Topics in Algorithmic Game Theory and Economics

Pieter Kleer

Max Planck Institute for Informatics (D1) Saarland Informatics Campus

January 13, 2020

Lecture 8
Some Mechanism Design

Mechanism design is a form of reversed game theory:

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain that outcome as a result of strategic behaviour?

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain that outcome as a result of strategic behaviour?

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain that outcome as a result of strategic behaviour?

Examples:

Auctions

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain that outcome as a result of strategic behaviour?

- Auctions
 - Sponsored search auctions (e.g., Google)

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain that outcome as a result of strategic behaviour?

- Auctions
 - Sponsored search auctions (e.g., Google)
 - Online selling platforms (e.g., eBay)

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain that outcome as a result of strategic behaviour?

- Auctions
 - Sponsored search auctions (e.g., Google)
 - Online selling platforms (e.g., eBay)
- (Stable) matching problems

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain that outcome as a result of strategic behaviour?

- Auctions
 - Sponsored search auctions (e.g., Google)
 - Online selling platforms (e.g., eBay)
- (Stable) matching problems
 - Matching children to schools

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain that outcome as a result of strategic behaviour?

- Auctions
 - Sponsored search auctions (e.g., Google)
 - Online selling platforms (e.g., eBay)
- (Stable) matching problems
 - Matching children to schools
 - Matching medical students to hospitals

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain that outcome as a result of strategic behaviour?

- Auctions
 - Sponsored search auctions (e.g., Google)
 - Online selling platforms (e.g., eBay)
- (Stable) matching problems
 - Matching children to schools
 - Matching medical students to hospitals
- Kidney exchange markets

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain that outcome as a result of strategic behaviour?

Examples:

- Auctions
 - Sponsored search auctions (e.g., Google)
 - Online selling platforms (e.g., eBay)
- (Stable) matching problems
 - Matching children to schools
 - Matching medical students to hospitals
- Kidney exchange markets

We focus mostly on (online) auctions.

Bidders:

• Set of bidders $\{1, ..., n\}$ and one item.

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder *i* has valuation v_i for the item.

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder *i* has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder *i* has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: v_i not known to other players or seller.

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder *i* has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: v_i not known to other players or seller.
- Bidder submits bid b_i.

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder *i* has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: v_i not known to other players or seller.
- Bidder submits bid b_i.
 - Vector of all bids denoted by $b = (b_1, \dots, b_n)$.

Bidders:

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder *i* has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: v_i not known to other players or seller.
- Bidder submits bid b_i.
 - Vector of all bids denoted by $b = (b_1, \dots, b_n)$.

Seller:

Bidders:

- Set of bidders $\{1, ..., n\}$ and one item.
- Bidder *i* has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: v_i not known to other players or seller.
- Bidder submits bid b_i.
 - Vector of all bids denoted by $b = (b_1, \dots, b_n)$.

Seller: Collects (sealed) bids.

Bidders:

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder *i* has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: v_i not known to other players or seller.
- Bidder submits bid b_i.
 - Vector of all bids denoted by $b = (b_1, \dots, b_n)$.

Seller: Collects (sealed) bids.

• Gives item to some bidder (if any).

Bidders:

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder *i* has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: v_i not known to other players or seller.
- Bidder submits bid b_i.
 - Vector of all bids denoted by $b = (b_1, \dots, b_n)$.

Seller: Collects (sealed) bids.

- Gives item to some bidder (if any).
 - Allocation rule $x = x(b) = (x_1, ..., x_n)$, with

$$x_i = \left\{ egin{array}{ll} 1 & ext{if } i ext{ gets the item,} \\ 0 & ext{otherwise.} \end{array}
ight.$$

Bidders:

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder *i* has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: v_i not known to other players or seller.
- Bidder submits bid b_i.
 - Vector of all bids denoted by $b = (b_1, \dots, b_n)$.

Seller: Collects (sealed) bids.

- Gives item to some bidder (if any).
 - Allocation rule $x = x(b) = (x_1, ..., x_n)$, with

$$x_i = \begin{cases} 1 & \text{if } i \text{ gets the item,} \\ 0 & \text{otherwise.} \end{cases}$$

• Charges price of p to bidder i* receiving item.

Bidders:

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder *i* has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: v_i not known to other players or seller.
- Bidder submits bid b_i.
 - Vector of all bids denoted by $b = (b_1, \dots, b_n)$.

Seller: Collects (sealed) bids.

- Gives item to some bidder (if any).
 - Allocation rule $x = x(b) = (x_1, ..., x_n)$, with

$$x_i = \begin{cases} 1 & \text{if } i \text{ gets the item,} \\ 0 & \text{otherwise.} \end{cases}$$

- Charges price of p to bidder i* receiving item.
 - Pricing rule p = p(b).

Bidders:

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder i has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: v_i not known to other players or seller.
- Bidder submits bid b_i.
 - Vector of all bids denoted by $b = (b_1, \dots, b_n)$.

Seller: Collects (sealed) bids.

- Gives item to some bidder (if any).
 - Allocation rule $x = x(b) = (x_1, ..., x_n)$, with

$$x_i = \begin{cases} 1 & \text{if } i \text{ gets the item,} \\ 0 & \text{otherwise.} \end{cases}$$

- Charges price of p to bidder i* receiving item.
 - Pricing rule p = p(b).

Utility of bidder i:

Bidders:

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder i has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: v_i not known to other players or seller.
- Bidder submits bid b_i.
 - Vector of all bids denoted by $b = (b_1, \dots, b_n)$.

Seller: Collects (sealed) bids.

- Gives item to some bidder (if any).
 - Allocation rule $x = x(b) = (x_1, \dots, x_n)$, with

$$x_i = \begin{cases} 1 & \text{if } i \text{ gets the item,} \\ 0 & \text{otherwise.} \end{cases}$$

- Charges price of p to bidder i* receiving item.
 - Pricing rule p = p(b).

Utility of bidder *i*:

$$u_i(b) = x_i(b)(v_i - p(b)) = \begin{cases} v_i - p(b) & \text{if } i \text{ gets the item,} \\ 0 & \text{otherwise.} \end{cases}$$

Bidders:

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder i has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: v_i not known to other players or seller.
- Bidder submits bid b_i.
 - Vector of all bids denoted by $b = (b_1, \dots, b_n)$.

Seller: Collects (sealed) bids.

- Gives item to some bidder (if any).
 - Allocation rule $x = x(b) = (x_1, \dots, x_n)$, with

$$x_i = \begin{cases} 1 & \text{if } i \text{ gets the item,} \\ 0 & \text{otherwise.} \end{cases}$$

- Charges price of p to bidder i* receiving item.
 - Pricing rule p = p(b).

Utility of bidder *i*:

$$u_i(b) = x_i(b)(v_i - p(b)) = \begin{cases} v_i - p(b) & \text{if } i \text{ gets the item,} \\ 0 & \text{otherwise.} \end{cases}$$

• Bidders with valuations $v = (v_1, \dots, v_n)$ and

• Bidders with valuations $v = (v_1, \dots, v_n)$ and bids $b = (b_1, \dots, b_n)$.

- Bidders with valuations $v = (v_1, \dots, v_n)$ and bids $b = (b_1, \dots, b_n)$.
- Seller with allocation rule x(b) and pricing rule p(b).

- Bidders with valuations $v = (v_1, \dots, v_n)$ and bids $b = (b_1, \dots, b_n)$.
- Seller with allocation rule x(b) and pricing rule p(b).
- Utility of player given by $u_i(b) = x_i(b)(v_i p(b))$.

- Bidders with valuations $v = (v_1, ..., v_n)$ and bids $b = (b_1, ..., b_n)$.
- Seller with allocation rule x(b) and pricing rule p(b).
- Utility of player given by $u_i(b) = x_i(b)(v_i p(b))$.
- Revenue of seller is p if item is sold.

- Bidders with valuations $v = (v_1, \dots, v_n)$ and bids $b = (b_1, \dots, b_n)$.
- Seller with allocation rule x(b) and pricing rule p(b).
- Utility of player given by $u_i(b) = x_i(b)(v_i p(b))$.
- Revenue of seller is p if item is sold.

Definition

A (deterministic) mechanism (x,p) for selling an item to one of n bidders is given by an allocation rule $x : \mathbb{R}^n \to \{0,1\}^n$ with $\sum_i x_i \le 1$, and pricing rule $p : \mathbb{R}^n \to \mathbb{R}$.

- Bidders with valuations $v = (v_1, \dots, v_n)$ and bids $b = (b_1, \dots, b_n)$.
- Seller with allocation rule x(b) and pricing rule p(b).
- Utility of player given by $u_i(b) = x_i(b)(v_i p(b))$.
- Revenue of seller is p if item is sold.

Definition

A (deterministic) mechanism (x,p) for selling an item to one of n bidders is given by an allocation rule $x : \mathbb{R}^n \to \{0,1\}^n$ with $\sum_i x_i \le 1$, and pricing rule $p : \mathbb{R}^n \to \mathbb{R}$.

- Bidders with valuations $v = (v_1, \dots, v_n)$ and bids $b = (b_1, \dots, b_n)$.
- Seller with allocation rule x(b) and pricing rule p(b).
- Utility of player given by $u_i(b) = x_i(b)(v_i p(b))$.
- Revenue of seller is p if item is sold.

Definition

A (deterministic) mechanism (x,p) for selling an item to one of n bidders is given by an allocation rule $x : \mathbb{R}^n \to \{0,1\}^n$ with $\sum_i x_i \leq 1$, and pricing rule $p : \mathbb{R}^n \to \mathbb{R}$.

Goal of bidder i is to maximize utility given mechanism (x, p).

- Bidders with valuations $v = (v_1, \dots, v_n)$ and bids $b = (b_1, \dots, b_n)$.
- Seller with allocation rule x(b) and pricing rule p(b).
- Utility of player given by $u_i(b) = x_i(b)(v_i p(b))$.
- Revenue of seller is p if item is sold.

Definition

A (deterministic) mechanism (x,p) for selling an item to one of n bidders is given by an allocation rule $x : \mathbb{R}^n \to \{0,1\}^n$ with $\sum_i x_i \leq 1$, and pricing rule $p : \mathbb{R}^n \to \mathbb{R}$.

Goal of bidder i is to maximize utility given mechanism (x, p).

Bidders will try to bid strategically.

- Bidders with valuations $v = (v_1, \dots, v_n)$ and bids $b = (b_1, \dots, b_n)$.
- Seller with allocation rule x(b) and pricing rule p(b).
- Utility of player given by $u_i(b) = x_i(b)(v_i p(b))$.
- Revenue of seller is p if item is sold.

Definition

A (deterministic) mechanism (x,p) for selling an item to one of n bidders is given by an allocation rule $x : \mathbb{R}^n \to \{0,1\}^n$ with $\sum_i x_i \le 1$, and pricing rule $p : \mathbb{R}^n \to \mathbb{R}$.

Goal of bidder i is to maximize utility given mechanism (x, p).

- Bidders will try to bid strategically.
- How should we design auction to prevent undesirable outcomes?

First price auction

Bidders report bids $b = (b_1, \dots, b_n)$.

First price auction

Bidders report bids $b = (b_1, \dots, b_n)$. Item is given to $i^* = \operatorname{argmax}_i b_i$

First price auction

Bidders report bids $b = (b_1, ..., b_n)$. Item is given to $i^* = \operatorname{argmax}_i b_i$ and price $p = \max_i b_i$ is charged.

First price auction

Bidders report bids $b = (b_1, ..., b_n)$. Item is given to $i^* = \operatorname{argmax}_i b_i$ and price $p = \max_i b_i$ is charged.

Example

Suppose there are three bidders

First price auction

Bidders report bids $b = (b_1, ..., b_n)$. Item is given to $i^* = \operatorname{argmax}_i b_i$ and price $p = \max_i b_i$ is charged.

Example

Suppose there are three bidders

• Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.

First price auction

Bidders report bids $b = (b_1, \dots, b_n)$. Item is given to $i^* = \operatorname{argmax}_i b_i$ and price $p = \max_i b_i$ is charged.

Example

Suppose there are three bidders

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (5, 22, 23)$.

First price auction

Bidders report bids $b = (b_1, \dots, b_n)$. Item is given to $i^* = \operatorname{argmax}_i b_i$ and price $p = \max_i b_i$ is charged.

Example

Suppose there are three bidders

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (5, 22, 23)$.

Winner is bidder $i^* = 3$, with price p = 23. Utilities are u = (0, 0, 2).

First price auction

Bidders report bids $b = (b_1, ..., b_n)$. Item is given to $i^* = \operatorname{argmax}_i b_i$ and price $p = \max_i b_i$ is charged.

Example

Suppose there are three bidders

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (5, 22, 23)$.

Winner is bidder $i^* = 3$, with price p = 23. Utilities are u = (0, 0, 2).

First price auction

Bidders report bids $b = (b_1, \dots, b_n)$. Item is given to $i^* = \operatorname{argmax}_i b_i$ and price $p = \max_i b_i$ is charged.

Example

Suppose there are three bidders

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (5, 22, 23)$.

Winner is bidder $i^* = 3$, with price p = 23. Utilities are u = (0, 0, 2).

Is this a good auction format?

• Does not incentivize truthful bidding.

First price auction

Bidders report bids $b = (b_1, ..., b_n)$. Item is given to $i^* = \operatorname{argmax}_i b_i$ and price $p = \max_i b_i$ is charged.

Example

Suppose there are three bidders

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (5, 22, 23)$.

Winner is bidder $i^* = 3$, with price p = 23. Utilities are u = (0, 0, 2).

- Does not incentivize truthful bidding.
 - Bidders have incentive to lie (i.e., not report true valuation v_i).

First price auction

Bidders report bids $b = (b_1, ..., b_n)$. Item is given to $i^* = \operatorname{argmax}_i b_i$ and price $p = \max_i b_i$ is charged.

Example

Suppose there are three bidders

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (5, 22, 23)$.

Winner is bidder $i^* = 3$, with price p = 23. Utilities are u = (0, 0, 2).

- Does not incentivize truthful bidding.
 - Bidders have incentive to lie (i.e., not report true valuation v_i).
- Bidder 2 values item the most, but does not get it.

First price auction

Bidders report bids $b = (b_1, ..., b_n)$. Item is given to $i^* = \operatorname{argmax}_i b_i$ and price $p = \max_i b_i$ is charged.

Example

Suppose there are three bidders

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (5, 22, 23)$.

Winner is bidder $i^* = 3$, with price p = 23. Utilities are u = (0, 0, 2).

- Does not incentivize truthful bidding.
 - Bidders have incentive to lie (i.e., not report true valuation v_i).
- Bidder 2 values item the most, but does not get it.
 - Allocation rule does not maximize social welfare objective

First price auction

Bidders report bids $b = (b_1, \dots, b_n)$. Item is given to $i^* = \operatorname{argmax}_i b_i$ and price $p = \max_i b_i$ is charged.

Example

Suppose there are three bidders

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (5, 22, 23)$.

Winner is bidder $i^* = 3$, with price p = 23. Utilities are u = (0, 0, 2).

Is this a good auction format?

- Does not incentivize truthful bidding.
 - Bidders have incentive to lie (i.e., not report true valuation v_i).
- Bidder 2 values item the most, but does not get it.
 - Allocation rule does not maximize social welfare objective

"Revenue for seller" + "Player utilities" = $\sum_i v_i x_i(b) = v_{i*}$

Selling one item

Second price auction

Second price auction

Given bids $b = (b_1, \ldots, b_n)$:

• Item is allocated to highest bidder $i^* = \operatorname{argmax}_i b_i$.

Second price auction

Given bids $b = (b_1, \ldots, b_n)$:

- Item is allocated to highest bidder $i^* = \operatorname{argmax}_i b_i$.
- Price charged is second-highest bid $p = \max_{j \neq i^*} b_j$.

Second price auction

Given bids $b = (b_1, \ldots, b_n)$:

- Item is allocated to highest bidder $i^* = \operatorname{argmax}_i b_i$.
- Price charged is second-highest bid $p = \max_{j \neq i^*} b_j$.
- Ties are broken according to some fixed tie-breaking rule.

Example

Suppose we have three bidders.

Second price auction

Given bids $b = (b_1, \ldots, b_n)$:

- Item is allocated to highest bidder $i^* = \operatorname{argmax}_i b_i$.
- Price charged is second-highest bid $p = \max_{j \neq i^*} b_j$.
- Ties are broken according to some fixed tie-breaking rule.

Example

Suppose we have three bidders.

• Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.

Second price auction

Given bids $b = (b_1, \dots, b_n)$:

- Item is allocated to highest bidder $i^* = \operatorname{argmax}_i b_i$.
- Price charged is second-highest bid $p = \max_{j \neq i^*} b_j$.
- Ties are broken according to some fixed tie-breaking rule.

Example

Suppose we have three bidders.

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (10, 30, 22)$.

Second price auction

Given bids $b = (b_1, \dots, b_n)$:

- Item is allocated to highest bidder $i^* = \operatorname{argmax}_i b_i$.
- Price charged is second-highest bid $p = \max_{j \neq i^*} b_j$.
- Ties are broken according to some fixed tie-breaking rule.

Example

Suppose we have three bidders.

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (10, 30, 22)$.

Winner is bidder $i^* = 2$ and pays p = 22. Utilities are u = (0, 8, 0).

Second price auction

Given bids $b = (b_1, \ldots, b_n)$:

- Item is allocated to highest bidder $i^* = \operatorname{argmax}_i b_i$.
- Price charged is second-highest bid $p = \max_{j \neq i^*} b_j$.
- Ties are broken according to some fixed tie-breaking rule.

Example

Suppose we have three bidders.

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (10, 30, 22)$.

Winner is bidder $i^* = 2$ and pays p = 22. Utilities are u = (0, 8, 0).

Second price auction has many desirable properties.

Bidders have incentive to be truthful: Reporting v_i is dominant strategy.

Bidders have incentive to be truthful: Reporting v_i is dominant strategy.

Definition (Strategyproof)

Mechanism (x, p) incentivizes truthful bidding if for every bidder i, alternative bid b'_i , and bids $b_{-i} = (b_1, \dots, b_{i-1}, b_{i+1}, b_n)$ of other bidders, it holds that

$$u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b'_i),$$

where $u_i(b) = x_i(b)(v_i - p(b))$.

Bidders have incentive to be truthful: Reporting v_i is dominant strategy.

Definition (Strategyproof)

Mechanism (x, p) incentivizes truthful bidding if for every bidder i, alternative bid b'_i , and bids $b_{-i} = (b_1, \dots, b_{i-1}, b_{i+1}, b_n)$ of other bidders, it holds that

$$u_i(b_{-i},v_i)\geq u_i(b_{-i},b_i'),$$

where $u_i(b) = x_i(b)(v_i - p(b))$.

Bidders have non-negative utility (when reporting truthfully).

Bidders have incentive to be truthful: Reporting v_i is dominant strategy.

Definition (Strategyproof)

Mechanism (x, p) incentivizes truthful bidding if for every bidder i, alternative bid b'_i , and bids $b_{-i} = (b_1, \dots, b_{i-1}, b_{i+1}, b_n)$ of other bidders, it holds that

$$u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b'_i),$$

where $u_i(b) = x_i(b)(v_i - p(b))$.

Bidders have non-negative utility (when reporting truthfully).

Definition (Individually rational)

Mechanism (x, p) is individually rational if for every bidder i it holds

$$u_i(b) \geq 0$$

for every bid vector $b = (b_1, ..., b_{i-1}, v_i, b_{i+1}, ..., b_n)$.

Definition (Welfare maximization)

Mechanism (x, p) is welfare maximizer if it maximizes

 $\sum_{i} v_i x_i(b)$ = "Revenue for seller" + "Player utilities"

assuming that bidders are truthful.

Definition (Welfare maximization)

Mechanism (x, p) is welfare maximizer if it maximizes

 $\sum_{i} v_{i}x_{i}(b)$ = "Revenue for seller" + "Player utilities"

assuming that bidders are truthful.

• For now this just means we want to allocate item to a bidder with highest (true) valuation $v^* = \max_i v_i$.

Definition (Welfare maximization)

Mechanism (x, p) is welfare maximizer if it maximizes

$$\sum_{i} v_{i}x_{i}(b)$$
 = "Revenue for seller" + "Player utilities"

assuming that bidders are truthful.

- For now this just means we want to allocate item to a bidder with highest (true) valuation $v^* = \max_i v_i$.
- (In online setting, we are content with approximation.)

Mechanism has good performance guarantee.

Definition (Welfare maximization)

Mechanism (x, p) is welfare maximizer if it maximizes

$$\sum_{i} v_{i}x_{i}(b)$$
 = "Revenue for seller" + "Player utilities"

assuming that bidders are truthful.

- For now this just means we want to allocate item to a bidder with highest (true) valuation $v^* = \max_i v_i$.
- (In online setting, we are content with approximation.)

Definition (Computational efficiency)

Mechanism (x, p) should be implementable in polynomial time, i.e., compute allocation x and price p in polynomial time.

Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b_i' , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b_i', \ldots, b_n)$.

Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

Fix i and b_{-i} . Let p(b) = s be second-highest bid.

Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

Fix *i* and b_{-i} . Let p(b) = s be second-highest bid.

• We compare v_i, b'_i and s (using case distinction).

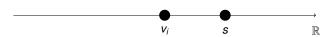
Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

Fix *i* and b_{-i} . Let p(b) = s be second-highest bid.

- We compare v_i , b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.

Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

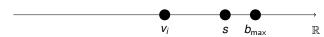
Fix *i* and b_{-i} . Let p(b) = s be second-highest bid.


- We compare v_i , b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.

Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

Fix *i* and b_{-i} . Let p(b) = s be second-highest bid.

- We compare v_i , b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.

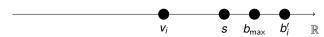


Case $s > v_i$:

Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

Fix *i* and b_{-i} . Let p(b) = s be second-highest bid.

- We compare v_i, b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.

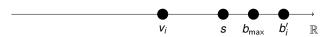


Case $s > v_i$:

Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

Fix *i* and b_{-i} . Let p(b) = s be second-highest bid.

- We compare v_i, b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.

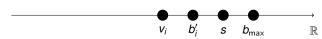

Case $s > v_i$:

• Bidder *i* would only win if $b_i' \geq b_{\text{max}}$,

Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

Fix *i* and b_{-i} . Let p(b) = s be second-highest bid.

- We compare v_i, b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.

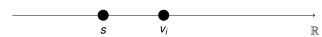

Case $s > v_i$:

• Bidder *i* would only win if $b_i' \ge b_{\text{max}}$, but then $u_i = v_i - p < 0$.

Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

Fix *i* and b_{-i} . Let p(b) = s be second-highest bid.

- We compare v_i, b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.


Case $s > v_i$:

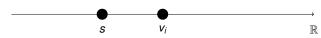
- Bidder *i* would only win if $b_i' \ge b_{\text{max}}$, but then $u_i = v_i p < 0$.
- For any bid $b'_i < b_{max}$ (then *i* does not get item), we have $u_i = 0$.

Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b_i' , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b_i', \ldots, b_n)$.

Fix *i* and b_{-i} . Let p(b) = s be second-highest bid.

- We compare v_i , b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.

Case $s > v_i$:


- Bidder *i* would only win if $b'_i \ge b_{\text{max}}$, but then $u_i = v_i p < 0$.
- For any bid $b'_i < b_{max}$ (then *i* does not get item), we have $u_i = 0$.

Case $s < v_i$:

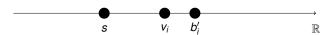
Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

Fix i and b_{-i} . Let p(b) = s be second-highest bid.

- We compare v_i, b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.

Case $s > v_i$:

- Bidder *i* would only win if $b'_i \ge b_{\text{max}}$, but then $u_i = v_i p < 0$.
- For any bid $b'_i < b_{max}$ (then *i* does not get item), we have $u_i = 0$.


Case $s < v_i$:

Bidder i wins.

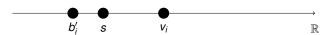
Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

Fix i and b_{-i} . Let p(b) = s be second-highest bid.

- We compare v_i , b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.

Case $s > v_i$:

- Bidder *i* would only win if $b_i' \ge b_{\text{max}}$, but then $u_i = v_i p < 0$.
- For any bid $b'_i < b_{max}$ (then *i* does not get item), we have $u_i = 0$.


Case $s < v_i$:

• Bidder *i* wins. Charged price *s* same for all $b'_i > s$.

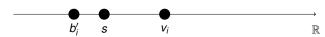
Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

Fix *i* and b_{-i} . Let p(b) = s be second-highest bid.

- We compare v_i, b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.

Case $s > v_i$:

- Bidder *i* would only win if $b_i' \ge b_{\text{max}}$, but then $u_i = v_i p < 0$.
- For any bid $b'_i < b_{max}$ (then *i* does not get item), we have $u_i = 0$.


Case $s < v_i$:

• Bidder *i* wins. Charged price *s* same for all $b'_i > s$. For $b'_i < s$, we have $u_i = 0$.

Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

Fix *i* and b_{-i} . Let p(b) = s be second-highest bid.

- We compare v_i , b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.

Case $s > v_i$:

- Bidder *i* would only win if $b_i' \ge b_{\text{max}}$, but then $u_i = v_i p < 0$.
- For any bid $b'_i < b_{max}$ (then *i* does not get item), we have $u_i = 0$.

Case $s < v_i$:

• Bidder *i* wins. Charged price *s* same for all $b'_i > s$. For $b'_i < s$, we have $u_i = 0$. Hence, bidding v_i is an optimal choice.

Myerson's lemma holds in more general settings.

Myerson's lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

Myerson's lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

Pricing rule follows from allocation rule.

Myerson's lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

Pricing rule follows from allocation rule.

Myerson's lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

Pricing rule follows from allocation rule.

Myerson's lemma (very informal)

Myerson's lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

Pricing rule follows from allocation rule.

Myerson's lemma (very informal)

If there exists a monotone allocation rule x,

Myerson's lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

Pricing rule follows from allocation rule.

Myerson's lemma (very informal)

If there exists a monotone allocation rule x, then there is a unique pricing rule p so that the mechanism (x,p) is strategyproof

Myerson's lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

Pricing rule follows from allocation rule.

Myerson's lemma (very informal)

If there exists a monotone allocation rule x, then there is a unique pricing rule p so that the mechanism (x, p) is strategyproof (and vice versa).

Myerson's lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

Pricing rule follows from allocation rule.

Myerson's lemma (very informal)

If there exists a monotone allocation rule x, then there is a unique pricing rule p so that the mechanism (x, p) is strategyproof (and vice versa).

Monotone allocation rule has the property that,

Myerson's lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

• Pricing rule follows from allocation rule.

Myerson's lemma (very informal)

If there exists a monotone allocation rule x, then there is a unique pricing rule p so that the mechanism (x, p) is strategyproof (and vice versa).

Monotone allocation rule has the property that, if bidder i gets item when bidding b_i ,

Myerson's lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

Pricing rule follows from allocation rule.

Myerson's lemma (very informal)

If there exists a monotone allocation rule x, then there is a unique pricing rule p so that the mechanism (x, p) is strategyproof (and vice versa).

Monotone allocation rule has the property that, if bidder i gets item when bidding b_i , she also gets item when bidding $b_i' \ge b_i$.

Myerson's lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

Pricing rule follows from allocation rule.

Myerson's lemma (very informal)

If there exists a monotone allocation rule x, then there is a unique pricing rule p so that the mechanism (x,p) is strategyproof (and vice versa).

Monotone allocation rule has the property that, if bidder i gets item when bidding b_i , she also gets item when bidding $b_i' \ge b_i$.

• That is, $\{0,1\}$ -variable $x_i = (b_i, b_{-i})$ is non-decreasing in bid b_i .

Myerson's lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

Pricing rule follows from allocation rule.

Myerson's lemma (very informal)

If there exists a monotone allocation rule x, then there is a unique pricing rule p so that the mechanism (x, p) is strategyproof (and vice versa).

Monotone allocation rule has the property that, if bidder i gets item when bidding b_i , she also gets item when bidding $b_i' \ge b_i$.

• That is, $\{0,1\}$ -variable $x_i = (b_i, b_{-i})$ is non-decreasing in bid b_i .

Exercise: Show second price auction has monotone allocation rule.

Unit-demand setting:

• Set of items *M* = {1, . . . , *m*}

- Set of items $M = \{1, ..., m\}$
- Set of bidders $N = \{1, \dots, n\}$

- Set of items $M = \{1, ..., m\}$
- Set of bidders $N = \{1, \dots, n\}$
- For every $i \in N$ a private valuation function $v_i : M \to \mathbb{R}_{>0}$.

- Set of items $M = \{1, ..., m\}$
- Set of bidders $N = \{1, \dots, n\}$
- For every $i \in N$ a private valuation function $v_i : M \to \mathbb{R}_{>0}$.
 - Value $v_{ij} = v_i(j)$ is value of bidder i for item j.

Selling multiple items

Unit-demand setting:

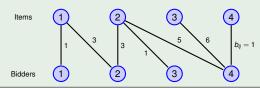
- Set of items $M = \{1, ..., m\}$
- Set of bidders $N = \{1, \dots, n\}$
- For every $i \in N$ a private valuation function $v_i : M \to \mathbb{R}_{>0}$.
 - Value $v_{ij} = v_i(j)$ is value of bidder i for item j.
- For every $i \in N$ a bid function $b_i : M \to \mathbb{R}_{\geq 0}$.

Selling multiple items

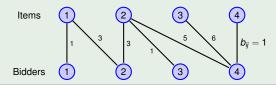
Unit-demand setting:

- Set of items $M = \{1, ..., m\}$
- Set of bidders $N = \{1, \dots, n\}$
- For every $i \in N$ a private valuation function $v_i : M \to \mathbb{R}_{>0}$.
 - Value $v_{ij} = v_i(j)$ is value of bidder i for item j.
- For every $i \in N$ a bid function $b_i : M \to \mathbb{R}_{>0}$.
 - Bid $b_{ij} = b_i(j)$ is maximum amount i is willing to pay for item j.

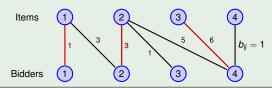
Selling multiple items


Unit-demand setting:

- Set of items $M = \{1, ..., m\}$
- Set of bidders $N = \{1, \dots, n\}$
- For every $i \in N$ a private valuation function $v_i : M \to \mathbb{R}_{>0}$.
 - Value $v_{ij} = v_i(j)$ is value of bidder i for item j.
- For every $i \in N$ a bid function $b_i : M \to \mathbb{R}_{>0}$.
 - Bid $b_{ij} = b_i(j)$ is maximum amount i is willing to pay for item j.

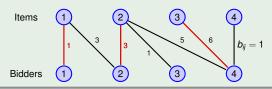

The goal is to assign (at most) one item to every bidder.

Example


Non-existing edges have $b_{ij} = 0$.

Non-existing edges have $b_{ij} = v_{ij} = 0$ (*i* is not interested in item *j*)

Non-existing edges have $b_{ij} = v_{ij} = 0$ (*i* is not interested in item *j*)


Definition (Mechanism)

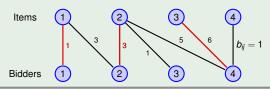
A (deterministic) mechanism (x, p) is given by an allocation rule

$$x: \mathbb{R}^{n\times m}_{>0} \to \{0,1\}^{n\times m},$$

with $\sum_{i} x_{ij} \leq 1$ and $\sum_{j} x_{ij} \leq 1$, and pricing rule $p : \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^{m}$.

Non-existing edges have $b_{ij} = v_{ij} = 0$ (*i* is not interested in item *j*)

Definition (Mechanism)


A (deterministic) mechanism (x, p) is given by an allocation rule

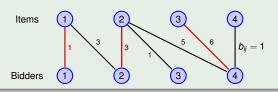
$$x: \mathbb{R}^{n\times m}_{>0} \to \{0,1\}^{n\times m},$$

with $\sum_{i} x_{ij} \leq 1$ and $\sum_{j} x_{ij} \leq 1$, and pricing rule $p : \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^{m}$.

• For bidder i, we have bid vector $b_i = (b_{i1}, \dots, b_{im})$.

Non-existing edges have $b_{ij} = v_{ij} = 0$ (*i* is not interested in item *j*)

Definition (Mechanism)


A (deterministic) mechanism (x, p) is given by an allocation rule

$$x: \mathbb{R}^{n\times m}_{>0} \to \{0,1\}^{n\times m},$$

with $\sum_i x_{ij} \leq 1$ and $\sum_j x_{ij} \leq 1$, and pricing rule $p : \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^m$.

- For bidder i, we have bid vector $b_i = (b_{i1}, \dots, b_{im})$.
 - With $b = (b_1, \dots, b_n)$, we have x = x(b) and p = p(b).

Non-existing edges have $b_{ij} = v_{ij} = 0$ (*i* is not interested in item *j*)

Definition (Mechanism)

A (deterministic) mechanism (x, p) is given by an allocation rule

$$x: \mathbb{R}^{n\times m}_{>0} \to \{0,1\}^{n\times m},$$

with $\sum_i x_{ij} \leq 1$ and $\sum_i x_{ij} \leq 1$, and pricing rule $p : \mathbb{R}_{>0}^{n \times m} \to \mathbb{R}_{>0}^m$.

- For bidder i, we have bid vector $b_i = (b_{i1}, \dots, b_{im})$.
 - With $b = (b_1, \ldots, b_n)$, we have x = x(b) and p = p(b).
- Utility of bidder i is

$$u_i(b) = \begin{cases} v_{ij} - p_j(b) & \text{if j is the item } i \text{ receives,} \\ 0 & \text{if i does not get an item.} \end{cases}$$

Strategyproof:

• **Strategyproof:** For every $i \in N$, bidding true valuations $v_i = (v_{i1}, \ldots, v_{im})$ is dominant strategy.

- **Strategyproof:** For every $i \in N$, bidding true valuations $v_i = (v_{i1}, \ldots, v_{im})$ is dominant strategy.
 - It should hold that

$$u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b'_i).$$

for all $b_{-i} = (b_1, \dots, b_{i-1}, b_{i+1}, \dots, b_n)$ and other bid vector b'_i .

- **Strategyproof:** For every $i \in N$, bidding true valuations $v_i = (v_{i1}, \dots, v_{im})$ is dominant strategy.
 - It should hold that

$$u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b'_i).$$

for all $b_{-i} = (b_1, \dots, b_{i-1}, b_{i+1}, \dots, b_n)$ and other bid vector b'_i .

Individual rationality:

- **Strategyproof:** For every $i \in N$, bidding true valuations $v_i = (v_{i1}, \dots, v_{im})$ is dominant strategy.
 - It should hold that

$$u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b'_i).$$

for all $b_{-i} = (b_1, \dots, b_{i-1}, b_{i+1}, \dots, b_n)$ and other bid vector b'_i .

• Individual rationality: Non-negative utility when bidding truthfully.

- **Strategyproof:** For every $i \in N$, bidding true valuations $v_i = (v_{i1}, \dots, v_{im})$ is dominant strategy.
 - It should hold that

$$u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b'_i).$$

for all $b_{-i} = (b_1, \dots, b_{i-1}, b_{i+1}, \dots, b_n)$ and other bid vector b'_i .

- Individual rationality: Non-negative utility when bidding truthfully.
- Welfare maximization:

- **Strategyproof:** For every $i \in N$, bidding true valuations $v_i = (v_{i1}, \dots, v_{im})$ is dominant strategy.
 - It should hold that

$$u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b'_i).$$

for all $b_{-i} = (b_1, \dots, b_{i-1}, b_{i+1}, \dots, b_n)$ and other bid vector b'_i .

- Individual rationality: Non-negative utility when bidding truthfully.
- Welfare maximization: The allocation x maximizes

$$\sum_{i,j} x_{ij} v_{ij}$$

with $x_{ij} = 1$ if bidder *i* gets item *j*, and zero otherwise.

- **Strategyproof:** For every $i \in N$, bidding true valuations $v_i = (v_{i1}, \ldots, v_{im})$ is dominant strategy.
 - It should hold that

$$u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b'_i).$$

for all $b_{-i}=(b_1,\ldots,b_{i-1},b_{i+1},\ldots,b_n)$ and other bid vector b_i' .

- Individual rationality: Non-negative utility when bidding truthfully.
- Welfare maximization: The allocation x maximizes

$$\sum_{i,j} x_{ij} v_{ij}$$

with $x_{ij} = 1$ if bidder i gets item j, and zero otherwise.

Bipartite maximum weight matching in unit-demand setting.

- **Strategyproof:** For every $i \in N$, bidding true valuations $v_i = (v_{i1}, \dots, v_{im})$ is dominant strategy.
 - It should hold that

$$u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b'_i).$$

for all $b_{-i}=(b_1,\ldots,b_{i-1},b_{i+1},\ldots,b_n)$ and other bid vector b_i' .

- Individual rationality: Non-negative utility when bidding truthfully.
- Welfare maximization: The allocation x maximizes

$$\sum_{i,j} x_{ij} v_{ij}$$

with $x_{ij} = 1$ if bidder *i* gets item *j*, and zero otherwise.

- Bipartite maximum weight matching in unit-demand setting.
- Computationally tractable:

- **Strategyproof:** For every $i \in N$, bidding true valuations $v_i = (v_{i1}, \dots, v_{im})$ is dominant strategy.
 - It should hold that

$$u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b'_i).$$

for all $b_{-i} = (b_1, \dots, b_{i-1}, b_{i+1}, \dots, b_n)$ and other bid vector b'_i .

- Individual rationality: Non-negative utility when bidding truthfully.
- Welfare maximization: The allocation x maximizes

$$\sum_{i,j} x_{ij} v_{ij}$$

with $x_{ij} = 1$ if bidder *i* gets item *j*, and zero otherwise.

- Bipartite maximum weight matching in unit-demand setting.
- Computationally tractable: Allocation and pricing rules should be computable in polynomial time.

VCG mechanism works in more general settings than unit-demand.

VCG mechanism works in more general settings than unit-demand.

Notation:

VCG mechanism works in more general settings than unit-demand.

Notation:

• Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{\geq 0}$.

VCG mechanism works in more general settings than unit-demand.

Notation:

- Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{\geq 0}$.
 - OPT(X', Y') is sum of edge weights of max. weight bipartite matching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

VCG mechanism works in more general settings than unit-demand.

Notation:

- Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{\geq 0}$.
 - OPT(X', Y') is sum of edge weights of max. weight bipartite matching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

VCG mechanism works in more general settings than unit-demand.

Notation:

- Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{\geq 0}$.
 - OPT(X', Y') is sum of edge weights of max. weight bipartite matching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

VCG mechanism

• Collect bid vectors b_1, \ldots, b_n from bidders.

VCG mechanism works in more general settings than unit-demand.

Notation:

- Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{\geq 0}$.
 - OPT(X', Y') is sum of edge weights of max. weight bipartite matching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

- Collect bid vectors b_1, \ldots, b_n from bidders.
- Compute maximum weight bipartite matching L* (the allocation x)

VCG mechanism works in more general settings than unit-demand.

Notation:

- Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{\geq 0}$.
 - OPT(X', Y') is sum of edge weights of max. weight bipartite matching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

- Collect bid vectors b_1, \ldots, b_n from bidders.
- Compute maximum weight bipartite matching L* (the allocation x)
- If bidder i gets item j, i.e., $\{i,j\} \in L^*(N,M)$,

VCG mechanism works in more general settings than unit-demand.

Notation:

- Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{\geq 0}$.
 - OPT(X', Y') is sum of edge weights of max. weight bipartite matching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

- Collect bid vectors b_1, \ldots, b_n from bidders.
- Compute maximum weight bipartite matching L* (the allocation x)
- If bidder *i* gets item *j*, i.e., $\{i,j\} \in L^*(N,M)$, then charge her

$$p_{ij}(b) = \mathsf{OPT}(N \setminus \{i\}, M) - \mathsf{OPT}(N \setminus \{i\}, M \setminus \{j\}),$$

VCG mechanism works in more general settings than unit-demand.

Notation:

- Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{\geq 0}$.
 - OPT(X', Y') is sum of edge weights of max. weight bipartite matching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

VCG mechanism

- Collect bid vectors b_1, \ldots, b_n from bidders.
- Compute maximum weight bipartite matching L* (the allocation x)
- If bidder *i* gets item *j*, i.e., $\{i,j\} \in L^*(N,M)$, then charge her

$$p_{ij}(b) = \mathsf{OPT}(N \setminus \{i\}, M) - \mathsf{OPT}(N \setminus \{i\}, M \setminus \{j\}),$$

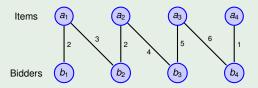
and otherwise nothing.

VCG mechanism works in more general settings than unit-demand.

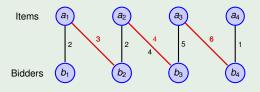
Notation:

- Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{\geq 0}$.
 - OPT(X', Y') is sum of edge weights of max. weight bipartite matching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

VCG mechanism

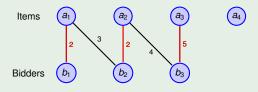

- Collect bid vectors b_1, \ldots, b_n from bidders.
- Compute maximum weight bipartite matching L* (the allocation x)
- If bidder i gets item j, i.e., $\{i,j\} \in L^*(N,M)$, then charge her

$$p_{ij}(b) = \mathsf{OPT}(N \setminus \{i\}, M) - \mathsf{OPT}(N \setminus \{i\}, M \setminus \{j\}),$$

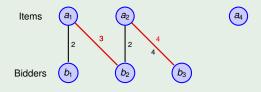

and otherwise nothing.

 $\mathsf{OPT}(N \setminus \{i\}, M) - \mathsf{OPT}(N \setminus \{i\}, M \setminus \{j\})$ is welfare loss for other players by assigning j to i.

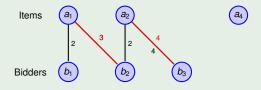
Example



Example


- - OPT(N, M) = 3 + 4 + 6 = 13.

Example


- - OPT(N, M) = 3 + 4 + 6 = 13.
- $\bullet \ L^*(N\setminus\{b_4\},M)=\{a_1b_1,a_2b_2,a_3b_3\}.$
 - OPT $(N \setminus \{b_4\}, M) = 2 + 2 + 5 = 9.$

Example

- $L^*(N,M) = \{a_1b_2, a_2b_3, a_3b_4\}.$
 - OPT(N, M) = 3 + 4 + 6 = 13.
- $\bullet L^*(N \setminus \{b_4\}, M) = \{a_1b_1, a_2b_2, a_3b_3\}.$
 - OPT $(N \setminus \{b_4\}, M) = 2 + 2 + 5 = 9.$
- - $OPT(N \setminus \{b_4\}, M \setminus \{a_3\}) = 3 + 4 = 7.$

Example

- $\bullet L^*(N,M) = \{a_1b_2, a_2b_3, a_3b_4\}.$
 - OPT(N, M) = 3 + 4 + 6 = 13.
- $\bullet L^*(N \setminus \{b_4\}, M) = \{a_1b_1, a_2b_2, a_3b_3\}.$
 - OPT $(N \setminus \{b_4\}, M) = 2 + 2 + 5 = 9.$
- - OPT($N \setminus \{b_4\}, M \setminus \{a_3\}$) = 3 + 4 = 7.
- Price charged to bidder b₄ for item a₃ is

$$p_{43}(b) = 9 - 7 = 2.$$

VCG mechanism satisfies all desired properties:

• Strategyproofness (bidding truthfully is optimal).

- Strategyproofness (bidding truthfully is optimal).
 - Exercise: Prove this.

- Strategyproofness (bidding truthfully is optimal).
 - Exercise: Prove this.
- Individually rational.

- Strategyproofness (bidding truthfully is optimal).
 - Exercise: Prove this.
- Individually rational.
 - Bidding truthfully gives non-negative utility.

- Strategyproofness (bidding truthfully is optimal).
 - Exercise: Prove this.
- Individually rational.
 - Bidding truthfully gives non-negative utility.
- Social welfare maximizer.

- Strategyproofness (bidding truthfully is optimal).
 - Exercise: Prove this.
- Individually rational.
 - Bidding truthfully gives non-negative utility.
- Social welfare maximizer.
 - It computes max. weight bipartite matching (where the weights are the true valuations).

- Strategyproofness (bidding truthfully is optimal).
 - Exercise: Prove this.
- Individually rational.
 - Bidding truthfully gives non-negative utility.
- Social welfare maximizer.
 - It computes max. weight bipartite matching (where the weights are the true valuations).
- Computationally tractable.

- Strategyproofness (bidding truthfully is optimal).
 - Exercise: Prove this.
- Individually rational.
 - Bidding truthfully gives non-negative utility.
- Social welfare maximizer.
 - It computes max. weight bipartite matching (where the weights are the true valuations).
- Computationally tractable.
 - Computing max. weight bipartite matching solvable in poly-time.

Online mechanism design

Selling one item

Setting:

Setting:

• Bidders have private valuation $v_i \ge 0$ for item.

Setting:

- Bidders have private valuation $v_i \ge 0$ for item.
- Whenever bidder arrives online, it submits bid b_i .

Setting:

- Bidders have private valuation $v_i \ge 0$ for item.
- Whenever bidder arrives online, it submits bid b_i.

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \dots, \sigma(n))$.

Setting:

- Bidders have private valuation $v_i \ge 0$ for item.
- Whenever bidder arrives online, it submits bid b_i.

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \dots, \sigma(n))$.

Online mechanism (informal)

Setting:

- Bidders have private valuation $v_i \ge 0$ for item.
- Whenever bidder arrives online, it submits bid b_i .

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \dots, \sigma(n))$.

Online mechanism (informal)

For k = 1, ..., n, upon arrival of bidder $\sigma(k)$:

Setting:

- Bidders have private valuation $v_i \ge 0$ for item.
- Whenever bidder arrives online, it submits bid b_i.

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \dots, \sigma(n))$.

Online mechanism (informal)

For k = 1, ..., n, upon arrival of bidder $\sigma(k)$:

• Bid b_k is revealed.

Setting:

- Bidders have private valuation $v_i \ge 0$ for item.
- Whenever bidder arrives online, it submits bid b_i.

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \dots, \sigma(n))$.

Online mechanism (informal)

For k = 1, ..., n, upon arrival of bidder $\sigma(k)$:

- Bid b_k is revealed.
- Decide (irrevocably) whether to allocate item to $\sigma(k)$.

Setting:

- Bidders have private valuation $v_i \ge 0$ for item.
- Whenever bidder arrives online, it submits bid b_i.

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \dots, \sigma(n))$.

Online mechanism (informal)

For k = 1, ..., n, upon arrival of bidder $\sigma(k)$:

- Bid b_k is revealed.
- Decide (irrevocably) whether to allocate item to $\sigma(k)$.
 - If yes, charge price $p(b_{\sigma(1)}, \ldots, b_{\sigma(k)})$ and STOP.

Setting:

- Bidders have private valuation $v_i \ge 0$ for item.
- Whenever bidder arrives online, it submits bid b_i.

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \dots, \sigma(n))$.

Online mechanism (informal)

For k = 1, ..., n, upon arrival of bidder $\sigma(k)$:

- Bid b_k is revealed.
- Decide (irrevocably) whether to allocate item to $\sigma(k)$.
 - If yes, charge price $p(b_{\sigma(1)}, \ldots, b_{\sigma(k)})$ and STOP.

Goal: Allocate item to bidder with highest valuation $v^* = \max_i v_i$.

Setting:

- Bidders have private valuation $v_i \ge 0$ for item.
- Whenever bidder arrives online, it submits bid *b_i*.

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \dots, \sigma(n))$.

Online mechanism (informal)

For k = 1, ..., n, upon arrival of bidder $\sigma(k)$:

- Bid b_k is revealed.
- Decide (irrevocably) whether to allocate item to $\sigma(k)$.
 - If yes, charge price $p(b_{\sigma(1)}, \ldots, b_{\sigma(k)})$ and STOP.

Goal: Allocate item to bidder with highest valuation $v^* = \max_i v_i$.

Utility of bidder i, when $\sigma(k) = i$, is given by

$$u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k)}) = \left\{ egin{array}{ll} v_i - p(b_{\sigma(1)},\ldots,b_{\sigma(k)}) & ext{if } i ext{ gets item,} \\ 0 & ext{otherwise.} \end{array}
ight.$$

,

Takes as input deterministic ordering (y_1, \ldots, y_n) and bids b_1, \ldots, b_n for the item.

Takes as input deterministic ordering (y_1, \ldots, y_n) and bids b_1, \ldots, b_n for the item.

• Specifies for every k = 1, ..., n whether to allocate to y_k .

Takes as input deterministic ordering (y_1, \ldots, y_n) and bids b_1, \ldots, b_n for the item.

- Specifies for every k = 1, ..., n whether to allocate to y_k .
- This $\{0,1\}$ -variable x_k (and price p) for k is function of:

Takes as input deterministic ordering (y_1, \ldots, y_n) and bids b_1, \ldots, b_n for the item.

- Specifies for every k = 1, ..., n whether to allocate to y_k .
- This $\{0,1\}$ -variable x_k (and price p) for k is function of:
 - Total number of bidders n.

Takes as input deterministic ordering (y_1, \ldots, y_n) and bids b_1, \ldots, b_n for the item.

- Specifies for every k = 1, ..., n whether to allocate to y_k .
- This $\{0,1\}$ -variable x_k (and price p) for k is function of:
 - Total number of bidders n.
 - Bidders y_1, \ldots, y_k .

Takes as input deterministic ordering (y_1, \ldots, y_n) and bids b_1, \ldots, b_n for the item.

- Specifies for every k = 1, ..., n whether to allocate to y_k .
- This $\{0,1\}$ -variable x_k (and price p) for k is function of:
 - Total number of bidders n.
 - Bidders y_1, \ldots, y_k .
 - Bids b_1, \ldots, b_k .

Takes as input deterministic ordering (y_1, \ldots, y_n) and bids b_1, \ldots, b_n for the item.

- Specifies for every k = 1, ..., n whether to allocate to y_k .
- This $\{0,1\}$ -variable x_k (and price p) for k is function of:
 - Total number of bidders n.
 - Bidders y₁,..., y_k.
 - Bids b_1, \ldots, b_k .
 - The order (y_1, \ldots, y_k) .

Takes as input deterministic ordering (y_1, \ldots, y_n) and bids b_1, \ldots, b_n for the item.

- Specifies for every k = 1, ..., n whether to allocate to y_k .
- This $\{0,1\}$ -variable x_k (and price p) for k is function of:
 - Total number of bidders n.
 - Bidders y₁,..., y_k.
 Bids b₁,..., b_k.
 - The order (y_1, \ldots, y_k) .
 - The order (y_1, \ldots, y_k)
 - Last aspect is usually irrelevant.

Takes as input deterministic ordering (y_1, \ldots, y_n) and bids b_1, \ldots, b_n for the item.

- Specifies for every k = 1, ..., n whether to allocate to y_k .
- This $\{0,1\}$ -variable x_k (and price p) for k is function of:
 - Total number of bidders n.
 - Bidders y_1, \ldots, y_k .
 - Bids b_1, \ldots, b_k .
 - The order (y_1, \ldots, y_k) .
 - Last aspect is usually irrelevant.

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder i.

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder i.

Definition (Strategyproof)

Consider arbitrary i, ordering $(\sigma(1), \ldots, \sigma(n))$, and k with $i = \sigma(k)$.

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder i.

Definition (Strategyproof)

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder i.

Definition (Strategyproof)

$$u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},v_i) \geq u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},b'_i).$$

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder i.

Definition (Strategyproof)

Consider arbitrary i, ordering $(\sigma(1), \ldots, \sigma(n))$, and k with $i = \sigma(k)$. We say an online mechanism $\mathcal{M} = (x, p)$ is strategyproof if for every alternative bid b_i' and every $b_{\sigma(1)}, \ldots, b_{\sigma(k-1)}$, it holds that

$$u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},v_i)\geq u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},b_i').$$

Individually rational:

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder i.

Definition (Strategyproof)

Consider arbitrary i, ordering $(\sigma(1), \ldots, \sigma(n))$, and k with $i = \sigma(k)$. We say an online mechanism $\mathcal{M} = (x, p)$ is strategyproof if for every alternative bid b_i' and every $b_{\sigma(1)}, \ldots, b_{\sigma(k-1)}$, it holds that

$$u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},v_i)\geq u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},b_i').$$

• **Individually rational:** Non-negative utility for bidder *i* when bidding truthful.

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder i.

Definition (Strategyproof)

$$u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},v_i)\geq u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},b_i').$$

- **Individually rational:** Non-negative utility for bidder *i* when bidding truthful.
- ullet Constant factor lpha-approximation for welfare maximization

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder i.

Definition (Strategyproof)

$$u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},v_i)\geq u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},b_i').$$

- **Individually rational:** Non-negative utility for bidder *i* when bidding truthful.
- ullet Constant factor lpha-approximation for welfare maximization
 - For uniform random arrival model:

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder i.

Definition (Strategyproof)

$$u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},v_i)\geq u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},b_i').$$

- **Individually rational:** Non-negative utility for bidder *i* when bidding truthful.
- ullet Constant factor lpha-approximation for welfare maximization
 - For uniform random arrival model:

$$\mathbb{E}_{\sigma}[v(\mathcal{M}(\sigma))] \geq \alpha \cdot \max_{i} v_{i}$$

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder i.

Definition (Strategyproof)

Consider arbitrary i, ordering $(\sigma(1), \ldots, \sigma(n))$, and k with $i = \sigma(k)$. We say an online mechanism $\mathcal{M} = (x, p)$ is strategyproof if for every alternative bid b_i' and every $b_{\sigma(1)}, \ldots, b_{\sigma(k-1)}$, it holds that

$$u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},v_i) \geq u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},b'_i).$$

- **Individually rational:** Non-negative utility for bidder *i* when bidding truthful.
- ullet Constant factor lpha-approximation for welfare maximization
 - For uniform random arrival model:

$$\mathbb{E}_{\sigma}[\nu(\mathcal{M}(\sigma))] \geq \alpha \cdot \max_{i} \nu_{i}$$

• With $v(\mathcal{M}(\sigma))$ valuation of bidder that gets item.

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder i.

Definition (Strategyproof)

$$u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},v_i) \geq u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},b'_i).$$

- **Individually rational:** Non-negative utility for bidder *i* when bidding truthful.
- ullet Constant factor lpha-approximation for welfare maximization
 - For uniform random arrival model:

$$\mathbb{E}_{\sigma}[\nu(\mathcal{M}(\sigma))] \geq \alpha \cdot \max_{i} \nu_{i}$$

- With $v(\mathcal{M}(\sigma))$ valuation of bidder that gets item.
- Computationally tractable:

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder i.

Definition (Strategyproof)

$$u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},v_i) \geq u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},b_i').$$

- **Individually rational:** Non-negative utility for bidder *i* when bidding truthful.
- Constant factor α -approximation for welfare maximization
 - For uniform random arrival model:

$$\mathbb{E}_{\sigma}[\mathbf{v}(\mathcal{M}(\sigma))] \geq \alpha \cdot \max_{i} \mathbf{v}_{i}$$

- With $v(\mathcal{M}(\sigma))$ valuation of bidder that gets item.
- Computationally tractable: Decision on who to allocate item to, and computation of charged price, in poly-time.