Topics in Algorithmic Game Theory and Economics

Pieter Kleer

Max Planck Institute for Informatics (D1) Saarland Informatics Campus

January 13, 2020

Lecture 8 Some Mechanism Design

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain that outcome as a result of strategic behaviour?

Examples:

- Auctions
 - Sponsored search auctions (e.g., Google)
 - Online selling platforms (e.g., eBay)
- (Stable) matching problems
 - Matching children to schools
 - Matching medical students to hospitals
- Kidney exchange markets

We focus mostly on (online) auctions.

Selling one item

Selling one item

Bidders:

- Set of bidders $\{1, \ldots, n\}$ and one item.
- Bidder *i* has valuation v_i for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: *v_i* not known to other players or seller.
- Bidder submits bid b_i.
 - Vector of all bids denoted by $b = (b_1, \ldots, b_n)$.
- Seller: Collects (sealed) bids.
 - Gives item to some bidder (if any).
 - Allocation rule $x = x(b) = (x_1, \ldots, x_n)$, with

$$x_i = \begin{cases} 1 & \text{if } i \text{ gets the item}, \\ 0 & \text{otherwise.} \end{cases}$$

- Charges price of *p* to bidder *i** receiving item.
 - Pricing rule p = p(b).

Utility of bidder i:

$$u_i(b) = x_i(b)(v_i - p(b)) = \begin{cases} v_i - p(b) & \text{if } i \text{ gets the item,} \\ 0 & \text{otherwise.} \end{cases}$$

We have

- Bidders with valuations $v = (v_1, \ldots, v_n)$ and bids $b = (b_1, \ldots, b_n)$.
- Seller with allocation rule x(b) and pricing rule p(b).
- Utility of player given by $u_i(b) = x_i(b)(v_i p(b))$.
- Revenue of seller is p if item is sold.

Definition

A (deterministic) mechanism (x, p) for selling an item to one of n bidders is given by an allocation rule $x : \mathbb{R}^n \to \{0, 1\}^n$ with $\sum_i x_i \leq 1$, and pricing rule $p : \mathbb{R}^n \to \mathbb{R}$.

Goal of bidder *i* is to maximize utility given mechanism (x, p).

- Bidders will try to bid strategically.
- How should we design auction to prevent undesirable outcomes?

First price auction

Bidders report bids $b = (b_1, ..., b_n)$. Item is given to $i^* = \operatorname{argmax}_i b_i$ and price $p = \max_i b_i$ is charged.

Example

Suppose there are three bidders

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (5, 22, 23)$.

Winner is bidder $i^* = 3$, with price p = 23. Utilities are u = (0, 0, 2).

Is this a good auction format?

- Does not incentivize truthful bidding.
 - Bidders have incentive to lie (i.e., not report true valuation v_i).
- Bidder 2 values item the most, but does not get it.
 - Allocation rule does not maximize social welfare objective

"Revenue for seller" + "Player utilities" = $\sum_{i} v_i x_i(b) = v_{i*}$

Selling one item

Second price auction

Second price auction

Second price auction

Given bids $b = (b_1, \ldots, b_n)$:

- Item is allocated to highest bidder $i^* = \operatorname{argmax}_i b_i$.
- Price charged is second-highest bid $p = \max_{j \neq i^*} b_j$.
- Ties are broken according to some fixed tie-breaking rule.

Example

Suppose we have three bidders.

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (10, 30, 22)$.

Winner is bidder $i^* = 2$ and pays p = 22. Utilities are u = (0, 8, 0).

Second price auction has many desirable properties.

Desired properties

Bidders have incentive to be truthful: Reporting v_i is dominant strategy.

Definition (Strategyproof)

Mechanism (x, p) incentivizes truthful bidding if for every bidder *i*, alternative bid b'_i , and bids $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, b_n)$ of other bidders, it holds that

$$u_i(b_{-i},v_i)\geq u_i(b_{-i},b_i'),$$

where $u_i(b) = x_i(b)(v_i - p(b))$.

Bidders have non-negative utility (when reporting truthfully).

Definition (Individually rational)

Mechanism (x, p) is individually rational if for every bidder *i* it holds

$$u_i(b) \geq 0$$

for every bid vector $b = (b_1, ..., b_{i-1}, v_i, b_{i+1}, ..., b_n)$.

Mechanism has good performance guarantee.

Definition (Welfare maximization)

Mechanism (x, p) is welfare maximizer if it maximizes

 $\sum_{i} v_i x_i(b) =$ "Revenue for seller" + "Player utilities"

assuming that bidders are truthful.

- For now this just means we want to allocate item to a bidder with highest (true) valuation v^{*} = max_i v_i.
- (In online setting, we are content with approximation.)

Definition (Computational efficiency)

Mechanism (x, p) should be implementable in polynomial time, i.e., compute allocation x and price p in polynomial time.

Proof strategyproofness (second price auction):

Mechanism (x, p) incentivizes truthful bidding if for every *i*, alternative bid b'_i , and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that $u_i(b_1, \ldots, v_i, \ldots, b_n) \ge u_i(b_1, \ldots, b'_i, \ldots, b_n)$.

- Fix *i* and b_{-i} . Let p(b) = s be second-highest bid.
 - We compare v_i , b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.

Case $s > v_i$:

• Bidder *i* would only win if $b'_i \ge b_{max}$, but then $u_i = v_i - p < 0$.

• For any bid $b'_i < b_{max}$ (then *i* does not get item), we have $u_i = 0$. Case $s < v_i$:

Bidder *i* wins. Charged price *s* same for all b'_i > s. For b'_i < s, we have u_i = 0. Hence, bidding v_i is an optimal choice.

Myerson's lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

• Pricing rule follows from allocation rule.

Myerson's lemma (very informal)

If there exists a monotone allocation rule x, then there is a unique pricing rule p so that the mechanism (x, p) is strategyproof (and vice versa).

Monotone allocation rule has the property that, if bidder *i* gets item when bidding b_i , she also gets item when bidding $b'_i \ge b_i$.

• That is, $\{0, 1\}$ -variable $x_i = (b_i, b_{-i})$ is non-decreasing in bid b_i .

Exercise: Show second price auction has monotone allocation rule.

Selling multiple items Unit-demand setting

Unit-demand setting:

- Set of items *M* = {1,...,*m*}
- Set of bidders *N* = {1,...,*n*}
- For every $i \in N$ a private valuation function $v_i : M \to \mathbb{R}_{\geq 0}$.
 - Value $v_{ij} = v_i(j)$ is value of bidder *i* for item *j*.
- For every $i \in N$ a bid function $b_i : M \to \mathbb{R}_{\geq 0}$.
 - Bid $b_{ij} = b_i(j)$ is maximum amount *i* is willing to pay for item *j*.

The goal is to assign (at most) one item to every bidder.

Example

Non-existing edges have $b_{ij} = 0$.

Example

Non-existing edges have $b_{ij} = v_{ij} = 0$ (*i* is not interested in item *j*)

Definition (Mechanism)

A (deterministic) mechanism (x, p) is given by an allocation rule $x : \mathbb{R}_{>0}^{n \times m} \to \{0, 1\}^{n \times m},$

with $\sum_{i} x_{ij} \leq 1$ and $\sum_{j} x_{ij} \leq 1$, and pricing rule $p : \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^{m}$.

• For bidder *i*, we have bid vector $b_i = (b_{i1}, \ldots, b_{im})$.

• With $b = (b_1, ..., b_n)$, we have x = x(b) and p = p(b).

Utility of bidder i is

$$u_i(b) = \begin{cases} v_{ij} - p_j(b) & ext{if j is the item } i ext{ receives,} \\ 0 & ext{if i does not get an item.} \end{cases}$$

Desired properties

- Strategyproof: For every *i* ∈ *N*, bidding true valuations *v_i* = (*v_{i1}*,..., *v_{im}*) is dominant strategy.
 - It should hold that

$$u_i(b_{-i}, v_i) \ge u_i(b_{-i}, b'_i).$$

for all $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$ and other bid vector b'_i .

- Individual rationality: Non-negative utility when bidding truthfully.
- Welfare maximization: The allocation x maximizes

$$\sum_{i,j} x_{ij} v_{ij}$$

- with $x_{ij} = 1$ if bidder *i* gets item *j*, and zero otherwise.
 - Bipartite maximum weight matching in unit-demand setting.
- **Computationally tractable:** Allocation and pricing rules should be computable in polynomial time.

Vickrey-Clarke-Groves (VCG) mechanism

VCG mechanism works in more general settings than unit-demand. Notation:

- Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{\geq 0}$.
 - OPT(X', Y') is sum of edge weights of max. weight bipartite matching on induced subgraph B' = (X' ∪ Y', E) where X' ⊆ X, Y' ⊆ Y.

VCG mechanism

- Collect bid vectors b_1, \ldots, b_n from bidders.
- Compute maximum weight bipartite matching L* (the allocation x)
- If bidder *i* gets item *j*, i.e., $\{i, j\} \in L^*(N, M)$, then charge her

 $p_{ij}(b) = \mathsf{OPT}(N \setminus \{i\}, M) - \mathsf{OPT}(N \setminus \{i\}, M \setminus \{j\}),$

and otherwise nothing.

 $OPT(N \setminus \{i\}, M) - OPT(N \setminus \{i\}, M \setminus \{j\})$ is welfare loss for other players by assigning *j* to *i*.

We use shorthand notation $a_i b_j$ for edge $\{a_i, b_j\}$.

Example

Suppose these are reported bids (non-existing edges have $b_{ij} = 0$)

•
$$L^*(N, M) = \{a_1b_2, a_2b_3, a_3b_4\}.$$

• OPT $(N, M) = 3 + 4 + 6 = 13.$
• $L^*(N \setminus \{b_4\}, M) = \{a_1b_1, a_2b_2, a_3b_3\}.$
• OPT $(N \setminus \{b_4\}, M) = 2 + 2 + 5 = 3$

•
$$L^*(N \setminus \{b_4\}, M \setminus \{a_3\}) = \{a_1b_2, a_2b_3\}.$$

• OPT $(N \setminus \{b_4\}, M \setminus \{a_3\}) = 3 + 4 = 7$

• Price charged to bidder b₄ for item a₃ is

$$p_{43}(b) = 9 - 7 = 2.$$

VCG mechanism satisfies all desired properties:

- Strategyproofness (bidding truthfully is optimal).
 - Exercise: Prove this.
- Individually rational.
 - Bidding truthfully gives non-negative utility.
- Social welfare maximizer.
 - It computes max. weight bipartite matching (where the weights are the true valuations).
- Computationally tractable.
 - Computing max. weight bipartite matching solvable in poly-time.

Online mechanism design

Selling one item

Setting:

- Bidders have private valuation $v_i \ge 0$ for item.
- Whenever bidder arrives online, it submits bid *b_i*.

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(n))$.

Online mechanism (informal)

For k = 1, ..., n, upon arrival of bidder $\sigma(k)$:

- Bid *b_k* is revealed.
- Decide (irrevocably) whether to allocate item to $\sigma(k)$.
 - If yes, charge price $p(b_{\sigma(1)}, \ldots, b_{\sigma(k)})$ and STOP.

Goal: Allocate item to bidder with highest valuation $v^* = \max_i v_i$.

Utility of bidder *i*, when $\sigma(k) = i$, is given by

$$u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k)}) = \begin{cases} v_i - p(b_{\sigma(1)},\ldots,b_{\sigma(k)}) & \text{if } i \text{ gets item,} \\ 0 & \text{otherwise.} \end{cases}$$

Requirements for (online) deterministic mechanism (x, p): Takes as input deterministic ordering (y_1, \ldots, y_n) and bids b_1, \ldots, b_n for the item.

- Specifies for every k = 1, ..., n whether to allocate to y_k .
- This $\{0, 1\}$ -variable x_k (and price p) for k is function of:
 - Total number of bidders *n*.
 - Bidders y_1, \ldots, y_k .
 - Bids $b_1, ..., b_k$.
 - The order $(y_1, ..., y_k)$.
 - Last aspect is usually irrelevant.

The variables x_i induce the allocation rule x.

Desired properties

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder *i*.

Definition (Strategyproof)

Consider arbitrary *i*, ordering $(\sigma(1), \ldots, \sigma(n))$, and *k* with $i = \sigma(k)$. We say an online mechanism $\mathcal{M} = (x, p)$ is strategyproof if for every alternative bid b'_i and every $b_{\sigma(1)}, \ldots, b_{\sigma(k-1)}$, it holds that

$$u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},v_i) \geq u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k-1)},b_i').$$

- **Individually rational:** Non-negative utility for bidder *i* when bidding truthful.
- Constant factor α -approximation for welfare maximization
 - For uniform random arrival model:

 $\mathbb{E}_{\sigma}[\boldsymbol{v}(\mathcal{M}(\sigma))] \geq \alpha \cdot \max_{i} \boldsymbol{v}_{i}$

• With $v(\mathcal{M}(\sigma))$ valuation of bidder that gets item.

 Computationally tractable: Decision on who to allocate item to, and computation of charged price, in poly-time.