathcal{T}) = \frac{1}{\mathcal{T}}\left(\sum_{t=1}^{\mathcal{T}} c^{(t)}(a^{(t)}) - \sum_{t=1}^{\mathcal{T}} \min_{a \in \mathcal{S}_A} c^{(t)}(a)\right)
$$

Suppose Alice has two actions *a* and *b*. In every round, when Alice $\mathcal{P}^{(t)} = (p_{a}^{(t)}, p_{b}^{(t)})$ *b*), adversary sets

$$
c^{(t)} = (c^{(t)}(a), c^{(t)}(b)) = \begin{cases} (1,0) & p_a^{(t)} \ge 1/2 \\ (0,1) & p_b^{(t)} > 1/2 \end{cases}
$$

.

- Expected cost in round *t* is at least 1/2.
- Best choice in hindsight gives cost of zero in round *t*.

Expected regret $\alpha(T)$ *is at least* 1/2 *for every* T.

*Is there another "sensible" regret definition yielding non-trivial results*²³²

Another possibility is to compare with best fixed strategy in hindsight, i.e.,

Another possibility is to compare with best fixed strategy in hindsight, i.e., min *a*∈S*^A* 1 *T* X *T t*=1 *c* (*t*) (*a*).

Another possibility is to compare with best fixed strategy in hindsight, i.e., min *a*∈S*^A* 1 *T* X *T t*=1 *c* (*t*) (*a*).

We interchange "minimum" and "summation".
Another possibility is to compare with best fixed strategy in hindsight, i.e., *T*

$$
\min_{a\in S_A}\frac{1}{T}\sum_{t=1}^T c^{(t)}(a).
$$

- We interchange "minimum" and "summation".
- Cost if Alice would have been allowed to switch to (fixed) strategy *a* in every step.

Another possibility is to compare with best fixed strategy in hindsight, i.e.,

$$
\min_{a \in S_A} \frac{1}{T} \sum_{t=1}^T c^{(t)}(a).
$$

- We interchange "minimum" and "summation".
- Cost if Alice would have been allowed to switch to (fixed) strategy *a* in every step.
	- This is still w.r.t. to adversarial cost vectors chosen by adversary based on prob. distributions $p^{(t)}$.

Another possibility is to compare with best fixed strategy in hindsight, i.e.,

$$
\min_{a \in S_A} \frac{1}{T} \sum_{t=1}^T c^{(t)}(a).
$$

- We interchange "minimum" and "summation".
- Cost if Alice would have been allowed to switch to (fixed) strategy *a* in every step.
	- This is still w.r.t. to adversarial cost vectors chosen by adversary based on prob. distributions $p^{(t)}$.

Definition (Regret)

For given prob. distr. $p^{(1)}, \ldots, p^{(T)}$ and adversarial cost vectors $c^{(1)}, \ldots, c^{(T)},$ the (time-averaged) regret of Alice is defined as

$$
\rho(T) = \frac{1}{T} \left(\sum_{t=1}^T c^{(t)}(a^{(t)}) - \min_{a \in \mathcal{S}_A} \sum_{t=1}^T c^{(t)}(a) \right),
$$

where $a^{(t)}$ is sample according to distribution $p^{(t)}$.

Another possibility is to compare with best fixed strategy in hindsight, i.e.,

$$
\min_{a \in S_A} \frac{1}{T} \sum_{t=1}^T c^{(t)}(a).
$$

- We interchange "minimum" and "summation".
- Cost if Alice would have been allowed to switch to (fixed) strategy *a* in every step.
	- This is still w.r.t. to adversarial cost vectors chosen by adversary based on prob. distributions $p^{(t)}$.

Definition (Regret)

For given prob. distr. $p^{(1)}, \ldots, p^{(T)}$ and adversarial cost vectors $c^{(1)}, \ldots, c^{(T)},$ the (time-averaged) regret of Alice is defined as

$$
\rho(T) = \frac{1}{T} \left(\sum_{t=1}^T c^{(t)}(a^{(t)}) - \min_{a \in \mathcal{S}_A} \sum_{t=1}^T c^{(t)}(a) \right),
$$

where $a^{(t)}$ is sample according to distribution $\rho^{(t)}$. Alice has no regret (w.r.t. chosen distributions) if $\rho(T) \to 0$ when $T \to \infty$, in expectation.

22 / 32

$$
\rho(\mathcal{T}) = \frac{1}{\mathcal{T}} \left(\sum_{t=1}^{\mathcal{T}} c^{(t)}(a^{(t)}) - \min_{a \in \mathcal{S}_A} \sum_{t=1}^{\mathcal{T}} c^{(t)}(a) \right)
$$

$$
\rho(\mathcal{T}) = \frac{1}{\mathcal{T}} \left(\sum_{t=1}^{\mathcal{T}} c^{(t)}(a^{(t)}) - \min_{a \in \mathcal{S}_A} \sum_{t=1}^{\mathcal{T}} c^{(t)}(a) \right)
$$

$$
\rho(\mathcal{T}) = \frac{1}{\mathcal{T}} \left(\sum_{t=1}^T c^{(t)}(a^{(t)}) - \min_{a \in \mathcal{S}_A} \sum_{t=1}^T c^{(t)}(a) \right)
$$

Such an algorithm can use cost vectors $c^{(1)}, \ldots, c^{(t)},$ distributions $\rho^{(1)},\ldots,\rho^{(t)},$ and realizations $a^{(t)},$ to define distribution $\rho^{(t+1)}.$

$$
\rho(T) = \frac{1}{T} \left(\sum_{t=1}^{T} c^{(t)}(a^{(t)}) - \min_{a \in S_A} \sum_{t=1}^{T} c^{(t)}(a) \right)
$$

- Such an algorithm can use cost vectors $c^{(1)}, \ldots, c^{(t)},$ distributions $\rho^{(1)},\ldots,\rho^{(t)},$ and realizations $a^{(t)},$ to define distribution $\rho^{(t+1)}.$
- Adversary can use the same information, including the chosen $\rho^{(t+1)}$, to define adversarial cost vector $c^{(t+1)}$.

$$
\rho(T) = \frac{1}{T} \left(\sum_{t=1}^{T} c^{(t)}(a^{(t)}) - \min_{a \in S_A} \sum_{t=1}^{T} c^{(t)}(a) \right)
$$

- Such an algorithm can use cost vectors $c^{(1)}, \ldots, c^{(t)},$ distributions $\rho^{(1)},\ldots,\rho^{(t)},$ and realizations $a^{(t)},$ to define distribution $\rho^{(t+1)}.$
- Adversary can use the same information, including the chosen $\rho^{(t+1)}$, to define adversarial cost vector $c^{(t+1)}$.

Theorem

There exist no-regret (online decision making) algorithms with

$$
\rho(\mathcal{T}) = O\left(\sqrt{\log(m)/\mathcal{T}}\right)
$$

where m is the number of strategies.

$$
\rho(T) = \frac{1}{T} \left(\sum_{t=1}^{T} c^{(t)}(a^{(t)}) - \min_{a \in S_A} \sum_{t=1}^{T} c^{(t)}(a) \right)
$$

- Such an algorithm can use cost vectors $c^{(1)}, \ldots, c^{(t)},$ distributions $\rho^{(1)},\ldots,\rho^{(t)},$ and realizations $a^{(t)},$ to define distribution $\rho^{(t+1)}.$
- Adversary can use the same information, including the chosen $\rho^{(t+1)}$, to define adversarial cost vector $c^{(t+1)}$.

Theorem

There exist no-regret (online decision making) algorithms with

$$
\rho(\mathcal{T}) = O\left(\sqrt{\log(m)/\mathcal{T}}\right)
$$

where m is the number of strategies.

 $T = O(\log(m)/\epsilon^2)$ steps enough to get regret below ϵ .

$$
\rho(T) = \frac{1}{T} \left(\sum_{t=1}^{T} c^{(t)}(a^{(t)}) - \min_{a \in S_A} \sum_{t=1}^{T} c^{(t)}(a) \right)
$$

- Such an algorithm can use cost vectors $c^{(1)}, \ldots, c^{(t)},$ distributions $\rho^{(1)},\ldots,\rho^{(t)},$ and realizations $a^{(t)},$ to define distribution $\rho^{(t+1)}.$
- Adversary can use the same information, including the chosen $\rho^{(t+1)}$, to define adversarial cost vector $c^{(t+1)}$.

Theorem

There exist no-regret (online decision making) algorithms with

$$
\rho(\mathcal{T}) = O\left(\sqrt{\log(m)/\mathcal{T}}\right)
$$

where m is the number of strategies.

- $T = O(\log(m)/\epsilon^2)$ steps enough to get regret below ϵ .
- Will later see Multiplicative Weights (MW) algorithm achieving this.

$$
\rho(T) = \frac{1}{T} \left(\sum_{t=1}^{T} c^{(t)}(a^{(t)}) - \min_{a \in S_A} \sum_{t=1}^{T} c^{(t)}(a) \right)
$$

- Such an algorithm can use cost vectors $c^{(1)}, \ldots, c^{(t)},$ distributions $\rho^{(1)},\ldots,\rho^{(t)},$ and realizations $a^{(t)},$ to define distribution $\rho^{(t+1)}.$
- Adversary can use the same information, including the chosen $\rho^{(t+1)}$, to define adversarial cost vector $c^{(t+1)}$.

Theorem

There exist no-regret (online decision making) algorithms with

$$
\rho(\mathcal{T}) = O\left(\sqrt{\log(m)/\mathcal{T}}\right)
$$

where m is the number of strategies.

- $T = O(\log(m)/\epsilon^2)$ steps enough to get regret below ϵ .
- Will later see Multiplicative Weights (MW) algorithm achieving this.

No-regret dynamics

Convergence to (approximate) CCE

Let $\Gamma = (N,(S_i),(C_i))$, with $C_i: \times_j\mathcal{S}_j \rightarrow [0,1],$ and assume every $i \in N$ is equipped with no-regret algorithm $\mathcal{A}_{i}.$

Let $\Gamma = (N,(S_i),(C_i))$, with $C_i: \times_j\mathcal{S}_j \rightarrow [0,1],$ and assume every $i \in N$ is equipped with no-regret algorithm $\mathcal{A}_{i}.$

 \bullet At this point, consider the A_i as "blackbox" algorithms.

Let $\Gamma = (N,(S_i),(C_i))$, with $C_i: \times_j\mathcal{S}_j \rightarrow [0,1],$ and assume every $i \in N$ is equipped with no-regret algorithm $\mathcal{A}_{i}.$

- \bullet At this point, consider the A_i as "blackbox" algorithms.
- We write $m_i = |\mathcal{S}_i|$ for number of strategies of player $i \in \mathsf{N}.$

Let $\Gamma = (N,(S_i),(C_i))$, with $C_i: \times_j\mathcal{S}_j \rightarrow [0,1],$ and assume every $i \in N$ is equipped with no-regret algorithm $\mathcal{A}_{i}.$

- \bullet At this point, consider the A_i as "blackbox" algorithms.
- We write $m_i = |\mathcal{S}_i|$ for number of strategies of player $i \in \mathsf{N}.$

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

Let $\Gamma = (N,(S_i),(C_i))$, with $C_i: \times_j\mathcal{S}_j \rightarrow [0,1],$ and assume every $i \in N$ is equipped with no-regret algorithm $\mathcal{A}_{i}.$

- \bullet At this point, consider the A_i as "blackbox" algorithms.
- We write $m_i = |\mathcal{S}_i|$ for number of strategies of player $i \in \mathsf{N}.$

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following: Use \mathcal{A}_i to compute prob. distr. $p_i^{(t)} = (p_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,n}^{(t)}$ $\binom{U}{i,m_i}$ over S_i .

Let $\Gamma = (N,(S_i),(C_i))$, with $C_i: \times_j\mathcal{S}_j \rightarrow [0,1],$ and assume every $i \in N$ is equipped with no-regret algorithm $\mathcal{A}_{i}.$

- \bullet At this point, consider the A_i as "blackbox" algorithms.
- We write $m_i = |\mathcal{S}_i|$ for number of strategies of player $i \in \mathsf{N}.$

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,m_i}^{(t)})$ over $\mathcal{S}_i.$ *i*,*mⁱ*
- The adversarial cost vector $c_i^{(t)}$ $\beta^{(t)}_i:\mathcal{S}_i\rightarrow [0,1]$ is defined as

Let $\Gamma = (N,(S_i),(C_i))$, with $C_i: \times_j\mathcal{S}_j \rightarrow [0,1],$ and assume every $i \in N$ is equipped with no-regret algorithm $\mathcal{A}_{i}.$

- \bullet At this point, consider the A_i as "blackbox" algorithms.
- We write $m_i = |\mathcal{S}_i|$ for number of strategies of player $i \in \mathsf{N}.$

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,n}^{(t)}$ $\binom{U}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $\beta^{(t)}_i:\mathcal{S}_i\rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i \left(a, s_{-i}^{(t)} \right) \quad \forall a \in \mathcal{S}_i
$$

Let $\Gamma = (N,(S_i),(C_i))$, with $C_i: \times_j\mathcal{S}_j \rightarrow [0,1],$ and assume every $i \in N$ is equipped with no-regret algorithm $\mathcal{A}_{i}.$

- \bullet At this point, consider the A_i as "blackbox" algorithms.
- We write $m_i = |\mathcal{S}_i|$ for number of strategies of player $i \in \mathsf{N}.$

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,n}^{(t)}$ $\binom{U}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $\beta^{(t)}_i:\mathcal{S}_i\rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i \left(a, s_{-i}^{(t)} \right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$

Let $\Gamma = (N,(S_i),(C_i))$, with $C_i: \times_j\mathcal{S}_j \rightarrow [0,1],$ and assume every $i \in N$ is equipped with no-regret algorithm $\mathcal{A}_{i}.$

- \bullet At this point, consider the A_i as "blackbox" algorithms.
- We write $m_i = |\mathcal{S}_i|$ for number of strategies of player $i \in \mathsf{N}.$

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,n}^{(t)}$ $\binom{U}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $\beta^{(t)}_i:\mathcal{S}_i\rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i \left(a, s_{-i}^{(t)} \right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$ Strategy $a^{(t)} \sim p_i^{(t)}$ *i* is drawn, and player *i* incurs corresponding cost.

Let $\Gamma = (N,(S_i),(C_i))$, with $C_i: \times_j\mathcal{S}_j \rightarrow [0,1],$ and assume every $i \in N$ is equipped with no-regret algorithm $\mathcal{A}_{i}.$

- \bullet At this point, consider the A_i as "blackbox" algorithms.
- We write $m_i = |\mathcal{S}_i|$ for number of strategies of player $i \in \mathsf{N}.$

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,n}^{(t)}$ $\binom{U}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $\beta^{(t)}_i:\mathcal{S}_i\rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i \left(a, s_{-i}^{(t)} \right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$ Strategy $a^{(t)} \sim p_i^{(t)}$ *i* is drawn, and player *i* incurs corresponding cost.

That is, $\sigma_{-i}^{(t)}$ $\frac{f(t)}{-f}$: \mathcal{S}_{-i} \rightarrow [0, 1] is prob. distribution given by $\sigma_{-i}^{(t)}$ $\prod_{j\neq i}\rho_{j,\mathbf{s}}^{(t)}$ *j*,*s^j* ,

Let $\Gamma = (N,(S_i),(C_i))$, with $C_i: \times_j\mathcal{S}_j \rightarrow [0,1],$ and assume every $i \in N$ is equipped with no-regret algorithm $\mathcal{A}_{i}.$

- \bullet At this point, consider the A_i as "blackbox" algorithms.
- We write $m_i = |\mathcal{S}_i|$ for number of strategies of player $i \in \mathsf{N}.$

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,n}^{(t)}$ $\binom{U}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $\beta^{(t)}_i:\mathcal{S}_i\rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i \left(a, s_{-i}^{(t)} \right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$ Strategy $a^{(t)} \sim p_i^{(t)}$ *i* is drawn, and player *i* incurs corresponding cost.

That is, $\sigma_{-i}^{(t)}$ $\frac{f(t)}{-f}$: \mathcal{S}_{-i} \rightarrow [0, 1] is prob. distribution given by $\sigma_{-i}^{(t)}$ $\prod_{j\neq i}\rho_{j,\mathbf{s}}^{(t)}$ *j*,*s^j* , $\mathsf{where} \; \mathsf{s}_{-i} = (\mathsf{s}_1, \ldots, \mathsf{s}_{i-1}, \mathsf{s}_{i+1}, \ldots, \mathsf{s}_{|\mathsf{N}|}) \in \mathcal{S}_{-i}.$

Let $\Gamma = (N,(S_i),(C_i))$, with $C_i: \times_j\mathcal{S}_j \rightarrow [0,1],$ and assume every $i \in N$ is equipped with no-regret algorithm $\mathcal{A}_{i}.$

- \bullet At this point, consider the A_i as "blackbox" algorithms.
- We write $m_i = |\mathcal{S}_i|$ for number of strategies of player $i \in \mathsf{N}.$

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,n}^{(t)}$ $\binom{U}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $\beta^{(t)}_i:\mathcal{S}_i\rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i \left(a, s_{-i}^{(t)} \right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$ Strategy $a^{(t)} \sim p_i^{(t)}$ *i* is drawn, and player *i* incurs corresponding cost.

That is, $\sigma_{-i}^{(t)}$ $\frac{f(t)}{-f}$: \mathcal{S}_{-i} \rightarrow [0, 1] is prob. distribution given by $\sigma_{-i}^{(t)}$ $\prod_{j\neq i}\rho_{j,\mathbf{s}}^{(t)}$ *j*,*s^j* , $\mathsf{where} \; \mathsf{s}_{-i} = (\mathsf{s}_1, \ldots, \mathsf{s}_{i-1}, \mathsf{s}_{i+1}, \ldots, \mathsf{s}_{|\mathsf{N}|}) \in \mathcal{S}_{-i}.$

• Remember
$$
S_{-i} = S_1 \times \cdots \times S_{i-1} \times S_{i+1} \times \cdots \times S_{|N|}
$$
.

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following: Use A_i to compute prob. distr. $p_i^{(t)} = (p_{i,1}^{(t)})$ $p_{i,1}^{(t)}, \ldots, p_{i,n}^{(t)}$ $\binom{V_i}{i,m_i}$ over S_i .

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)}, \ldots, p_{i,n}^{(t)}$ $\binom{V_i}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $S_i^{(t)}: \mathcal{S}_i \rightarrow [0,1]$ is defined as

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,m_i}^{(t)})$ over \mathcal{S}_i . *i*,*mⁱ*
- The adversarial cost vector $c_i^{(t)}$ $S_i^{(t)}: \mathcal{S}_i \rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i \left(a, s_{-i}^{(t)} \right) \quad \forall a \in \mathcal{S}_i
$$

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)}, \ldots, p_{i,n}^{(t)}$ $\binom{V_i}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $S_i^{(t)}: \mathcal{S}_i \rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i \left(a, s_{-i}^{(t)} \right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$ Strategy $a^{(t)} \sim p_i^{(t)}$ *i* is drawn, and player *i* incurs corresponding cost.

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)}, \ldots, p_{i,n}^{(t)}$ $\binom{V_i}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $S_i^{(t)}: \mathcal{S}_i \rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i \left(a, s_{-i}^{(t)} \right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$ Strategy $a^{(t)} \sim p_i^{(t)}$ *i* is drawn, and player *i* incurs corresponding cost.

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)}, \ldots, p_{i,n}^{(t)}$ $\binom{V_i}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $S_i^{(t)}: \mathcal{S}_i \rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i \left(a, s_{-i}^{(t)} \right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$ Strategy $a^{(t)} \sim p_i^{(t)}$ *i* is drawn, and player *i* incurs corresponding cost.

Set $\sigma^{(t)} = \prod_j \pmb{\rho}^{(t)}_j$ *j* and let

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)}, \ldots, p_{i,n}^{(t)}$ $\binom{V_i}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $S_i^{(t)}: \mathcal{S}_i \rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i \left(a, s_{-i}^{(t)} \right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$ Strategy $a^{(t)} \sim p_i^{(t)}$ *i* is drawn, and player *i* incurs corresponding cost.

Set $\sigma^{(t)} = \prod_j \rho^{(t)}_j$ *f*^(*t*) and let $\sigma_{\mathcal{T}} = \frac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}} \sigma^{(t)}$ be the time average of all $\overline{D}_{\text{total}} = \prod_{i} p_i$ and $\overline{D}_{\text{total}} = \frac{1}{T} \sum_{t=1}^{T} \overline{D}_{\text{total}}$ is the time

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)}, \ldots, p_{i,n}^{(t)}$ $\binom{V_i}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $S_i^{(t)}: \mathcal{S}_i \rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i \left(a, s_{-i}^{(t)} \right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$ Strategy $a^{(t)} \sim p_i^{(t)}$ *i* is drawn, and player *i* incurs corresponding cost.

Set $\sigma^{(t)} = \prod_j \rho^{(t)}_j$ *f*^(*t*) and let $\sigma_{\mathcal{T}} = \frac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}} \sigma^{(t)}$ be the time average of all $\overline{D}_{\text{total}} = \prod_{i} p_i$ and $\overline{D}_{\text{total}} = \frac{1}{T} \sum_{t=1}^{T} \overline{D}_{\text{total}}$ is the time

Theorem

The time average σ*^T is a* ρ*i*(*T*)*-approximate CCE, i.e., it satisfies* $\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s})\right]\leq\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s}_{i}', \boldsymbol{s}_{-i})\right]+\rho_{i}(\mathcal{T})$

for i \in *N* and fixed $s_i' \in S_i$.

Theorem

The time average σ_T *is a* $\rho_i(T)$ *-approximate CCE, i.e., it satisfies* $\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s})\right]\leq\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s}_{i}',\boldsymbol{s}_{-i})\right]+\rho_{i}(\mathcal{T})$ *for* $i \in N$ and fixed $s'_i \in S_i$.
The time average σ_T *is a* $\rho_i(T)$ *-approximate CCE, i.e., it satisfies* $\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s})\right]\leq\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s}_{i}',\boldsymbol{s}_{-i})\right]+\rho_{i}(\mathcal{T})$ *for* $i \in N$ and fixed $s'_i \in S_i$.

Proof (sketch):

The time average σ*^T is a* ρ*i*(*T*)*-approximate CCE, i.e., it satisfies* $\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s})\right]\leq\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s}_{i}',\boldsymbol{s}_{-i})\right]+\rho_{i}(\mathcal{T})$ *for* $i \in N$ and fixed $s'_i \in S_i$.

The time average σ_T *is a* $\rho_i(T)$ *-approximate CCE, i.e., it satisfies* $\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s})\right]\leq\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s}_{i}',\boldsymbol{s}_{-i})\right]+\rho_{i}(\mathcal{T})$ *for* $i \in N$ and fixed $s'_i \in S_i$.

Proof (sketch): First note that expected cost $\mathbb{E}_{t_i \sim p_i^{(t)}}$ $\left[c_i^{(t)} \right]$ $\int_{i}^{(t)}(t_{i})$ incurred by player *i* in round *t* boils down to $\mathbb{E}_{s \sim \sigma^{(t)}}[C_i(s)]$. Then

 $\mathbb{E}_{\bm{s} \sim \sigma_{\mathcal{T}}} \left[C_i(\bm{s}) \right]$

The time average σ*^T is a* ρ*i*(*T*)*-approximate CCE, i.e., it satisfies* $\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s})\right]\leq\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s}_{i}',\boldsymbol{s}_{-i})\right]+\rho_{i}(\mathcal{T})$ *for* $i \in N$ and fixed $s'_i \in S_i$.

$$
\mathbb{E}_{s \sim \sigma_T} [C_i(s)] = \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{a \sim p_i^{(t)}} \left[c_i^{(t)}(a) \right]
$$
 (time average)

The time average σ*^T is a* ρ*i*(*T*)*-approximate CCE, i.e., it satisfies* $\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s})\right]\leq\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s}_{i}',\boldsymbol{s}_{-i})\right]+\rho_{i}(\mathcal{T})$ *for* $i \in N$ and fixed $s'_i \in S_i$.

$$
\mathbb{E}_{s \sim \sigma_{T}}[C_{i}(s)] = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{a \sim p_{i}^{(t)}}[c_{i}^{(t)}(a)] \qquad \qquad (\text{time average})
$$
\n
$$
= \min_{s_{i} \in S_{i}} \frac{1}{T} \sum_{t=1}^{T} c_{i}^{(t)}(s_{i}) + \rho_{i}(T) \qquad \qquad (\text{definition of } \rho_{i}(T))
$$

The time average σ*^T is a* ρ*i*(*T*)*-approximate CCE, i.e., it satisfies* $\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s})\right]\leq\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s}_{i}',\boldsymbol{s}_{-i})\right]+\rho_{i}(\mathcal{T})$ *for* $i \in N$ and fixed $s'_i \in S_i$.

$$
\mathbb{E}_{s \sim \sigma_{\mathcal{T}}} [C_i(s)] = \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{a \sim p_i^{(t)}} [c_i^{(t)}(a)] \qquad \text{(time average)}
$$
\n
$$
= \min_{s_i \in S_i} \frac{1}{T} \sum_{t=1}^T c_i^{(t)}(s_i) + \rho_i(T) \qquad \text{(definition of } \rho_i(T))
$$
\n
$$
= \min_{s_i \in S_i} \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s_{i \to \sigma_{-i}}^{(t)} \sim \sigma_{-i}^{(t)}} C_i (s_i, s_{-i}^{(t)}) + \rho_i(T) \qquad \text{(definition of } c_i^{(t)})
$$

The time average σ*^T is a* ρ*i*(*T*)*-approximate CCE, i.e., it satisfies* $\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s})\right]\leq\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s}_{i}',\boldsymbol{s}_{-i})\right]+\rho_{i}(\mathcal{T})$ *for* $i \in N$ and fixed $s'_i \in S_i$.

$$
\mathbb{E}_{s \sim \sigma_{\tau}}[C_i(s)] = \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{a \sim \rho_i^{(t)}} \left[c_i^{(t)}(a) \right]
$$
 (time average)
\n
$$
= \min_{s_i \in S_i} \frac{1}{T} \sum_{t=1}^T c_i^{(t)}(s_i) + \rho_i(T)
$$
 (definition of $\rho_i(T)$)
\n
$$
= \min_{s_i \in S_i} \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s_{i}^{(t)} \sim \sigma_{i}^{(t)}} C_i \left(s_i, s_{-i}^{(t)} \right) + \rho_i(T)
$$
 (definition of $c_i^{(t)}$)
\n
$$
\leq \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{s^{(t)} \sim \sigma_{i}^{(t)}} C_i \left(s_i', s_{-i}^{(t)} \right) + \rho_i(T)
$$
 (plugging in fixed s_i')

The time average σ_T *is a* $\rho_i(T)$ *-approximate CCE, i.e., it satisfies* $\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s})\right]\leq\mathbb{E}_{\boldsymbol{s}\sim\sigma_{\mathcal{T}}}\left[C_{i}(\boldsymbol{s}_{i}',\boldsymbol{s}_{-i})\right]+\rho_{i}(\mathcal{T})$ *for* $i \in N$ and fixed $s'_i \in S_i$.

$$
\mathbb{E}_{s \sim \sigma_{T}}[G_{i}(s)] = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{a \sim p_{i}^{(t)}} [c_{i}^{(t)}(a)] \qquad \text{(time average)}
$$
\n
$$
= \min_{s_{i} \in S_{i}} \frac{1}{T} \sum_{t=1}^{T} c_{i}^{(t)}(s_{i}) + \rho_{i}(T) \qquad \text{(definition of } \rho_{i}(T))
$$
\n
$$
= \min_{s_{i} \in S_{i}} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{s_{i}^{(t)} \sim \sigma_{i}^{(t)}} G_{i}(s_{i}, s_{-i}^{(t)}) + \rho_{i}(T) \qquad \text{(definition of } c_{i}^{(t)})
$$
\n
$$
\leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{s^{(t)} \sim \sigma_{i}^{(t)}} G_{i}(s_{i}', s_{-i}^{(t)}) + \rho_{i}(T) \qquad \text{(plugging in fixed s'_{i})}
$$
\n
$$
= \mathbb{E}_{s \sim \sigma_{T}} G_{i}(s'_{i}, s_{-i}) + \rho_{i}(T) \qquad \text{(time average)}
$$
\n
$$
\square
$$

Multiplicative Weights algorithm

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following: Use \mathcal{A}_i to compute prob. distr. $p_i^{(t)} = (p_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,n}^{(t)}$ $\binom{U}{i,m_i}$ over S_i .

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,n}^{(t)}$ $\binom{U}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $S_i^{(t)}: \mathcal{S}_i \rightarrow [0,1]$ is defined as

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,n}^{(t)}$ $\binom{U}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $S_i^{(t)}: \mathcal{S}_i \rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i\left(a, s_{-i}^{(t)}\right) \quad \forall a \in \mathcal{S}_i
$$

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,m_i}^{(t)})$ over $\mathcal{S}_i.$ *i*,*mⁱ*
- The adversarial cost vector $c_i^{(t)}$ $S_i^{(t)}: \mathcal{S}_i \rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i\left(a, s_{-i}^{(t)}\right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$ Strategy $a^{(t)} \sim p_i^{(t)}$ *i* is drawn, and player *i* incurs corresponding cost.

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,n}^{(t)}$ $\binom{U}{i,m_i}$ over S_i .
- The adversarial cost vector $c_i^{(t)}$ $S_i^{(t)}: \mathcal{S}_i \rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i\left(a, s_{-i}^{(t)}\right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$ Strategy $a^{(t)} \sim p_i^{(t)}$ *i* is drawn, and player *i* incurs corresponding cost.

We next give promised MW algorithm that can be used for the $\mathcal{A}_i,$

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,m_i}^{(t)})$ over $\mathcal{S}_i.$ *i*,*mⁱ*
- The adversarial cost vector $c_i^{(t)}$ $S_i^{(t)}: \mathcal{S}_i \rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i\left(a, s_{-i}^{(t)}\right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$

Strategy $a^{(t)} \sim p_i^{(t)}$ *i* is drawn, and player *i* incurs corresponding cost.

We next give promised MW algorithm that can be used for the \mathcal{A}_i , and that has the no-regret property.

No-regret (player) dynamics

In every round $t = 1, \ldots, T$, every player $i \in N$ does the following:

- Use \mathcal{A}_i to compute prob. distr. $\rho_i^{(t)} = (\rho_{i,1}^{(t)})$ $p_{i,1}^{(t)},\ldots,p_{i,m_i}^{(t)})$ over $\mathcal{S}_i.$ *i*,*mⁱ*
- The adversarial cost vector $c_i^{(t)}$ $S_i^{(t)}: \mathcal{S}_i \rightarrow [0,1]$ is defined as

$$
c_i^{(t)}(a) = \mathbb{E}_{s_{-i}^{(t)} \sim \sigma_{-i}^{(t)}} C_i\left(a, s_{-i}^{(t)}\right) \quad \forall a \in \mathcal{S}_i
$$

where $\sigma_{-i}^{(t)}$ $\begin{array}{l} \Gamma^{(t)}_{-i} \text{ is product distribution formed by the } \rho^{(t)}_j \text{ with } j \in \mathcal{N} \setminus \{i\}. \end{array}$ Strategy $a^{(t)} \sim p_i^{(t)}$ *i* is drawn, and player *i* incurs corresponding cost.

We next give promised MW algorithm that can be used for the \mathcal{A}_i , and that has the no-regret property. That is, in expectation,

$$
\rho_i(T) = \frac{1}{T} \left(\sum_{t=1}^T c_i^{(t)}(a^{(t)}) - \min_{a \in S_i} \sum_{t=1}^T c_i^{(t)}(a) \right) \to 0
$$

where $a^{(t)} \sim \rho_i^{(t)}$ *i* .

Fix player *i* ∈ *N*.

Fix player $i \in \mathcal{N}$. The MW algorithm maintains weight $w_a^{(t)}$ for every $a \in \mathcal{S}_b$

Fix player $i \in \mathcal{N}$. The MW algorithm maintains weight $w_a^{(t)}$ for every $a \in \mathcal{S}_b$ and chooses distribution for round *t* as

$$
p_{i,a}^{(t)} = \frac{w_a^{(t)}}{\sum_{r \in S_i} w_r^{(t)}}.
$$

Fix player $i \in \mathcal{N}$. The MW algorithm maintains weight $w_a^{(t)}$ for every $a \in \mathcal{S}_b$ and chooses distribution for round *t* as

$$
p_{i,a}^{(t)} = \frac{w_a^{(t)}}{\sum_{r \in S_i} w_r^{(t)}}.
$$

Weight update procedure

Fix player $i \in \mathcal{N}$. The MW algorithm maintains weight $w_a^{(t)}$ for every $a \in \mathcal{S}_b$ and chooses distribution for round *t* as

$$
p_{i,a}^{(t)} = \frac{w_a^{(t)}}{\sum_{r \in S_i} w_r^{(t)}}.
$$

Weight update procedure

Fix player $i \in \mathcal{N}$. The MW algorithm maintains weight $w_a^{(t)}$ for every $a \in \mathcal{S}_b$ and chooses distribution for round *t* as

$$
p_{i,a}^{(t)} = \frac{w_a^{(t)}}{\sum_{r \in S_i} w_r^{(t)}}.
$$

Weight update procedure

Given is input parameter $\eta \in (0, 1/2]$.

Initial weights are set at $w_a^{(1)} = 1$ for $a \in \mathcal{S}_i$ (uniform distribution over \mathcal{S}_i).

Fix player $i \in \mathcal{N}$. The MW algorithm maintains weight $w_a^{(t)}$ for every $a \in \mathcal{S}_b$ and chooses distribution for round *t* as

$$
p_{i,a}^{(t)} = \frac{w_a^{(t)}}{\sum_{r \in S_i} w_r^{(t)}}.
$$

Weight update procedure

- Initial weights are set at $w_a^{(1)} = 1$ for $a \in \mathcal{S}_i$ (uniform distribution over \mathcal{S}_i).
- \bullet For round $t = 1, \ldots, T$:

Fix player $i \in \mathcal{N}$. The MW algorithm maintains weight $w_a^{(t)}$ for every $a \in \mathcal{S}_b$ and chooses distribution for round *t* as

$$
p_{i,a}^{(t)} = \frac{w_a^{(t)}}{\sum_{r \in S_i} w_r^{(t)}}.
$$

Weight update procedure

- Initial weights are set at $w_a^{(1)} = 1$ for $a \in \mathcal{S}_i$ (uniform distribution over \mathcal{S}_i).
- \bullet For round $t = 1, \ldots, T$:
	- After seeing cost vector $c_i^{(t)}$ $i_j^{(t)}$, weights for round $t+1$ are defined as

Fix player $i \in \mathcal{N}$. The MW algorithm maintains weight $w_a^{(t)}$ for every $a \in \mathcal{S}_b$ and chooses distribution for round *t* as

$$
p_{i,a}^{(t)} = \frac{w_a^{(t)}}{\sum_{r \in S_i} w_r^{(t)}}.
$$

Weight update procedure

- Initial weights are set at $w_a^{(1)} = 1$ for $a \in \mathcal{S}_i$ (uniform distribution over \mathcal{S}_i).
- \bullet For round $t = 1, \ldots, T$:
	- After seeing cost vector $c_i^{(t)}$ $i_j^{(t)}$, weights for round $t+1$ are defined as

$$
w_a^{(t+1)} = (1-\eta)^{c_i^{(t)}(a)} \cdot w_a^{(t)}
$$

Fix player $i \in \mathcal{N}$. The MW algorithm maintains weight $w_a^{(t)}$ for every $a \in \mathcal{S}_b$ and chooses distribution for round *t* as

$$
p_{i,a}^{(t)} = \frac{w_a^{(t)}}{\sum_{r \in S_i} w_r^{(t)}}.
$$

Weight update procedure

Given is input parameter $\eta \in (0, 1/2]$.

- Initial weights are set at $w_a^{(1)} = 1$ for $a \in \mathcal{S}_i$ (uniform distribution over \mathcal{S}_i).
- \bullet For round $t = 1, \ldots, T$:
	- After seeing cost vector $c_i^{(t)}$ $i_j^{(t)}$, weights for round $t+1$ are defined as

$$
w_a^{(t+1)} = (1-\eta)^{c_i^{(t)}(a)} \cdot w_a^{(t)}
$$

High cost strategies get smaller (relative) weight in next round.

Fix player $i \in \mathcal{N}$. The MW algorithm maintains weight $w_a^{(t)}$ for every $a \in \mathcal{S}_b$ and chooses distribution for round *t* as

$$
p_{i,a}^{(t)} = \frac{w_a^{(t)}}{\sum_{r \in S_i} w_r^{(t)}}.
$$

Weight update procedure

Given is input parameter $\eta \in (0, 1/2]$.

- Initial weights are set at $w_a^{(1)} = 1$ for $a \in \mathcal{S}_i$ (uniform distribution over \mathcal{S}_i).
- \bullet For round $t = 1, \ldots, T$:
	- After seeing cost vector $c_i^{(t)}$ $i_j^{(t)}$, weights for round $t+1$ are defined as

$$
w_a^{(t+1)} = (1 - \eta)^{c_i^{(t)}(a)} \cdot w_a^{(t)}
$$

High cost strategies get smaller (relative) weight in next round.

Theorem (Littlestone and Warmuth, 1994)

MW algorithm, with $\eta = \sqrt{\log(m_i)/T}$ *, has regret* $\rho_i(T) \leq 2\sqrt{\log(m_i)/T}$

Overview

Final remarks

Final remarks

• CE can also be obtained through certain player dynamics.

Final remarks

- CE can also be obtained through certain player dynamics.
	- \bullet See, e.g., Chapter 18 [R2016].

Final remarks

- CE can also be obtained through certain player dynamics.
	- \bullet See, e.g., Chapter 18 [R2016].
- **Recall that PoA bounds, that we derived for PNE, extend to CCE** by means of the smoothness framework.