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Mechanism Design

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain
that outcome as a result of strategic behaviour?

Examples:
@ Auctions

@ Sponsored search auctions (e.g., Google)
@ Online selling platforms (e.g., eBay)

@ (Stable) matching problems

e Matching children to schools
e Matching medical students to hospitals

@ Kidney exchange markets

We focus mostly on (online) auctions.
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Selling one item

3/23



Selling one item

Bidders:
@ Set of bidders {1,..., n} and one item.
@ Bidder i has valuation v; for the item.
e Maximum amount she is willing to pay for it.
e Private information: v; not known to other players or seller.
@ Bidder submits bid b;.
e Vector of all bids denoted by b = (by, ..., by).

Seller: Collects (sealed) bids.
@ Gives item to some bidder (if any).
@ Allocation rule x = x(b) = (X1, ..., Xp), with

w11 if i gets the item,
"7 1 0 otherwise.

@ Charges price of p to bidder i* receiving item.
e Pricing rule p = p(b).

Utility of bidder i:

vi — p(b) if i gets the item,
ub) = x(o)v - p(b)) = { o~ PO T Lo
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We have
@ Bidders with valuations v = (v4,...,vs) and bids b= (b, ..., bp).
@ Seller with allocation rule x(b) and pricing rule p(b).
@ Ultility of player given by u;(b) = x;(b)(v; — p(b)).
@ Revenue of seller is p if item is sold.

Definition

A (deterministic) mechanism (x, p) for selling an item to one of n
bidders is given by an allocation rule x : R” — {0, 1}" with >, x; < 1,
and pricing rule p : R" — R.

Goal of bidder i is to maximize utility given mechanism (x, p).
@ Bidders will try to bid strategically.
@ How should we design auction to prevent undesirable outcomes?
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First price auction

First price auction

Bidders report bids b = (by, ..., by). ltem is given to i* = argmax;b;
and price p = max; b; is charged.

Example
Suppose there are three bidders
@ Valuations (vy, v2, v3) = (10,30, 25).
@ Bids (b, b, b3) = (5,22,23).
Winner is bidder i* = 3, with price p = 23. Utilities are u = (0,0, 2).

Is this a good auction format?
@ Does not incentivize truthful bidding.
o Bidders have incentive to lie (i.e., not report true valuation v;).
@ Bidder 2 values item the most, but does not get it.
@ Allocation rule does not maximize social welfare objective

“Revenue for seller” + “Player utilities” = ", vixi(b) = v;-



Selling one item
Second price auction
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Second price auction

Second price auction

Given bids b = (by, ..., bp):
@ ltem is allocated to highest bidder i* = argmax;b;.
@ Price charged is second-highest bid p = max;;- b;.

@ Ties are broken according to some fixed tie-breaking rule.

Example
Suppose we have three bidders.
@ Valuations (vy, v2, v3) = (10,30, 25).
@ Bids (by, bo, b3) = (10,30, 22).
Winner is bidder i* = 2 and pays p = 22. Utilities are u = (0, 8, 0).

Second price auction has many desirable properties.

8/23



Desired properties

Bidders have incentive to be truthful: Reporting v; is dominant strategy.

Definition (Strategyproof)

Mechanism (x, p) incentivizes truthful bidding if for every bidder i,
alternative bid b}, and bids b_; = (b4, ..., bj_1, bi11, bp) of other
bidders, it holds that

ui(b_i, vi) > uj(b_;, b)),
where uj(b) = xi(b)(v; — p(b)).

Bidders have non-negative utility (when reporting truthfully).

Definition (Individually rational)

Mechanism (x, p) is individually rational if for every bidder i it holds
ui(b) >0

for every bid vector b = (b, ..., bj_1,Vj,bji1,...,bn).




Mechanism has good performance guarantee.

Definition (Welfare maximization)
Mechanism (x, p) is welfare maximizer if it maximizes

> vixi(b) = “Revenue for seller” + “Player utilities”

assuming that bidders are truthful.

@ For now this just means we want to allocate item to a bidder with
highest (true) valuation v* = max; v;.
@ (In online setting, we are content with approximation.)

Definition (Computational efficiency)

Mechanism (x, p) should be implementable in polynomial time, i.e.,
compute allocation x and price p in polynomial time.
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Proof strategyproofness (second price auction):

Mechanism (x, p) incentivizes truthful bidding if for every i, alter-
native bid b}, and b_; = (b1, ..., bi_1,bjt1, ..., bp), it holds that

u;(b1,...,v,,...,bn)2u,-(b1,...,b§,...,bn).

Fix i and b_;. Let p(b) = s be second-highest bid.
@ We compare v;, bj and s (using case distinction).
e Assume v; # s for simplicity.

b, s Vi R
Case s > v;:
@ Bidder i would only win if b > bnax, but then u; = v; — p < 0.
@ For any bid b; < bmax (then i does not get item), we have u; = 0.
Case s < v;:
@ Bidder i wins. Charged price s same for all b; > s. For b; < s, we
have u; = 0. Hence, bidding v; is an optimal choice. O
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Myerson’s lemma

Myerson’s lemma holds in more general settings.
There exists a nice characterization, due to Myerson (1981), specifying
what type of allocation rules yield strategyproof mechanisms.

@ Pricing rule follows from allocation rule.

Myerson’s lemma (very informal)

If there exists a monotone allocation rule x, then there is a unique
pricing rule p so that the mechanism (x, p) is strategyproof (and vice
versa).

Monotone allocation rule has the property that, if bidder i gets item
when bidding b;, she also gets item when bidding b; > b;.

@ Thatis, {0, 1}-variable x; = (b;, b_;) is non-decreasing in bid b;.

Exercise: Show second price auction has monotone allocation rule.
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Selling multiple items
Unit-demand setting
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Selling multiple items

Unit-demand setting:
@ Setofitems M={1,...,m}
@ Set of bidders N={1,...,n}
@ For every i € N a private valuation function v; : M — R.
e Value Vj = vi(f) is value of bidder i for item j. N
@ Forevery i € N a bid function b; : M — R>.
e Bid b; = bj(j) is maximum amount / is willing to pay for item j.

The goal is to assign (at most) one item to every bidder.

Example
Non-existing edges have b =

ltems

Bidders
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Example
Non-existing edges have b; = v; = 0 (i is not interested in item j)

Iltems

bj =1

Bidders

Definition (Mechanism)

A (deterministic) mechanism (x, p) is given by an allocation rule
X Rg)m — {0, 1}m=m.

with 3, x; < 1 and >, x; < 1, and pricing rule p : RT3 — RT,.

@ For bidder i, we have bid vector b; = (bj1, . . ., bim).
e With b= (by,...,b,), we have x = x(b) and p = p(b).
@ Utility of bidder i is
Ui(b) = { vj — pj(b) ifjis the item j receives,
! 0 if i does not get an item.
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Desired properties

@ Strategyproof: For every i € N, bidding true valuations
vi = (Vj1, ..., Vim) is dominant strategy.
o It should hold that

ui(b—i, vi) = ui(b_;, b}).

forall b_j = (b1,...,bi—1,bit1, ..., by) and other bid vector b;.
@ Individual rationality: Non-negative utility when bidding truthfully.
@ Welfare maximization: The allocation x maximizes

Z XijVij
i

with x;; = 1 if bidder / gets item j, and zero otherwise.
@ Bipartite maximum weight matching in unit-demand setting.

@ Computationally tractable: Allocation and pricing rules should

be computable in polynomial time.
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Vickrey-Clarke-Groves (VCG) mechanism

VCG mechanism works in more general settings than unit-demand.

Notation:
@ Bipartite graph B = (X U Y, E) with edge-weights w : E — R>o.
e OPT(X’, Y')is sum of edge weights of max. weight bipartite
matching on induced subgraph B’ = (X’ U Y’, E) where

X CcX, Y Cy.
VCG mechanism
@ Collect bid vectors by, ..., b, from bidders.

@ Compute maximum weight bipartite matching L* (the allocation x)
@ If bidder i gets item j, i.e., {i,j} € L*(N, M), then charge her

pj(b) = OPT(N\ {i}, M) — OPT(N\ {i}, M\ {j}),

and otherwise nothing.

OPT(N\ {i},M) — OPT(N\ {i}, M\ {j}) is welfare loss for other players by

assigning j to i.
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We use shorthand notation g;b; for edge {a;, b;}.

Example
Suppose these are reported bids (non-existing edges have b;; = 0)

o @ @ @

3 6
2 2

5
4
Bidders @ @

(*] l_*(N7 M) = {81 bg, a2b3, a3b4}.
o OPT(N,M)=383+4+6=13.
@ L*(N\ {bs}, M) = {aiby, azbo, asbs}.
o OPT(N\ {bs},M)=2+2+5=09.
© L*(N\ {bs}, M\ {a3}) = {a1b2, a2bs}.
o OPT(N\ {bs},M\ {as}) =3+4=7.
@ Price charged to bidder b, for item as is
pas(b) =9 -7 =2.

®—®
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VCG mechanism satisfies all desired properties:
@ Strategyproofness (bidding truthfully is optimal).
o Exercise: Prove this.
@ Individually rational.
e Bidding truthfully gives non-negative utility.
@ Social welfare maximizer.

o It computes max. weight bipartite matching (where the weights are
the true valuations).

@ Computationally tractable.
e Computing max. weight bipartite matching solvable in poly-time.
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Online mechanism design
Selling one item
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Selling one item online

Setting:
@ Bidders have private valuation v; > 0 for item.

@ Whenever bidder arrives online, it submits bid b;.

Bidders arrive one by one in unknown order o = (o(1),...,0(n)).

Online mechanism (informal)
For k =1,...,n, upon arrival of bidder o(k):
@ Bid by is revealed.
@ Decide (irrevocably) whether to allocate item to o (k).
e If yes, charge price p(b,(1), - - - , bs(x)) and STOP.
Goal: Allocate item to bidder with highest valuation v* = max; v;.

Utility of bidder i, when o(k) = i, is given by

. - Vi — p(bg(1), ceey bg(k)) if / gets item,
ul,k(bO'(1)’ S ba(k)) - { 0 otherwise.
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Requirements for (online) deterministic mechanism (x, p):

Takes as input deterministic ordering (y1, . .., ¥») and bids by, ..., b, for
the item.
@ Specifies for every k = 1,..., n whether to allocate to y.

@ This {0, 1}-variable xx (and price p) for k is function of:

Total number of bidders n.
Bidders y1, ..., Y.
Bids by, ..., bk.
The order (y1, ..., k).
@ Last aspect is usually irrelevant.

The variables x; induce the allocation rule x.
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Desired properties

Bidding truthfully should be dominant strategy for every arrival order o
and every arrival time of bidder /.

Definition (Strategyproof)

Consider arbitrary /, ordering (¢(1),...,0(n)), and k with i = o (k). We
say an online mechanism M = (x, p) is strategyproof if for every
alternative bid b; and every b, (1), - - ., by(x—1), it holds that

U,"k(bg(1), e bg(k_1), Vi) > U,'7k(ba(1), e ,ba(k_1), b;)

@ Individually rational: Non-negative utility for bidder i when

bidding truthful.
@ Constant factor a-approximation for welfare maximization

e For uniform random arrival model:
Es[v(M(0))] > o - max; v;
@ With v(M(o)) valuation of bidder that gets item.

@ Computationally tractable: Decision on who to allocate item to,

and computation of charged price, in poly-time. 23723



