
Topics in Algorithmic Game Theory and Economics

Pieter Kleer

Max Planck Institute for Informatics (D1)
Saarland Informatics Campus

January 20, 2020

Lecture 9
Online Bipartite Matching

1 / 26

Offline bipartite matching

2 / 26

Offline bipartite matching

Given bipartite graph B = (Y ∪ Z ,E) with E = {{y , z} : y ∈ Y , z ∈ Z}.

Edge weight function w : E → R≥0.

Example

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
1

5 6
1

Matching M ⊆ E is set of edges where every node is incident to at
most one edge from M: |{e ∈ M : e ∩ {v}}| ≤ 1 ∀v ∈ Y ∪ Z .

Weight of matching M is given by

w(M) =
∑
e∈M

we.

Goal: Compute maximum weight matching in bipartite graph B.

3 / 26

Offline bipartite matching

Given bipartite graph B = (Y ∪ Z ,E) with E = {{y , z} : y ∈ Y , z ∈ Z}.
Edge weight function w : E → R≥0.

Example

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
1

5 6
1

Matching M ⊆ E is set of edges where every node is incident to at
most one edge from M: |{e ∈ M : e ∩ {v}}| ≤ 1 ∀v ∈ Y ∪ Z .

Weight of matching M is given by

w(M) =
∑
e∈M

we.

Goal: Compute maximum weight matching in bipartite graph B.

3 / 26

Offline bipartite matching

Given bipartite graph B = (Y ∪ Z ,E) with E = {{y , z} : y ∈ Y , z ∈ Z}.
Edge weight function w : E → R≥0.

Example

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
1

5 6
1

Matching M ⊆ E is set of edges where every node is incident to at
most one edge from M: |{e ∈ M : e ∩ {v}}| ≤ 1 ∀v ∈ Y ∪ Z .

Weight of matching M is given by

w(M) =
∑
e∈M

we.

Goal: Compute maximum weight matching in bipartite graph B.

3 / 26

Offline bipartite matching

Given bipartite graph B = (Y ∪ Z ,E) with E = {{y , z} : y ∈ Y , z ∈ Z}.
Edge weight function w : E → R≥0.

Example

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
1

5 6
1

Matching M ⊆ E is set of edges where every node is incident to at
most one edge from M:

|{e ∈ M : e ∩ {v}}| ≤ 1 ∀v ∈ Y ∪ Z .
Weight of matching M is given by

w(M) =
∑
e∈M

we.

Goal: Compute maximum weight matching in bipartite graph B.

3 / 26

Offline bipartite matching

Given bipartite graph B = (Y ∪ Z ,E) with E = {{y , z} : y ∈ Y , z ∈ Z}.
Edge weight function w : E → R≥0.

Example

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
1

5 6
11 3

6

Matching M ⊆ E is set of edges where every node is incident to at
most one edge from M: |{e ∈ M : e ∩ {v}}| ≤ 1 ∀v ∈ Y ∪ Z .

Weight of matching M is given by

w(M) =
∑
e∈M

we.

Goal: Compute maximum weight matching in bipartite graph B.

3 / 26

Offline bipartite matching

Given bipartite graph B = (Y ∪ Z ,E) with E = {{y , z} : y ∈ Y , z ∈ Z}.
Edge weight function w : E → R≥0.

Example

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
1

5 6
11 3

6

Matching M ⊆ E is set of edges where every node is incident to at
most one edge from M: |{e ∈ M : e ∩ {v}}| ≤ 1 ∀v ∈ Y ∪ Z .

Weight of matching M is given by

w(M) =
∑
e∈M

we.

Goal: Compute maximum weight matching in bipartite graph B.

3 / 26

Offline bipartite matching

Given bipartite graph B = (Y ∪ Z ,E) with E = {{y , z} : y ∈ Y , z ∈ Z}.
Edge weight function w : E → R≥0.

Example

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
1

5 6
11 3

6

Matching M ⊆ E is set of edges where every node is incident to at
most one edge from M: |{e ∈ M : e ∩ {v}}| ≤ 1 ∀v ∈ Y ∪ Z .

Weight of matching M is given by

w(M) =
∑
e∈M

we.

Goal: Compute maximum weight matching in bipartite graph B.

3 / 26

Goal: Compute maximum weight matching in bipartite graph B.

Many algorithms known for solving this in polynomial time, e.g.:
Linear programming.
Hungarian method.

The important thing to remember is the following.

Theorem (Offline bipartite matching)
There is a poly(n,m)-time algorithm for solving the (offline) maximum
weight bipartite matching problem, where n = |Z | and m = |Y |.

Parameters n and m are used interchangeably.
You may assume that m = n (essentially w.l.o.g.).

4 / 26

Goal: Compute maximum weight matching in bipartite graph B.

Many algorithms known for solving this in polynomial time, e.g.:

Linear programming.
Hungarian method.

The important thing to remember is the following.

Theorem (Offline bipartite matching)
There is a poly(n,m)-time algorithm for solving the (offline) maximum
weight bipartite matching problem, where n = |Z | and m = |Y |.

Parameters n and m are used interchangeably.
You may assume that m = n (essentially w.l.o.g.).

4 / 26

Goal: Compute maximum weight matching in bipartite graph B.

Many algorithms known for solving this in polynomial time, e.g.:
Linear programming.

Hungarian method.

The important thing to remember is the following.

Theorem (Offline bipartite matching)
There is a poly(n,m)-time algorithm for solving the (offline) maximum
weight bipartite matching problem, where n = |Z | and m = |Y |.

Parameters n and m are used interchangeably.
You may assume that m = n (essentially w.l.o.g.).

4 / 26

Goal: Compute maximum weight matching in bipartite graph B.

Many algorithms known for solving this in polynomial time, e.g.:
Linear programming.
Hungarian method.

The important thing to remember is the following.

Theorem (Offline bipartite matching)
There is a poly(n,m)-time algorithm for solving the (offline) maximum
weight bipartite matching problem, where n = |Z | and m = |Y |.

Parameters n and m are used interchangeably.
You may assume that m = n (essentially w.l.o.g.).

4 / 26

Goal: Compute maximum weight matching in bipartite graph B.

Many algorithms known for solving this in polynomial time, e.g.:
Linear programming.
Hungarian method.

The important thing to remember is the following.

Theorem (Offline bipartite matching)
There is a poly(n,m)-time algorithm for solving the (offline) maximum
weight bipartite matching problem, where n = |Z | and m = |Y |.

Parameters n and m are used interchangeably.
You may assume that m = n (essentially w.l.o.g.).

4 / 26

Goal: Compute maximum weight matching in bipartite graph B.

Many algorithms known for solving this in polynomial time, e.g.:
Linear programming.
Hungarian method.

The important thing to remember is the following.

Theorem (Offline bipartite matching)
There is a poly(n,m)-time algorithm for solving the (offline) maximum
weight bipartite matching problem, where n = |Z | and m = |Y |.

Parameters n and m are used interchangeably.
You may assume that m = n (essentially w.l.o.g.).

4 / 26

Goal: Compute maximum weight matching in bipartite graph B.

Many algorithms known for solving this in polynomial time, e.g.:
Linear programming.
Hungarian method.

The important thing to remember is the following.

Theorem (Offline bipartite matching)
There is a poly(n,m)-time algorithm for solving the (offline) maximum
weight bipartite matching problem, where n = |Z | and m = |Y |.

Parameters n and m are used interchangeably.

You may assume that m = n (essentially w.l.o.g.).

4 / 26

Goal: Compute maximum weight matching in bipartite graph B.

Many algorithms known for solving this in polynomial time, e.g.:
Linear programming.
Hungarian method.

The important thing to remember is the following.

Theorem (Offline bipartite matching)
There is a poly(n,m)-time algorithm for solving the (offline) maximum
weight bipartite matching problem, where n = |Z | and m = |Y |.

Parameters n and m are used interchangeably.
You may assume that m = n (essentially w.l.o.g.).

4 / 26

Online bipartite matching

5 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

6 / 26

Vertex arrival model

We consider the following (semi)-online model:

Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

6 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.

Nodes in Z arrive in (unknown) uniform random arrival order σ.
When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

6 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

6 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.

Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

6 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

6 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

6 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

6 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

z2

3
3

6 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

z2

3
3

3

6 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

z1

4

z2

3
3

3

6 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

z1

4

z2

3
3

3

z4

5 6
1

6 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

z1

4

z2

3
3

3

z4

5 6
1

6

6 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

z1

4

z2

3
3

3

z3

1

z4

5 6
1

6

6 / 26

Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4

z1

4

z2

3
3

3

z3

11

z4

5 6
1

6

6 / 26

Generalization of secretary problem (with uniform random arrivals).

Example
Y

Z

y

z1

4

z2

33

z3

1

z4

5

Remark
There exist many other models for online (bipartite) matching:

Model where all nodes arrive online.
Rather than only one side of the bipartition.

Model where the edges arrive online.
Instead of the vertices.

7 / 26

Generalization of secretary problem (with uniform random arrivals).

Example
Y

Z

y

z1

4

z2

33

z3

1

z4

5

Remark
There exist many other models for online (bipartite) matching:

Model where all nodes arrive online.
Rather than only one side of the bipartition.

Model where the edges arrive online.
Instead of the vertices.

7 / 26

Generalization of secretary problem (with uniform random arrivals).

Example
Y

Z

y

z1

4

z2

33

z3

1

z4

5

Remark

There exist many other models for online (bipartite) matching:
Model where all nodes arrive online.

Rather than only one side of the bipartition.
Model where the edges arrive online.

Instead of the vertices.

7 / 26

Generalization of secretary problem (with uniform random arrivals).

Example
Y

Z

y

z1

4

z2

33

z3

1

z4

5

Remark
There exist many other models for online (bipartite) matching:

Model where all nodes arrive online.
Rather than only one side of the bipartition.

Model where the edges arrive online.
Instead of the vertices.

7 / 26

Generalization of secretary problem (with uniform random arrivals).

Example
Y

Z

y

z1

4

z2

33

z3

1

z4

5

Remark
There exist many other models for online (bipartite) matching:

Model where all nodes arrive online.

Rather than only one side of the bipartition.
Model where the edges arrive online.

Instead of the vertices.

7 / 26

Generalization of secretary problem (with uniform random arrivals).

Example
Y

Z

y

z1

4

z2

33

z3

1

z4

5

Remark
There exist many other models for online (bipartite) matching:

Model where all nodes arrive online.
Rather than only one side of the bipartition.

Model where the edges arrive online.
Instead of the vertices.

7 / 26

Generalization of secretary problem (with uniform random arrivals).

Example
Y

Z

y

z1

4

z2

33

z3

1

z4

5

Remark
There exist many other models for online (bipartite) matching:

Model where all nodes arrive online.
Rather than only one side of the bipartition.

Model where the edges arrive online.

Instead of the vertices.

7 / 26

Generalization of secretary problem (with uniform random arrivals).

Example
Y

Z

y

z1

4

z2

33

z3

1

z4

5

Remark
There exist many other models for online (bipartite) matching:

Model where all nodes arrive online.
Rather than only one side of the bipartition.

Model where the edges arrive online.
Instead of the vertices.

7 / 26

Generalization of secretary problem (with uniform random arrivals).

Example
Y

Z

y

z1

4

z2

33

z3

1

z4

5

Remark
There exist many other models for online (bipartite) matching:

Model where all nodes arrive online.
Rather than only one side of the bipartition.

Model where the edges arrive online.
Instead of the vertices.

7 / 26

Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.
w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

1
16 -approximation for special case of uniform edge weights.

[Dimitrov-Plaxton, 2008]
1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].(1
e −

1
n

)
-approximation.

Best possible! Will see this algorithm later.
[Reiffenhäuser, 2019].

Strategyproof 1
e -approximation for selling multiple items online.

8 / 26

Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.
w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

1
16 -approximation for special case of uniform edge weights.

[Dimitrov-Plaxton, 2008]
1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].(1
e −

1
n

)
-approximation.

Best possible! Will see this algorithm later.
[Reiffenhäuser, 2019].

Strategyproof 1
e -approximation for selling multiple items online.

8 / 26

Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.
w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

1
16 -approximation for special case of uniform edge weights.

[Dimitrov-Plaxton, 2008]
1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].(1
e −

1
n

)
-approximation.

Best possible! Will see this algorithm later.
[Reiffenhäuser, 2019].

Strategyproof 1
e -approximation for selling multiple items online.

8 / 26

Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.

w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

1
16 -approximation for special case of uniform edge weights.

[Dimitrov-Plaxton, 2008]
1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].(1
e −

1
n

)
-approximation.

Best possible! Will see this algorithm later.
[Reiffenhäuser, 2019].

Strategyproof 1
e -approximation for selling multiple items online.

8 / 26

Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.
w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

1
16 -approximation for special case of uniform edge weights.

[Dimitrov-Plaxton, 2008]
1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].(1
e −

1
n

)
-approximation.

Best possible! Will see this algorithm later.
[Reiffenhäuser, 2019].

Strategyproof 1
e -approximation for selling multiple items online.

8 / 26

Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.
w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:

[Babaioff-Immorlica-Kempe-Kleinberg, 2007]
1

16 -approximation for special case of uniform edge weights.
[Dimitrov-Plaxton, 2008]

1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].(1
e −

1
n

)
-approximation.

Best possible! Will see this algorithm later.
[Reiffenhäuser, 2019].

Strategyproof 1
e -approximation for selling multiple items online.

8 / 26

Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.
w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

1
16 -approximation for special case of uniform edge weights.

[Dimitrov-Plaxton, 2008]
1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].(1
e −

1
n

)
-approximation.

Best possible! Will see this algorithm later.
[Reiffenhäuser, 2019].

Strategyproof 1
e -approximation for selling multiple items online.

8 / 26

Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.
w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

1
16 -approximation for special case of uniform edge weights.

[Dimitrov-Plaxton, 2008]
1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].(1
e −

1
n

)
-approximation.

Best possible! Will see this algorithm later.
[Reiffenhäuser, 2019].

Strategyproof 1
e -approximation for selling multiple items online.

8 / 26

Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.
w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

1
16 -approximation for special case of uniform edge weights.

[Dimitrov-Plaxton, 2008]
1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].(1
e −

1
n

)
-approximation.

Best possible! Will see this algorithm later.
[Reiffenhäuser, 2019].

Strategyproof 1
e -approximation for selling multiple items online.

8 / 26

Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.
w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

1
16 -approximation for special case of uniform edge weights.

[Dimitrov-Plaxton, 2008]
1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].(1
e −

1
n

)
-approximation.

Best possible! Will see this algorithm later.
[Reiffenhäuser, 2019].

Strategyproof 1
e -approximation for selling multiple items online.

8 / 26

Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.
w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

1
16 -approximation for special case of uniform edge weights.

[Dimitrov-Plaxton, 2008]
1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].(1
e −

1
n

)
-approximation.

Best possible!

Will see this algorithm later.
[Reiffenhäuser, 2019].

Strategyproof 1
e -approximation for selling multiple items online.

8 / 26

Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.
w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

1
16 -approximation for special case of uniform edge weights.

[Dimitrov-Plaxton, 2008]
1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].(1
e −

1
n

)
-approximation.

Best possible! Will see this algorithm later.

[Reiffenhäuser, 2019].
Strategyproof 1

e -approximation for selling multiple items online.

8 / 26

Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.
w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

1
16 -approximation for special case of uniform edge weights.

[Dimitrov-Plaxton, 2008]
1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].(1
e −

1
n

)
-approximation.

Best possible! Will see this algorithm later.
[Reiffenhäuser, 2019].

Strategyproof 1
e -approximation for selling multiple items online.

8 / 26

Special case of uniform edge weights

Instance has uniform edge weights if for every z ∈ Z arriving online,
there is a value vi > 0 such that wyz ∈ {0, vi}.

If we interpret edges with weight zero as non-existent, then every
edge adjacent to z has same weight.

Example

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
2

5 5
5

9 / 26

Special case of uniform edge weights

Instance has uniform edge weights if for every z ∈ Z arriving online,
there is a value vi > 0 such that wyz ∈ {0, vi}.

If we interpret edges with weight zero as non-existent, then every
edge adjacent to z has same weight.

Example

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
2

5 5
5

9 / 26

Special case of uniform edge weights

Instance has uniform edge weights if for every z ∈ Z arriving online,
there is a value vi > 0 such that wyz ∈ {0, vi}.

If we interpret edges with weight zero as non-existent, then every
edge adjacent to z has same weight.

Example

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
2

5 5
5

9 / 26

Special case of uniform edge weights

Instance has uniform edge weights if for every z ∈ Z arriving online,
there is a value vi > 0 such that wyz ∈ {0, vi}.

If we interpret edges with weight zero as non-existent, then every
edge adjacent to z has same weight.

Example

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
2

5 5
5

9 / 26

Online bipartite matching
KRTV-algorithm

10 / 26

KRTV-algorithm

Theorem (Kesselheim-Radke-Tönnis-Vöcking, 2013)

There exists a
(1

e −
1
m

)
-approximation for the online bipartite matching

problem where nodes of one side of the bipartition arrive online in
uniform random order.

Generalization of (weight-maximization) secretary problem.
Corresponding to the case |Y | = 1.

Factor 1
e therefore also best possible.

As this is best possible for single secretary problem.

Notation:
Assume arrival order is written as σ = (z1, . . . , zm).
Bipartite graph B = (Z ∪ Y ,E) with weights w : E → R≥0.

Induced subgraph on Z ′ ∪ Y ′ is given by bipartite graph
B′ = (Z ′ ∪ Y ′,E ′) with {y ′, z ′} ∈ E ′ ⇔ y ′ ∈ Y ′, z ′ ∈ Z ′ and
{y ′, z ′} ∈ E .

11 / 26

KRTV-algorithm

Theorem (Kesselheim-Radke-Tönnis-Vöcking, 2013)

There exists a
(1

e −
1
m

)
-approximation for the online bipartite matching

problem where nodes of one side of the bipartition arrive online in
uniform random order.

Generalization of (weight-maximization) secretary problem.

Corresponding to the case |Y | = 1.
Factor 1

e therefore also best possible.
As this is best possible for single secretary problem.

Notation:
Assume arrival order is written as σ = (z1, . . . , zm).
Bipartite graph B = (Z ∪ Y ,E) with weights w : E → R≥0.

Induced subgraph on Z ′ ∪ Y ′ is given by bipartite graph
B′ = (Z ′ ∪ Y ′,E ′) with {y ′, z ′} ∈ E ′ ⇔ y ′ ∈ Y ′, z ′ ∈ Z ′ and
{y ′, z ′} ∈ E .

11 / 26

KRTV-algorithm

Theorem (Kesselheim-Radke-Tönnis-Vöcking, 2013)

There exists a
(1

e −
1
m

)
-approximation for the online bipartite matching

problem where nodes of one side of the bipartition arrive online in
uniform random order.

Generalization of (weight-maximization) secretary problem.

Corresponding to the case |Y | = 1.
Factor 1

e therefore also best possible.
As this is best possible for single secretary problem.

Notation:
Assume arrival order is written as σ = (z1, . . . , zm).
Bipartite graph B = (Z ∪ Y ,E) with weights w : E → R≥0.

Induced subgraph on Z ′ ∪ Y ′ is given by bipartite graph
B′ = (Z ′ ∪ Y ′,E ′) with {y ′, z ′} ∈ E ′ ⇔ y ′ ∈ Y ′, z ′ ∈ Z ′ and
{y ′, z ′} ∈ E .

11 / 26

KRTV-algorithm

Theorem (Kesselheim-Radke-Tönnis-Vöcking, 2013)

There exists a
(1

e −
1
m

)
-approximation for the online bipartite matching

problem where nodes of one side of the bipartition arrive online in
uniform random order.

Generalization of (weight-maximization) secretary problem.
Corresponding to the case |Y | = 1.

Factor 1
e therefore also best possible.

As this is best possible for single secretary problem.

Notation:
Assume arrival order is written as σ = (z1, . . . , zm).
Bipartite graph B = (Z ∪ Y ,E) with weights w : E → R≥0.

Induced subgraph on Z ′ ∪ Y ′ is given by bipartite graph
B′ = (Z ′ ∪ Y ′,E ′) with {y ′, z ′} ∈ E ′ ⇔ y ′ ∈ Y ′, z ′ ∈ Z ′ and
{y ′, z ′} ∈ E .

11 / 26

KRTV-algorithm

Theorem (Kesselheim-Radke-Tönnis-Vöcking, 2013)

There exists a
(1

e −
1
m

)
-approximation for the online bipartite matching

problem where nodes of one side of the bipartition arrive online in
uniform random order.

Generalization of (weight-maximization) secretary problem.
Corresponding to the case |Y | = 1.

Factor 1
e therefore also best possible.

As this is best possible for single secretary problem.

Notation:
Assume arrival order is written as σ = (z1, . . . , zm).
Bipartite graph B = (Z ∪ Y ,E) with weights w : E → R≥0.

Induced subgraph on Z ′ ∪ Y ′ is given by bipartite graph
B′ = (Z ′ ∪ Y ′,E ′) with {y ′, z ′} ∈ E ′ ⇔ y ′ ∈ Y ′, z ′ ∈ Z ′ and
{y ′, z ′} ∈ E .

11 / 26

KRTV-algorithm

Theorem (Kesselheim-Radke-Tönnis-Vöcking, 2013)

There exists a
(1

e −
1
m

)
-approximation for the online bipartite matching

problem where nodes of one side of the bipartition arrive online in
uniform random order.

Generalization of (weight-maximization) secretary problem.
Corresponding to the case |Y | = 1.

Factor 1
e therefore also best possible.

As this is best possible for single secretary problem.

Notation:
Assume arrival order is written as σ = (z1, . . . , zm).
Bipartite graph B = (Z ∪ Y ,E) with weights w : E → R≥0.

Induced subgraph on Z ′ ∪ Y ′ is given by bipartite graph
B′ = (Z ′ ∪ Y ′,E ′) with {y ′, z ′} ∈ E ′ ⇔ y ′ ∈ Y ′, z ′ ∈ Z ′ and
{y ′, z ′} ∈ E .

11 / 26

KRTV-algorithm

Theorem (Kesselheim-Radke-Tönnis-Vöcking, 2013)

There exists a
(1

e −
1
m

)
-approximation for the online bipartite matching

problem where nodes of one side of the bipartition arrive online in
uniform random order.

Generalization of (weight-maximization) secretary problem.
Corresponding to the case |Y | = 1.

Factor 1
e therefore also best possible.

As this is best possible for single secretary problem.

Notation:

Assume arrival order is written as σ = (z1, . . . , zm).
Bipartite graph B = (Z ∪ Y ,E) with weights w : E → R≥0.

Induced subgraph on Z ′ ∪ Y ′ is given by bipartite graph
B′ = (Z ′ ∪ Y ′,E ′) with {y ′, z ′} ∈ E ′ ⇔ y ′ ∈ Y ′, z ′ ∈ Z ′ and
{y ′, z ′} ∈ E .

11 / 26

KRTV-algorithm

Theorem (Kesselheim-Radke-Tönnis-Vöcking, 2013)

There exists a
(1

e −
1
m

)
-approximation for the online bipartite matching

problem where nodes of one side of the bipartition arrive online in
uniform random order.

Generalization of (weight-maximization) secretary problem.
Corresponding to the case |Y | = 1.

Factor 1
e therefore also best possible.

As this is best possible for single secretary problem.

Notation:
Assume arrival order is written as σ = (z1, . . . , zm).

Bipartite graph B = (Z ∪ Y ,E) with weights w : E → R≥0.
Induced subgraph on Z ′ ∪ Y ′ is given by bipartite graph
B′ = (Z ′ ∪ Y ′,E ′) with {y ′, z ′} ∈ E ′ ⇔ y ′ ∈ Y ′, z ′ ∈ Z ′ and
{y ′, z ′} ∈ E .

11 / 26

KRTV-algorithm

Theorem (Kesselheim-Radke-Tönnis-Vöcking, 2013)

There exists a
(1

e −
1
m

)
-approximation for the online bipartite matching

problem where nodes of one side of the bipartition arrive online in
uniform random order.

Generalization of (weight-maximization) secretary problem.
Corresponding to the case |Y | = 1.

Factor 1
e therefore also best possible.

As this is best possible for single secretary problem.

Notation:
Assume arrival order is written as σ = (z1, . . . , zm).
Bipartite graph B = (Z ∪ Y ,E) with weights w : E → R≥0.

Induced subgraph on Z ′ ∪ Y ′ is given by bipartite graph
B′ = (Z ′ ∪ Y ′,E ′) with {y ′, z ′} ∈ E ′ ⇔ y ′ ∈ Y ′, z ′ ∈ Z ′ and
{y ′, z ′} ∈ E .

11 / 26

KRTV-algorithm

Theorem (Kesselheim-Radke-Tönnis-Vöcking, 2013)

There exists a
(1

e −
1
m

)
-approximation for the online bipartite matching

problem where nodes of one side of the bipartition arrive online in
uniform random order.

Generalization of (weight-maximization) secretary problem.
Corresponding to the case |Y | = 1.

Factor 1
e therefore also best possible.

As this is best possible for single secretary problem.

Notation:
Assume arrival order is written as σ = (z1, . . . , zm).
Bipartite graph B = (Z ∪ Y ,E) with weights w : E → R≥0.

Induced subgraph on Z ′ ∪ Y ′ is given by bipartite graph
B′ = (Z ′ ∪ Y ′,E ′) with {y ′, z ′} ∈ E ′ ⇔ y ′ ∈ Y ′, z ′ ∈ Z ′ and
{y ′, z ′} ∈ E .

11 / 26

OPT(Z ′,Y ′) := w(M∗(Z ′,Y ′)) is weight of max. weight matching
M∗(Z ′,Y ′) on induced subgraph B′ = (Z ′ ∪ Y ′,E ′).

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order σ = (z1, . . . , zm)

Set M = ∅.
Phase I (Observation): For i = 1, . . . , bm

e c:
Do not match up zi .

Phase II (Selection): For i = bm
e c+ 1, . . . ,m:

Compute optimal (offline) matching M∗({z1, . . . , zi} ∪ Y).
If it holds that

zi is matched up in offline matching M∗ to some y ∈ Y and
y is unmatched in online matching M,

then set M = M ∪ {zi , y}.

12 / 26

OPT(Z ′,Y ′) := w(M∗(Z ′,Y ′)) is weight of max. weight matching
M∗(Z ′,Y ′) on induced subgraph B′ = (Z ′ ∪ Y ′,E ′).

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order σ = (z1, . . . , zm)

Set M = ∅.
Phase I (Observation): For i = 1, . . . , bm

e c:
Do not match up zi .

Phase II (Selection): For i = bm
e c+ 1, . . . ,m:

Compute optimal (offline) matching M∗({z1, . . . , zi} ∪ Y).
If it holds that

zi is matched up in offline matching M∗ to some y ∈ Y and
y is unmatched in online matching M,

then set M = M ∪ {zi , y}.

12 / 26

OPT(Z ′,Y ′) := w(M∗(Z ′,Y ′)) is weight of max. weight matching
M∗(Z ′,Y ′) on induced subgraph B′ = (Z ′ ∪ Y ′,E ′).

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order σ = (z1, . . . , zm)

Set M = ∅.
Phase I (Observation): For i = 1, . . . , bm

e c:
Do not match up zi .

Phase II (Selection): For i = bm
e c+ 1, . . . ,m:

Compute optimal (offline) matching M∗({z1, . . . , zi} ∪ Y).
If it holds that

zi is matched up in offline matching M∗ to some y ∈ Y and
y is unmatched in online matching M,

then set M = M ∪ {zi , y}.

12 / 26

OPT(Z ′,Y ′) := w(M∗(Z ′,Y ′)) is weight of max. weight matching
M∗(Z ′,Y ′) on induced subgraph B′ = (Z ′ ∪ Y ′,E ′).

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order σ = (z1, . . . , zm)

Set M = ∅.

Phase I (Observation): For i = 1, . . . , bm
e c:

Do not match up zi .
Phase II (Selection): For i = bm

e c+ 1, . . . ,m:
Compute optimal (offline) matching M∗({z1, . . . , zi} ∪ Y).
If it holds that

zi is matched up in offline matching M∗ to some y ∈ Y and
y is unmatched in online matching M,

then set M = M ∪ {zi , y}.

12 / 26

OPT(Z ′,Y ′) := w(M∗(Z ′,Y ′)) is weight of max. weight matching
M∗(Z ′,Y ′) on induced subgraph B′ = (Z ′ ∪ Y ′,E ′).

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order σ = (z1, . . . , zm)

Set M = ∅.
Phase I (Observation): For i = 1, . . . , bm

e c:

Do not match up zi .
Phase II (Selection): For i = bm

e c+ 1, . . . ,m:
Compute optimal (offline) matching M∗({z1, . . . , zi} ∪ Y).
If it holds that

zi is matched up in offline matching M∗ to some y ∈ Y and
y is unmatched in online matching M,

then set M = M ∪ {zi , y}.

12 / 26

OPT(Z ′,Y ′) := w(M∗(Z ′,Y ′)) is weight of max. weight matching
M∗(Z ′,Y ′) on induced subgraph B′ = (Z ′ ∪ Y ′,E ′).

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order σ = (z1, . . . , zm)

Set M = ∅.
Phase I (Observation): For i = 1, . . . , bm

e c:
Do not match up zi .

Phase II (Selection): For i = bm
e c+ 1, . . . ,m:

Compute optimal (offline) matching M∗({z1, . . . , zi} ∪ Y).
If it holds that

zi is matched up in offline matching M∗ to some y ∈ Y and
y is unmatched in online matching M,

then set M = M ∪ {zi , y}.

12 / 26

OPT(Z ′,Y ′) := w(M∗(Z ′,Y ′)) is weight of max. weight matching
M∗(Z ′,Y ′) on induced subgraph B′ = (Z ′ ∪ Y ′,E ′).

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order σ = (z1, . . . , zm)

Set M = ∅.
Phase I (Observation): For i = 1, . . . , bm

e c:
Do not match up zi .

Phase II (Selection): For i = bm
e c+ 1, . . . ,m:

Compute optimal (offline) matching M∗({z1, . . . , zi} ∪ Y).
If it holds that

zi is matched up in offline matching M∗ to some y ∈ Y and
y is unmatched in online matching M,

then set M = M ∪ {zi , y}.

12 / 26

OPT(Z ′,Y ′) := w(M∗(Z ′,Y ′)) is weight of max. weight matching
M∗(Z ′,Y ′) on induced subgraph B′ = (Z ′ ∪ Y ′,E ′).

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order σ = (z1, . . . , zm)

Set M = ∅.
Phase I (Observation): For i = 1, . . . , bm

e c:
Do not match up zi .

Phase II (Selection): For i = bm
e c+ 1, . . . ,m:

Compute optimal (offline) matching M∗({z1, . . . , zi} ∪ Y).

If it holds that
zi is matched up in offline matching M∗ to some y ∈ Y and
y is unmatched in online matching M,

then set M = M ∪ {zi , y}.

12 / 26

OPT(Z ′,Y ′) := w(M∗(Z ′,Y ′)) is weight of max. weight matching
M∗(Z ′,Y ′) on induced subgraph B′ = (Z ′ ∪ Y ′,E ′).

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order σ = (z1, . . . , zm)

Set M = ∅.
Phase I (Observation): For i = 1, . . . , bm

e c:
Do not match up zi .

Phase II (Selection): For i = bm
e c+ 1, . . . ,m:

Compute optimal (offline) matching M∗({z1, . . . , zi} ∪ Y).
If it holds that

zi is matched up in offline matching M∗ to some y ∈ Y and
y is unmatched in online matching M,

then set M = M ∪ {zi , y}.

12 / 26

OPT(Z ′,Y ′) := w(M∗(Z ′,Y ′)) is weight of max. weight matching
M∗(Z ′,Y ′) on induced subgraph B′ = (Z ′ ∪ Y ′,E ′).

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order σ = (z1, . . . , zm)

Set M = ∅.
Phase I (Observation): For i = 1, . . . , bm

e c:
Do not match up zi .

Phase II (Selection): For i = bm
e c+ 1, . . . ,m:

Compute optimal (offline) matching M∗({z1, . . . , zi} ∪ Y).
If it holds that

zi is matched up in offline matching M∗ to some y ∈ Y

and
y is unmatched in online matching M,

then set M = M ∪ {zi , y}.

12 / 26

OPT(Z ′,Y ′) := w(M∗(Z ′,Y ′)) is weight of max. weight matching
M∗(Z ′,Y ′) on induced subgraph B′ = (Z ′ ∪ Y ′,E ′).

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order σ = (z1, . . . , zm)

Set M = ∅.
Phase I (Observation): For i = 1, . . . , bm

e c:
Do not match up zi .

Phase II (Selection): For i = bm
e c+ 1, . . . ,m:

Compute optimal (offline) matching M∗({z1, . . . , zi} ∪ Y).
If it holds that

zi is matched up in offline matching M∗ to some y ∈ Y and
y is unmatched in online matching M,

then set M = M ∪ {zi , y}.

12 / 26

OPT(Z ′,Y ′) := w(M∗(Z ′,Y ′)) is weight of max. weight matching
M∗(Z ′,Y ′) on induced subgraph B′ = (Z ′ ∪ Y ′,E ′).

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order σ = (z1, . . . , zm)

Set M = ∅.
Phase I (Observation): For i = 1, . . . , bm

e c:
Do not match up zi .

Phase II (Selection): For i = bm
e c+ 1, . . . ,m:

Compute optimal (offline) matching M∗({z1, . . . , zi} ∪ Y).
If it holds that

zi is matched up in offline matching M∗ to some y ∈ Y and
y is unmatched in online matching M,

then set M = M ∪ {zi , y}.

12 / 26

ALGORITHM 1: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

4 5

13 / 26

ALGORITHM 2: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

4 5

13 / 26

ALGORITHM 3: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

z1

2
4

4 5

13 / 26

ALGORITHM 4: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

z1

2
44

4 5

13 / 26

ALGORITHM 5: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

z1

2
44

44 5

13 / 26

ALGORITHM 6: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

z1

2
4

4

z2

3

5

13 / 26

ALGORITHM 7: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

z1

2
4

4

z2

3

z2

32

5

13 / 26

ALGORITHM 8: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

z1

2
4

4

z2

3

z2

32

5

13 / 26

ALGORITHM 9: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

z1

2
4

4

z2

3

z3

2

5

13 / 26

ALGORITHM 10: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

z1

2
4

4

z2

3

z3

2
32

5

13 / 26

ALGORITHM 11: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

z1

2
4

4

z2

3

z3

2

z4

5 5
5

5

13 / 26

ALGORITHM 12: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

z1

2
4

4

z2

3

z3

2

z4

5 5
532

5

5

13 / 26

ALGORITHM 13: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

z1

2
4

4

z2

3

z3

2

z4

5 5
532

5

5

13 / 26

Online bipartite matching
KRTV-algorithm: Sketch of analysis

14 / 26

Analysis (sketch)

ALGORITHM 14: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

We will bound contribution Ai of (random) node i arriving in step i ≥ dm
e e:

(Notation i is used for multiple things to keep everything readable.)

For arrival order σ, we have

Ai =

{
wir if i gets matched up with r under σ,
0 otherwise.

Then

Eσ[Ai] = Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i]
× Pσ[Node i can be added to the online matching M].

15 / 26

Analysis (sketch)

ALGORITHM 15: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

We will bound contribution Ai of (random) node i arriving in step i ≥ dm
e e:

(Notation i is used for multiple things to keep everything readable.)

For arrival order σ, we have

Ai =

{
wir if i gets matched up with r under σ,
0 otherwise.

Then

Eσ[Ai] = Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i]
× Pσ[Node i can be added to the online matching M].

15 / 26

Analysis (sketch)

ALGORITHM 16: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

We will bound contribution Ai of (random) node i arriving in step i ≥ dm
e e:

(Notation i is used for multiple things to keep everything readable.)

For arrival order σ, we have

Ai =

{
wir if i gets matched up with r under σ,
0 otherwise.

Then

Eσ[Ai] = Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i]
× Pσ[Node i can be added to the online matching M].

15 / 26

Analysis (sketch)

ALGORITHM 17: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

We will bound contribution Ai of (random) node i arriving in step i ≥ dm
e e:

(Notation i is used for multiple things to keep everything readable.)

For arrival order σ, we have

Ai =

{
wir if i gets matched up with r under σ,
0 otherwise.

Then

Eσ[Ai] = Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i]
× Pσ[Node i can be added to the online matching M].

15 / 26

Analysis (sketch)

ALGORITHM 18: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

We will bound contribution Ai of (random) node i arriving in step i ≥ dm
e e:

(Notation i is used for multiple things to keep everything readable.)

For arrival order σ, we have

Ai =

{
wir if i gets matched up with r under σ,
0 otherwise.

Then

Eσ[Ai] = Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i]
× Pσ[Node i can be added to the online matching M].

15 / 26

Analysis (sketch)

ALGORITHM 19: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

We will bound contribution Ai of (random) node i arriving in step i ≥ dm
e e:

(Notation i is used for multiple things to keep everything readable.)

For arrival order σ, we have

Ai =

{
wir if i gets matched up with r under σ,
0 otherwise.

Then

Eσ[Ai] = Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i]
× Pσ[Node i can be added to the online matching M].

15 / 26

Two claims:

Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i] ≥
OPT

n

Pσ[Node i can be added to the online matching M] ≥ bn/ec
i − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The
(1

e −
1
m

)
-approximation then follows, because

Eσ[w(M)] =
m∑

i=bm/ec+1

Eσ[Ai] ≥
m∑

i=bm/ec+1

OPT
m
bm/ec
i − 1

=
bm/ec

m
·OPT ·

m∑
i=bm/ec+1

1
i − 1

≥
(

1
e
− 1

m

)
·OPT · 1

16 / 26

Two claims:

Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i] ≥
OPT

n

Pσ[Node i can be added to the online matching M] ≥ bn/ec
i − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The
(1

e −
1
m

)
-approximation then follows, because

Eσ[w(M)] =
m∑

i=bm/ec+1

Eσ[Ai] ≥
m∑

i=bm/ec+1

OPT
m
bm/ec
i − 1

=
bm/ec

m
·OPT ·

m∑
i=bm/ec+1

1
i − 1

≥
(

1
e
− 1

m

)
·OPT · 1

16 / 26

Two claims:

Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i] ≥
OPT

n

Pσ[Node i can be added to the online matching M] ≥ bn/ec
i − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The
(1

e −
1
m

)
-approximation then follows, because

Eσ[w(M)] =
m∑

i=bm/ec+1

Eσ[Ai] ≥
m∑

i=bm/ec+1

OPT
m
bm/ec
i − 1

=
bm/ec

m
·OPT ·

m∑
i=bm/ec+1

1
i − 1

≥
(

1
e
− 1

m

)
·OPT · 1

16 / 26

Two claims:

Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i] ≥
OPT

n

Pσ[Node i can be added to the online matching M] ≥ bn/ec
i − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The
(1

e −
1
m

)
-approximation then follows, because

Eσ[w(M)]

=
m∑

i=bm/ec+1

Eσ[Ai] ≥
m∑

i=bm/ec+1

OPT
m
bm/ec
i − 1

=
bm/ec

m
·OPT ·

m∑
i=bm/ec+1

1
i − 1

≥
(

1
e
− 1

m

)
·OPT · 1

16 / 26

Two claims:

Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i] ≥
OPT

n

Pσ[Node i can be added to the online matching M] ≥ bn/ec
i − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The
(1

e −
1
m

)
-approximation then follows, because

Eσ[w(M)] =
m∑

i=bm/ec+1

Eσ[Ai]

≥
m∑

i=bm/ec+1

OPT
m
bm/ec
i − 1

=
bm/ec

m
·OPT ·

m∑
i=bm/ec+1

1
i − 1

≥
(

1
e
− 1

m

)
·OPT · 1

16 / 26

Two claims:

Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i] ≥
OPT

n

Pσ[Node i can be added to the online matching M] ≥ bn/ec
i − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The
(1

e −
1
m

)
-approximation then follows, because

Eσ[w(M)] =
m∑

i=bm/ec+1

Eσ[Ai] ≥
m∑

i=bm/ec+1

OPT
m
bm/ec
i − 1

=
bm/ec

m
·OPT ·

m∑
i=bm/ec+1

1
i − 1

≥
(

1
e
− 1

m

)
·OPT · 1

16 / 26

Two claims:

Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i] ≥
OPT

n

Pσ[Node i can be added to the online matching M] ≥ bn/ec
i − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The
(1

e −
1
m

)
-approximation then follows, because

Eσ[w(M)] =
m∑

i=bm/ec+1

Eσ[Ai] ≥
m∑

i=bm/ec+1

OPT
m
bm/ec
i − 1

=
bm/ec

m
·OPT ·

m∑
i=bm/ec+1

1
i − 1

≥
(

1
e
− 1

m

)
·OPT · 1

16 / 26

Two claims:

Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i] ≥
OPT

n

Pσ[Node i can be added to the online matching M] ≥ bn/ec
i − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The
(1

e −
1
m

)
-approximation then follows, because

Eσ[w(M)] =
m∑

i=bm/ec+1

Eσ[Ai] ≥
m∑

i=bm/ec+1

OPT
m
bm/ec
i − 1

=
bm/ec

m
·OPT ·

m∑
i=bm/ec+1

1
i − 1

≥
(

1
e
− 1

m

)
·OPT · 1

16 / 26

Offline mechanism design (recap)

17 / 26

Recap offline setting

Unit-demand setting:

Set of items M = {1, . . . ,m}
Set of bidders N = {1, . . . ,n}
For every i ∈ N a private valuation function vi : M → R≥0.

Value vij = vi(j) is value of bidder i for item j .
For every i ∈ N a bid function bi : M → R≥0.

Bid bij = bi(j) is maximum amount i is willing to pay for item j .

The goal is to assign (at most) one item to every bidder.

Example
Non-existing edges have bij = 0.

Items

Bidders

1 2 3 4

1 2 3 4

1
3

3
1

5 6 bij = 1

18 / 26

Recap offline setting

Unit-demand setting:
Set of items M = {1, . . . ,m}

Set of bidders N = {1, . . . ,n}
For every i ∈ N a private valuation function vi : M → R≥0.

Value vij = vi(j) is value of bidder i for item j .
For every i ∈ N a bid function bi : M → R≥0.

Bid bij = bi(j) is maximum amount i is willing to pay for item j .

The goal is to assign (at most) one item to every bidder.

Example
Non-existing edges have bij = 0.

Items

Bidders

1 2 3 4

1 2 3 4

1
3

3
1

5 6 bij = 1

18 / 26

Recap offline setting

Unit-demand setting:
Set of items M = {1, . . . ,m}
Set of bidders N = {1, . . . ,n}

For every i ∈ N a private valuation function vi : M → R≥0.
Value vij = vi(j) is value of bidder i for item j .

For every i ∈ N a bid function bi : M → R≥0.
Bid bij = bi(j) is maximum amount i is willing to pay for item j .

The goal is to assign (at most) one item to every bidder.

Example
Non-existing edges have bij = 0.

Items

Bidders

1 2 3 4

1 2 3 4

1
3

3
1

5 6 bij = 1

18 / 26

Recap offline setting

Unit-demand setting:
Set of items M = {1, . . . ,m}
Set of bidders N = {1, . . . ,n}
For every i ∈ N a private valuation function vi : M → R≥0.

Value vij = vi(j) is value of bidder i for item j .
For every i ∈ N a bid function bi : M → R≥0.

Bid bij = bi(j) is maximum amount i is willing to pay for item j .

The goal is to assign (at most) one item to every bidder.

Example
Non-existing edges have bij = 0.

Items

Bidders

1 2 3 4

1 2 3 4

1
3

3
1

5 6 bij = 1

18 / 26

Recap offline setting

Unit-demand setting:
Set of items M = {1, . . . ,m}
Set of bidders N = {1, . . . ,n}
For every i ∈ N a private valuation function vi : M → R≥0.

Value vij = vi(j) is value of bidder i for item j .

For every i ∈ N a bid function bi : M → R≥0.
Bid bij = bi(j) is maximum amount i is willing to pay for item j .

The goal is to assign (at most) one item to every bidder.

Example
Non-existing edges have bij = 0.

Items

Bidders

1 2 3 4

1 2 3 4

1
3

3
1

5 6 bij = 1

18 / 26

Recap offline setting

Unit-demand setting:
Set of items M = {1, . . . ,m}
Set of bidders N = {1, . . . ,n}
For every i ∈ N a private valuation function vi : M → R≥0.

Value vij = vi(j) is value of bidder i for item j .
For every i ∈ N a bid function bi : M → R≥0.

Bid bij = bi(j) is maximum amount i is willing to pay for item j .

The goal is to assign (at most) one item to every bidder.

Example
Non-existing edges have bij = 0.

Items

Bidders

1 2 3 4

1 2 3 4

1
3

3
1

5 6 bij = 1

18 / 26

Recap offline setting

Unit-demand setting:
Set of items M = {1, . . . ,m}
Set of bidders N = {1, . . . ,n}
For every i ∈ N a private valuation function vi : M → R≥0.

Value vij = vi(j) is value of bidder i for item j .
For every i ∈ N a bid function bi : M → R≥0.

Bid bij = bi(j) is maximum amount i is willing to pay for item j .

The goal is to assign (at most) one item to every bidder.

Example
Non-existing edges have bij = 0.

Items

Bidders

1 2 3 4

1 2 3 4

1
3

3
1

5 6 bij = 1

18 / 26

Recap offline setting

Unit-demand setting:
Set of items M = {1, . . . ,m}
Set of bidders N = {1, . . . ,n}
For every i ∈ N a private valuation function vi : M → R≥0.

Value vij = vi(j) is value of bidder i for item j .
For every i ∈ N a bid function bi : M → R≥0.

Bid bij = bi(j) is maximum amount i is willing to pay for item j .

The goal is to assign (at most) one item to every bidder.

Example
Non-existing edges have bij = 0.

Items

Bidders

1 2 3 4

1 2 3 4

1
3

3
1

5 6 bij = 1

18 / 26

Recap offline setting

Unit-demand setting:
Set of items M = {1, . . . ,m}
Set of bidders N = {1, . . . ,n}
For every i ∈ N a private valuation function vi : M → R≥0.

Value vij = vi(j) is value of bidder i for item j .
For every i ∈ N a bid function bi : M → R≥0.

Bid bij = bi(j) is maximum amount i is willing to pay for item j .

The goal is to assign (at most) one item to every bidder.

Example
Non-existing edges have bij = 0.

Items

Bidders

1 2 3 4

1 2 3 4

1
3

3
1

5 6 bij = 1

18 / 26

Definition (Mechanism)
An (offline) mechanism (x ,p) is given by an allocation rule

x : Rn×m
≥0 → {0,1}n×m,

with
∑

i xij ≤ 1 and
∑

j xij ≤ 1, and pricing rule p : Rn×m
≥0 → Rm

≥0.

For bidder i , we have bid vector bi = (bi1, . . . ,bim).
With b = (b1, . . . ,bn), we have x = x(b) and p = p(b).

Utility of bidder i is

ui(b) =
{

vij − pj(b) if j is the item i receives,
0 if i does not get an item.

Desired properties:
Strategyproof: For every i ∈ N, bidding true valuations
vi = (vi1, . . . , vim) is dominant strategy.

It should hold that
ui(b−i , vi) ≥ ui(b−i ,b′i)

for all b−i = (b1, . . . ,bi−1,bi+1, . . . ,bn) and other bid vector b′i .
Also would like to have individual rationality, welfare maximization,
and computational tractability.

19 / 26

Definition (Mechanism)
An (offline) mechanism (x ,p) is given by an allocation rule

x : Rn×m
≥0 → {0,1}n×m,

with
∑

i xij ≤ 1 and
∑

j xij ≤ 1, and pricing rule p : Rn×m
≥0 → Rm

≥0.

For bidder i , we have bid vector bi = (bi1, . . . ,bim).

With b = (b1, . . . ,bn), we have x = x(b) and p = p(b).
Utility of bidder i is

ui(b) =
{

vij − pj(b) if j is the item i receives,
0 if i does not get an item.

Desired properties:
Strategyproof: For every i ∈ N, bidding true valuations
vi = (vi1, . . . , vim) is dominant strategy.

It should hold that
ui(b−i , vi) ≥ ui(b−i ,b′i)

for all b−i = (b1, . . . ,bi−1,bi+1, . . . ,bn) and other bid vector b′i .
Also would like to have individual rationality, welfare maximization,
and computational tractability.

19 / 26

Definition (Mechanism)
An (offline) mechanism (x ,p) is given by an allocation rule

x : Rn×m
≥0 → {0,1}n×m,

with
∑

i xij ≤ 1 and
∑

j xij ≤ 1, and pricing rule p : Rn×m
≥0 → Rm

≥0.

For bidder i , we have bid vector bi = (bi1, . . . ,bim).
With b = (b1, . . . ,bn), we have x = x(b) and p = p(b).

Utility of bidder i is

ui(b) =
{

vij − pj(b) if j is the item i receives,
0 if i does not get an item.

Desired properties:
Strategyproof: For every i ∈ N, bidding true valuations
vi = (vi1, . . . , vim) is dominant strategy.

It should hold that
ui(b−i , vi) ≥ ui(b−i ,b′i)

for all b−i = (b1, . . . ,bi−1,bi+1, . . . ,bn) and other bid vector b′i .
Also would like to have individual rationality, welfare maximization,
and computational tractability.

19 / 26

Definition (Mechanism)
An (offline) mechanism (x ,p) is given by an allocation rule

x : Rn×m
≥0 → {0,1}n×m,

with
∑

i xij ≤ 1 and
∑

j xij ≤ 1, and pricing rule p : Rn×m
≥0 → Rm

≥0.

For bidder i , we have bid vector bi = (bi1, . . . ,bim).
With b = (b1, . . . ,bn), we have x = x(b) and p = p(b).

Utility of bidder i is

ui(b) =
{

vij − pj(b) if j is the item i receives,
0 if i does not get an item.

Desired properties:
Strategyproof: For every i ∈ N, bidding true valuations
vi = (vi1, . . . , vim) is dominant strategy.

It should hold that
ui(b−i , vi) ≥ ui(b−i ,b′i)

for all b−i = (b1, . . . ,bi−1,bi+1, . . . ,bn) and other bid vector b′i .
Also would like to have individual rationality, welfare maximization,
and computational tractability.

19 / 26

Definition (Mechanism)
An (offline) mechanism (x ,p) is given by an allocation rule

x : Rn×m
≥0 → {0,1}n×m,

with
∑

i xij ≤ 1 and
∑

j xij ≤ 1, and pricing rule p : Rn×m
≥0 → Rm

≥0.

For bidder i , we have bid vector bi = (bi1, . . . ,bim).
With b = (b1, . . . ,bn), we have x = x(b) and p = p(b).

Utility of bidder i is

ui(b) =
{

vij − pj(b) if j is the item i receives,
0 if i does not get an item.

Desired properties:

Strategyproof: For every i ∈ N, bidding true valuations
vi = (vi1, . . . , vim) is dominant strategy.

It should hold that
ui(b−i , vi) ≥ ui(b−i ,b′i)

for all b−i = (b1, . . . ,bi−1,bi+1, . . . ,bn) and other bid vector b′i .
Also would like to have individual rationality, welfare maximization,
and computational tractability.

19 / 26

Definition (Mechanism)
An (offline) mechanism (x ,p) is given by an allocation rule

x : Rn×m
≥0 → {0,1}n×m,

with
∑

i xij ≤ 1 and
∑

j xij ≤ 1, and pricing rule p : Rn×m
≥0 → Rm

≥0.

For bidder i , we have bid vector bi = (bi1, . . . ,bim).
With b = (b1, . . . ,bn), we have x = x(b) and p = p(b).

Utility of bidder i is

ui(b) =
{

vij − pj(b) if j is the item i receives,
0 if i does not get an item.

Desired properties:
Strategyproof:

For every i ∈ N, bidding true valuations
vi = (vi1, . . . , vim) is dominant strategy.

It should hold that
ui(b−i , vi) ≥ ui(b−i ,b′i)

for all b−i = (b1, . . . ,bi−1,bi+1, . . . ,bn) and other bid vector b′i .
Also would like to have individual rationality, welfare maximization,
and computational tractability.

19 / 26

Definition (Mechanism)
An (offline) mechanism (x ,p) is given by an allocation rule

x : Rn×m
≥0 → {0,1}n×m,

with
∑

i xij ≤ 1 and
∑

j xij ≤ 1, and pricing rule p : Rn×m
≥0 → Rm

≥0.

For bidder i , we have bid vector bi = (bi1, . . . ,bim).
With b = (b1, . . . ,bn), we have x = x(b) and p = p(b).

Utility of bidder i is

ui(b) =
{

vij − pj(b) if j is the item i receives,
0 if i does not get an item.

Desired properties:
Strategyproof: For every i ∈ N, bidding true valuations
vi = (vi1, . . . , vim) is dominant strategy.

It should hold that
ui(b−i , vi) ≥ ui(b−i ,b′i)

for all b−i = (b1, . . . ,bi−1,bi+1, . . . ,bn) and other bid vector b′i .
Also would like to have individual rationality, welfare maximization,
and computational tractability.

19 / 26

Definition (Mechanism)
An (offline) mechanism (x ,p) is given by an allocation rule

x : Rn×m
≥0 → {0,1}n×m,

with
∑

i xij ≤ 1 and
∑

j xij ≤ 1, and pricing rule p : Rn×m
≥0 → Rm

≥0.

For bidder i , we have bid vector bi = (bi1, . . . ,bim).
With b = (b1, . . . ,bn), we have x = x(b) and p = p(b).

Utility of bidder i is

ui(b) =
{

vij − pj(b) if j is the item i receives,
0 if i does not get an item.

Desired properties:
Strategyproof: For every i ∈ N, bidding true valuations
vi = (vi1, . . . , vim) is dominant strategy.

It should hold that
ui(b−i , vi) ≥ ui(b−i ,b′i)

for all b−i = (b1, . . . ,bi−1,bi+1, . . . ,bn) and other bid vector b′i .

Also would like to have individual rationality, welfare maximization,
and computational tractability.

19 / 26

Definition (Mechanism)
An (offline) mechanism (x ,p) is given by an allocation rule

x : Rn×m
≥0 → {0,1}n×m,

with
∑

i xij ≤ 1 and
∑

j xij ≤ 1, and pricing rule p : Rn×m
≥0 → Rm

≥0.

For bidder i , we have bid vector bi = (bi1, . . . ,bim).
With b = (b1, . . . ,bn), we have x = x(b) and p = p(b).

Utility of bidder i is

ui(b) =
{

vij − pj(b) if j is the item i receives,
0 if i does not get an item.

Desired properties:
Strategyproof: For every i ∈ N, bidding true valuations
vi = (vi1, . . . , vim) is dominant strategy.

It should hold that
ui(b−i , vi) ≥ ui(b−i ,b′i)

for all b−i = (b1, . . . ,bi−1,bi+1, . . . ,bn) and other bid vector b′i .
Also would like to have individual rationality, welfare maximization,
and computational tractability.

19 / 26

Vickrey-Clarke-Groves (VCG) mechanism

Notation:
Bipartite graph B = (X ∪ Y ,E) with edge-weights w : E → R≥0.

OPT(X ′,Y ′) is sum of edge weights of max. weight bipartite
matching on induced subgraph B′ = (X ′ ∪ Y ′,E) where
X ′ ⊆ X ,Y ′ ⊆ Y .

VCG mechanism
Collect bid vectors b1, . . . ,bn from bidders.

Compute maximum weight bipartite matching L∗ (the allocation x)
If bidder i gets item j , i.e., {i , j} ∈ L∗(N,M), then charge her

pij(b) = OPT(N \ {i},M)−OPT(N \ {i},M \ {j}),

and otherwise nothing.

OPT(N \ {i},M)−OPT(N \ {i},M \ {j}) is welfare loss for other players by
assigning j to i .

20 / 26

Vickrey-Clarke-Groves (VCG) mechanism

Notation:

Bipartite graph B = (X ∪ Y ,E) with edge-weights w : E → R≥0.
OPT(X ′,Y ′) is sum of edge weights of max. weight bipartite
matching on induced subgraph B′ = (X ′ ∪ Y ′,E) where
X ′ ⊆ X ,Y ′ ⊆ Y .

VCG mechanism
Collect bid vectors b1, . . . ,bn from bidders.

Compute maximum weight bipartite matching L∗ (the allocation x)
If bidder i gets item j , i.e., {i , j} ∈ L∗(N,M), then charge her

pij(b) = OPT(N \ {i},M)−OPT(N \ {i},M \ {j}),

and otherwise nothing.

OPT(N \ {i},M)−OPT(N \ {i},M \ {j}) is welfare loss for other players by
assigning j to i .

20 / 26

Vickrey-Clarke-Groves (VCG) mechanism

Notation:
Bipartite graph B = (X ∪ Y ,E) with edge-weights w : E → R≥0.

OPT(X ′,Y ′) is sum of edge weights of max. weight bipartite
matching on induced subgraph B′ = (X ′ ∪ Y ′,E) where
X ′ ⊆ X ,Y ′ ⊆ Y .

VCG mechanism
Collect bid vectors b1, . . . ,bn from bidders.

Compute maximum weight bipartite matching L∗ (the allocation x)
If bidder i gets item j , i.e., {i , j} ∈ L∗(N,M), then charge her

pij(b) = OPT(N \ {i},M)−OPT(N \ {i},M \ {j}),

and otherwise nothing.

OPT(N \ {i},M)−OPT(N \ {i},M \ {j}) is welfare loss for other players by
assigning j to i .

20 / 26

Vickrey-Clarke-Groves (VCG) mechanism

Notation:
Bipartite graph B = (X ∪ Y ,E) with edge-weights w : E → R≥0.

OPT(X ′,Y ′) is sum of edge weights of max. weight bipartite
matching on induced subgraph B′ = (X ′ ∪ Y ′,E) where
X ′ ⊆ X ,Y ′ ⊆ Y .

VCG mechanism
Collect bid vectors b1, . . . ,bn from bidders.

Compute maximum weight bipartite matching L∗ (the allocation x)
If bidder i gets item j , i.e., {i , j} ∈ L∗(N,M), then charge her

pij(b) = OPT(N \ {i},M)−OPT(N \ {i},M \ {j}),

and otherwise nothing.

OPT(N \ {i},M)−OPT(N \ {i},M \ {j}) is welfare loss for other players by
assigning j to i .

20 / 26

Vickrey-Clarke-Groves (VCG) mechanism

Notation:
Bipartite graph B = (X ∪ Y ,E) with edge-weights w : E → R≥0.

OPT(X ′,Y ′) is sum of edge weights of max. weight bipartite
matching on induced subgraph B′ = (X ′ ∪ Y ′,E) where
X ′ ⊆ X ,Y ′ ⊆ Y .

VCG mechanism

Collect bid vectors b1, . . . ,bn from bidders.

Compute maximum weight bipartite matching L∗ (the allocation x)
If bidder i gets item j , i.e., {i , j} ∈ L∗(N,M), then charge her

pij(b) = OPT(N \ {i},M)−OPT(N \ {i},M \ {j}),

and otherwise nothing.

OPT(N \ {i},M)−OPT(N \ {i},M \ {j}) is welfare loss for other players by
assigning j to i .

20 / 26

Vickrey-Clarke-Groves (VCG) mechanism

Notation:
Bipartite graph B = (X ∪ Y ,E) with edge-weights w : E → R≥0.

OPT(X ′,Y ′) is sum of edge weights of max. weight bipartite
matching on induced subgraph B′ = (X ′ ∪ Y ′,E) where
X ′ ⊆ X ,Y ′ ⊆ Y .

VCG mechanism
Collect bid vectors b1, . . . ,bn from bidders.

Compute maximum weight bipartite matching L∗ (the allocation x)
If bidder i gets item j , i.e., {i , j} ∈ L∗(N,M), then charge her

pij(b) = OPT(N \ {i},M)−OPT(N \ {i},M \ {j}),

and otherwise nothing.

OPT(N \ {i},M)−OPT(N \ {i},M \ {j}) is welfare loss for other players by
assigning j to i .

20 / 26

Vickrey-Clarke-Groves (VCG) mechanism

Notation:
Bipartite graph B = (X ∪ Y ,E) with edge-weights w : E → R≥0.

OPT(X ′,Y ′) is sum of edge weights of max. weight bipartite
matching on induced subgraph B′ = (X ′ ∪ Y ′,E) where
X ′ ⊆ X ,Y ′ ⊆ Y .

VCG mechanism
Collect bid vectors b1, . . . ,bn from bidders.

Compute maximum weight bipartite matching L∗ (the allocation x)

If bidder i gets item j , i.e., {i , j} ∈ L∗(N,M), then charge her

pij(b) = OPT(N \ {i},M)−OPT(N \ {i},M \ {j}),

and otherwise nothing.

OPT(N \ {i},M)−OPT(N \ {i},M \ {j}) is welfare loss for other players by
assigning j to i .

20 / 26

Vickrey-Clarke-Groves (VCG) mechanism

Notation:
Bipartite graph B = (X ∪ Y ,E) with edge-weights w : E → R≥0.

OPT(X ′,Y ′) is sum of edge weights of max. weight bipartite
matching on induced subgraph B′ = (X ′ ∪ Y ′,E) where
X ′ ⊆ X ,Y ′ ⊆ Y .

VCG mechanism
Collect bid vectors b1, . . . ,bn from bidders.

Compute maximum weight bipartite matching L∗ (the allocation x)
If bidder i gets item j , i.e., {i , j} ∈ L∗(N,M),

then charge her

pij(b) = OPT(N \ {i},M)−OPT(N \ {i},M \ {j}),

and otherwise nothing.

OPT(N \ {i},M)−OPT(N \ {i},M \ {j}) is welfare loss for other players by
assigning j to i .

20 / 26

Vickrey-Clarke-Groves (VCG) mechanism

Notation:
Bipartite graph B = (X ∪ Y ,E) with edge-weights w : E → R≥0.

OPT(X ′,Y ′) is sum of edge weights of max. weight bipartite
matching on induced subgraph B′ = (X ′ ∪ Y ′,E) where
X ′ ⊆ X ,Y ′ ⊆ Y .

VCG mechanism
Collect bid vectors b1, . . . ,bn from bidders.

Compute maximum weight bipartite matching L∗ (the allocation x)
If bidder i gets item j , i.e., {i , j} ∈ L∗(N,M), then charge her

pij(b) = OPT(N \ {i},M)−OPT(N \ {i},M \ {j}),

and otherwise nothing.

OPT(N \ {i},M)−OPT(N \ {i},M \ {j}) is welfare loss for other players by
assigning j to i .

20 / 26

Vickrey-Clarke-Groves (VCG) mechanism

Notation:
Bipartite graph B = (X ∪ Y ,E) with edge-weights w : E → R≥0.

OPT(X ′,Y ′) is sum of edge weights of max. weight bipartite
matching on induced subgraph B′ = (X ′ ∪ Y ′,E) where
X ′ ⊆ X ,Y ′ ⊆ Y .

VCG mechanism
Collect bid vectors b1, . . . ,bn from bidders.

Compute maximum weight bipartite matching L∗ (the allocation x)
If bidder i gets item j , i.e., {i , j} ∈ L∗(N,M), then charge her

pij(b) = OPT(N \ {i},M)−OPT(N \ {i},M \ {j}),

and otherwise nothing.

OPT(N \ {i},M)−OPT(N \ {i},M \ {j}) is welfare loss for other players by
assigning j to i .

20 / 26

Vickrey-Clarke-Groves (VCG) mechanism

Notation:
Bipartite graph B = (X ∪ Y ,E) with edge-weights w : E → R≥0.

OPT(X ′,Y ′) is sum of edge weights of max. weight bipartite
matching on induced subgraph B′ = (X ′ ∪ Y ′,E) where
X ′ ⊆ X ,Y ′ ⊆ Y .

VCG mechanism
Collect bid vectors b1, . . . ,bn from bidders.

Compute maximum weight bipartite matching L∗ (the allocation x)
If bidder i gets item j , i.e., {i , j} ∈ L∗(N,M), then charge her

pij(b) = OPT(N \ {i},M)−OPT(N \ {i},M \ {j}),

and otherwise nothing.

OPT(N \ {i},M)−OPT(N \ {i},M \ {j}) is welfare loss for other players by
assigning j to i .

20 / 26

Online bipartite matching
Strategyproof online mechanism

21 / 26

Selling multiple items online

Setting:
Bidder has valuation vector vi for items in M.
Whenever bidder arrives online, it submits bid vector bi .

Bidders arrive one by one in unknown order σ = (σ(1), . . . , σ(n)).

Online mechanism (informal)
For k = 1, . . . ,n, upon arrival of bidder σ(k):

Bid vector bk is revealed.
Decide (irrevocably) whether to assign an item to σ(k).

If yes, charge price p(bσ(1), . . . ,bσ(k)).

Utility of bidder i , when σ(k) = i , is given by

ui,k (bσ(1), . . . ,bσ(k)) =
{

vij − p(bσ(1), . . . ,bσ(k)) if i gets item j ,
0 otherwise.

22 / 26

Selling multiple items online

Setting:

Bidder has valuation vector vi for items in M.
Whenever bidder arrives online, it submits bid vector bi .

Bidders arrive one by one in unknown order σ = (σ(1), . . . , σ(n)).

Online mechanism (informal)
For k = 1, . . . ,n, upon arrival of bidder σ(k):

Bid vector bk is revealed.
Decide (irrevocably) whether to assign an item to σ(k).

If yes, charge price p(bσ(1), . . . ,bσ(k)).

Utility of bidder i , when σ(k) = i , is given by

ui,k (bσ(1), . . . ,bσ(k)) =
{

vij − p(bσ(1), . . . ,bσ(k)) if i gets item j ,
0 otherwise.

22 / 26

Selling multiple items online

Setting:
Bidder has valuation vector vi for items in M.

Whenever bidder arrives online, it submits bid vector bi .

Bidders arrive one by one in unknown order σ = (σ(1), . . . , σ(n)).

Online mechanism (informal)
For k = 1, . . . ,n, upon arrival of bidder σ(k):

Bid vector bk is revealed.
Decide (irrevocably) whether to assign an item to σ(k).

If yes, charge price p(bσ(1), . . . ,bσ(k)).

Utility of bidder i , when σ(k) = i , is given by

ui,k (bσ(1), . . . ,bσ(k)) =
{

vij − p(bσ(1), . . . ,bσ(k)) if i gets item j ,
0 otherwise.

22 / 26

Selling multiple items online

Setting:
Bidder has valuation vector vi for items in M.
Whenever bidder arrives online, it submits bid vector bi .

Bidders arrive one by one in unknown order σ = (σ(1), . . . , σ(n)).

Online mechanism (informal)
For k = 1, . . . ,n, upon arrival of bidder σ(k):

Bid vector bk is revealed.
Decide (irrevocably) whether to assign an item to σ(k).

If yes, charge price p(bσ(1), . . . ,bσ(k)).

Utility of bidder i , when σ(k) = i , is given by

ui,k (bσ(1), . . . ,bσ(k)) =
{

vij − p(bσ(1), . . . ,bσ(k)) if i gets item j ,
0 otherwise.

22 / 26

Selling multiple items online

Setting:
Bidder has valuation vector vi for items in M.
Whenever bidder arrives online, it submits bid vector bi .

Bidders arrive one by one in unknown order σ = (σ(1), . . . , σ(n)).

Online mechanism (informal)
For k = 1, . . . ,n, upon arrival of bidder σ(k):

Bid vector bk is revealed.
Decide (irrevocably) whether to assign an item to σ(k).

If yes, charge price p(bσ(1), . . . ,bσ(k)).

Utility of bidder i , when σ(k) = i , is given by

ui,k (bσ(1), . . . ,bσ(k)) =
{

vij − p(bσ(1), . . . ,bσ(k)) if i gets item j ,
0 otherwise.

22 / 26

Selling multiple items online

Setting:
Bidder has valuation vector vi for items in M.
Whenever bidder arrives online, it submits bid vector bi .

Bidders arrive one by one in unknown order σ = (σ(1), . . . , σ(n)).

Online mechanism (informal)

For k = 1, . . . ,n, upon arrival of bidder σ(k):
Bid vector bk is revealed.
Decide (irrevocably) whether to assign an item to σ(k).

If yes, charge price p(bσ(1), . . . ,bσ(k)).

Utility of bidder i , when σ(k) = i , is given by

ui,k (bσ(1), . . . ,bσ(k)) =
{

vij − p(bσ(1), . . . ,bσ(k)) if i gets item j ,
0 otherwise.

22 / 26

Selling multiple items online

Setting:
Bidder has valuation vector vi for items in M.
Whenever bidder arrives online, it submits bid vector bi .

Bidders arrive one by one in unknown order σ = (σ(1), . . . , σ(n)).

Online mechanism (informal)
For k = 1, . . . ,n, upon arrival of bidder σ(k):

Bid vector bk is revealed.
Decide (irrevocably) whether to assign an item to σ(k).

If yes, charge price p(bσ(1), . . . ,bσ(k)).

Utility of bidder i , when σ(k) = i , is given by

ui,k (bσ(1), . . . ,bσ(k)) =
{

vij − p(bσ(1), . . . ,bσ(k)) if i gets item j ,
0 otherwise.

22 / 26

Selling multiple items online

Setting:
Bidder has valuation vector vi for items in M.
Whenever bidder arrives online, it submits bid vector bi .

Bidders arrive one by one in unknown order σ = (σ(1), . . . , σ(n)).

Online mechanism (informal)
For k = 1, . . . ,n, upon arrival of bidder σ(k):

Bid vector bk is revealed.

Decide (irrevocably) whether to assign an item to σ(k).
If yes, charge price p(bσ(1), . . . ,bσ(k)).

Utility of bidder i , when σ(k) = i , is given by

ui,k (bσ(1), . . . ,bσ(k)) =
{

vij − p(bσ(1), . . . ,bσ(k)) if i gets item j ,
0 otherwise.

22 / 26

Selling multiple items online

Setting:
Bidder has valuation vector vi for items in M.
Whenever bidder arrives online, it submits bid vector bi .

Bidders arrive one by one in unknown order σ = (σ(1), . . . , σ(n)).

Online mechanism (informal)
For k = 1, . . . ,n, upon arrival of bidder σ(k):

Bid vector bk is revealed.
Decide (irrevocably) whether to assign an item to σ(k).

If yes, charge price p(bσ(1), . . . ,bσ(k)).

Utility of bidder i , when σ(k) = i , is given by

ui,k (bσ(1), . . . ,bσ(k)) =
{

vij − p(bσ(1), . . . ,bσ(k)) if i gets item j ,
0 otherwise.

22 / 26

Selling multiple items online

Setting:
Bidder has valuation vector vi for items in M.
Whenever bidder arrives online, it submits bid vector bi .

Bidders arrive one by one in unknown order σ = (σ(1), . . . , σ(n)).

Online mechanism (informal)
For k = 1, . . . ,n, upon arrival of bidder σ(k):

Bid vector bk is revealed.
Decide (irrevocably) whether to assign an item to σ(k).

If yes, charge price p(bσ(1), . . . ,bσ(k)).

Utility of bidder i , when σ(k) = i , is given by

ui,k (bσ(1), . . . ,bσ(k)) =
{

vij − p(bσ(1), . . . ,bσ(k)) if i gets item j ,
0 otherwise.

22 / 26

Selling multiple items online

Setting:
Bidder has valuation vector vi for items in M.
Whenever bidder arrives online, it submits bid vector bi .

Bidders arrive one by one in unknown order σ = (σ(1), . . . , σ(n)).

Online mechanism (informal)
For k = 1, . . . ,n, upon arrival of bidder σ(k):

Bid vector bk is revealed.
Decide (irrevocably) whether to assign an item to σ(k).

If yes, charge price p(bσ(1), . . . ,bσ(k)).

Utility of bidder i , when σ(k) = i , is given by

ui,k (bσ(1), . . . ,bσ(k)) =
{

vij − p(bσ(1), . . . ,bσ(k)) if i gets item j ,
0 otherwise.

22 / 26

Requirements for (online) deterministic mechanism (x ,p):

Takes as input deterministic ordering (y1, . . . , yn) and bid vectors b1, . . . ,bn

for the item.

Specifies for every k = 1, . . . ,n whether to allocate an item to yk .
The {0,1}-variable xk` for whether or not to allocate item ` to
bidder yk (and price pk , if yes) is function of:

Total number of bidders n.
Bidders y1, . . . , yk .
Bids b1, . . . ,bk .
The order (y1, . . . , yk).

As before,
∑

k xk` ≤ 1 and
∑

` xk` ≤ 1.

Mechanism is truthful, if, upon arrival, reporting truthful bids is
optimal (assuming bidders have full knowledge about (x ,p) and
bidders arrived so far), for every possible arrival order σ.

23 / 26

Requirements for (online) deterministic mechanism (x ,p):
Takes as input deterministic ordering (y1, . . . , yn) and bid vectors b1, . . . ,bn

for the item.

Specifies for every k = 1, . . . ,n whether to allocate an item to yk .
The {0,1}-variable xk` for whether or not to allocate item ` to
bidder yk (and price pk , if yes) is function of:

Total number of bidders n.
Bidders y1, . . . , yk .
Bids b1, . . . ,bk .
The order (y1, . . . , yk).

As before,
∑

k xk` ≤ 1 and
∑

` xk` ≤ 1.

Mechanism is truthful, if, upon arrival, reporting truthful bids is
optimal (assuming bidders have full knowledge about (x ,p) and
bidders arrived so far), for every possible arrival order σ.

23 / 26

Requirements for (online) deterministic mechanism (x ,p):
Takes as input deterministic ordering (y1, . . . , yn) and bid vectors b1, . . . ,bn

for the item.

Specifies for every k = 1, . . . ,n whether to allocate an item to yk .

The {0,1}-variable xk` for whether or not to allocate item ` to
bidder yk (and price pk , if yes) is function of:

Total number of bidders n.
Bidders y1, . . . , yk .
Bids b1, . . . ,bk .
The order (y1, . . . , yk).

As before,
∑

k xk` ≤ 1 and
∑

` xk` ≤ 1.

Mechanism is truthful, if, upon arrival, reporting truthful bids is
optimal (assuming bidders have full knowledge about (x ,p) and
bidders arrived so far), for every possible arrival order σ.

23 / 26

Requirements for (online) deterministic mechanism (x ,p):
Takes as input deterministic ordering (y1, . . . , yn) and bid vectors b1, . . . ,bn

for the item.

Specifies for every k = 1, . . . ,n whether to allocate an item to yk .
The {0,1}-variable xk` for whether or not to allocate item ` to
bidder yk (and price pk , if yes) is function of:

Total number of bidders n.
Bidders y1, . . . , yk .
Bids b1, . . . ,bk .
The order (y1, . . . , yk).

As before,
∑

k xk` ≤ 1 and
∑

` xk` ≤ 1.

Mechanism is truthful, if, upon arrival, reporting truthful bids is
optimal (assuming bidders have full knowledge about (x ,p) and
bidders arrived so far), for every possible arrival order σ.

23 / 26

Requirements for (online) deterministic mechanism (x ,p):
Takes as input deterministic ordering (y1, . . . , yn) and bid vectors b1, . . . ,bn

for the item.

Specifies for every k = 1, . . . ,n whether to allocate an item to yk .
The {0,1}-variable xk` for whether or not to allocate item ` to
bidder yk (and price pk , if yes) is function of:

Total number of bidders n.

Bidders y1, . . . , yk .
Bids b1, . . . ,bk .
The order (y1, . . . , yk).

As before,
∑

k xk` ≤ 1 and
∑

` xk` ≤ 1.

Mechanism is truthful, if, upon arrival, reporting truthful bids is
optimal (assuming bidders have full knowledge about (x ,p) and
bidders arrived so far), for every possible arrival order σ.

23 / 26

Requirements for (online) deterministic mechanism (x ,p):
Takes as input deterministic ordering (y1, . . . , yn) and bid vectors b1, . . . ,bn

for the item.

Specifies for every k = 1, . . . ,n whether to allocate an item to yk .
The {0,1}-variable xk` for whether or not to allocate item ` to
bidder yk (and price pk , if yes) is function of:

Total number of bidders n.
Bidders y1, . . . , yk .

Bids b1, . . . ,bk .
The order (y1, . . . , yk).

As before,
∑

k xk` ≤ 1 and
∑

` xk` ≤ 1.

Mechanism is truthful, if, upon arrival, reporting truthful bids is
optimal (assuming bidders have full knowledge about (x ,p) and
bidders arrived so far), for every possible arrival order σ.

23 / 26

Requirements for (online) deterministic mechanism (x ,p):
Takes as input deterministic ordering (y1, . . . , yn) and bid vectors b1, . . . ,bn

for the item.

Specifies for every k = 1, . . . ,n whether to allocate an item to yk .
The {0,1}-variable xk` for whether or not to allocate item ` to
bidder yk (and price pk , if yes) is function of:

Total number of bidders n.
Bidders y1, . . . , yk .
Bids b1, . . . ,bk .

The order (y1, . . . , yk).

As before,
∑

k xk` ≤ 1 and
∑

` xk` ≤ 1.

Mechanism is truthful, if, upon arrival, reporting truthful bids is
optimal (assuming bidders have full knowledge about (x ,p) and
bidders arrived so far), for every possible arrival order σ.

23 / 26

Requirements for (online) deterministic mechanism (x ,p):
Takes as input deterministic ordering (y1, . . . , yn) and bid vectors b1, . . . ,bn

for the item.

Specifies for every k = 1, . . . ,n whether to allocate an item to yk .
The {0,1}-variable xk` for whether or not to allocate item ` to
bidder yk (and price pk , if yes) is function of:

Total number of bidders n.
Bidders y1, . . . , yk .
Bids b1, . . . ,bk .
The order (y1, . . . , yk).

As before,
∑

k xk` ≤ 1 and
∑

` xk` ≤ 1.

Mechanism is truthful, if, upon arrival, reporting truthful bids is
optimal (assuming bidders have full knowledge about (x ,p) and
bidders arrived so far), for every possible arrival order σ.

23 / 26

Requirements for (online) deterministic mechanism (x ,p):
Takes as input deterministic ordering (y1, . . . , yn) and bid vectors b1, . . . ,bn

for the item.

Specifies for every k = 1, . . . ,n whether to allocate an item to yk .
The {0,1}-variable xk` for whether or not to allocate item ` to
bidder yk (and price pk , if yes) is function of:

Total number of bidders n.
Bidders y1, . . . , yk .
Bids b1, . . . ,bk .
The order (y1, . . . , yk).

As before,
∑

k xk` ≤ 1 and
∑

` xk` ≤ 1.

Mechanism is truthful, if, upon arrival, reporting truthful bids is
optimal (assuming bidders have full knowledge about (x ,p) and
bidders arrived so far), for every possible arrival order σ.

23 / 26

Requirements for (online) deterministic mechanism (x ,p):
Takes as input deterministic ordering (y1, . . . , yn) and bid vectors b1, . . . ,bn

for the item.

Specifies for every k = 1, . . . ,n whether to allocate an item to yk .
The {0,1}-variable xk` for whether or not to allocate item ` to
bidder yk (and price pk , if yes) is function of:

Total number of bidders n.
Bidders y1, . . . , yk .
Bids b1, . . . ,bk .
The order (y1, . . . , yk).

As before,
∑

k xk` ≤ 1 and
∑

` xk` ≤ 1.

Mechanism is truthful, if, upon arrival, reporting truthful bids is
optimal (assuming bidders have full knowledge about (x ,p) and
bidders arrived so far), for every possible arrival order σ.

23 / 26

An observation regarding the KRTV-algorithm

ALGORITHM 20: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Online process

y1 y2 y3

24 / 26

An observation regarding the KRTV-algorithm

ALGORITHM 21: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Online process

y1 y2 y3

24 / 26

An observation regarding the KRTV-algorithm

ALGORITHM 22: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Online process

y1 y2 y3

z1

2
4

24 / 26

An observation regarding the KRTV-algorithm

ALGORITHM 23: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Online process

y1 y2 y3

z1

2
44

24 / 26

An observation regarding the KRTV-algorithm

ALGORITHM 24: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Online process

y1 y2 y3

z1

2
44

24 / 26

An observation regarding the KRTV-algorithm

ALGORITHM 25: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Online process

y1 y2 y3

z1

2
4

z2

3
14

24 / 26

An observation regarding the KRTV-algorithm

ALGORITHM 26: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Online process

y1 y2 y3

z1

2
4

z2

3
14

z2

24 / 26

An observation regarding the KRTV-algorithm

ALGORITHM 27: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Online process

y1 y2 y3

z1

2
4

z2

3
14

z2

Bidder might have incentive to misreport true valuations, as, in the
offline matching M∗i she is matched up with item already assigned
to an earlier bidder.

24 / 26

Strategyproof online mechanism

Theorem (Reiffenhäuser, 2019)

There exists a strategyproof 1
e -approximation for the online bipartite

matching problem with uniform random arrivals of the bidders.

Mechanism keeps track of items J ⊆ M not yet allocated.
Upon arrival of bidder zi , it computes VCG-price for every
unallocated item in J:

pj(k) = OPT({z1, . . . , zi−1}, J)−OPT({z1, . . . , zi−1}, J \ {j}).

If there exists at least one item j ∈ J for which bij ≥ pj(k), then we
assign an item

j∗ = argmax{bij − pj(k) : j ∈ J}

to bidder i , and set J = J \ {j∗}.
We charge price pj∗(k) to bidder i .

25 / 26

Strategyproof online mechanism

Theorem (Reiffenhäuser, 2019)

There exists a strategyproof 1
e -approximation for the online bipartite

matching problem with uniform random arrivals of the bidders.

Mechanism keeps track of items J ⊆ M not yet allocated.
Upon arrival of bidder zi , it computes VCG-price for every
unallocated item in J:

pj(k) = OPT({z1, . . . , zi−1}, J)−OPT({z1, . . . , zi−1}, J \ {j}).

If there exists at least one item j ∈ J for which bij ≥ pj(k), then we
assign an item

j∗ = argmax{bij − pj(k) : j ∈ J}

to bidder i , and set J = J \ {j∗}.
We charge price pj∗(k) to bidder i .

25 / 26

Strategyproof online mechanism

Theorem (Reiffenhäuser, 2019)

There exists a strategyproof 1
e -approximation for the online bipartite

matching problem with uniform random arrivals of the bidders.

Mechanism keeps track of items J ⊆ M not yet allocated.

Upon arrival of bidder zi , it computes VCG-price for every
unallocated item in J:

pj(k) = OPT({z1, . . . , zi−1}, J)−OPT({z1, . . . , zi−1}, J \ {j}).

If there exists at least one item j ∈ J for which bij ≥ pj(k), then we
assign an item

j∗ = argmax{bij − pj(k) : j ∈ J}

to bidder i , and set J = J \ {j∗}.
We charge price pj∗(k) to bidder i .

25 / 26

Strategyproof online mechanism

Theorem (Reiffenhäuser, 2019)

There exists a strategyproof 1
e -approximation for the online bipartite

matching problem with uniform random arrivals of the bidders.

Mechanism keeps track of items J ⊆ M not yet allocated.
Upon arrival of bidder zi , it computes VCG-price for every
unallocated item in J:

pj(k) = OPT({z1, . . . , zi−1}, J)−OPT({z1, . . . , zi−1}, J \ {j}).

If there exists at least one item j ∈ J for which bij ≥ pj(k), then we
assign an item

j∗ = argmax{bij − pj(k) : j ∈ J}

to bidder i , and set J = J \ {j∗}.
We charge price pj∗(k) to bidder i .

25 / 26

Strategyproof online mechanism

Theorem (Reiffenhäuser, 2019)

There exists a strategyproof 1
e -approximation for the online bipartite

matching problem with uniform random arrivals of the bidders.

Mechanism keeps track of items J ⊆ M not yet allocated.
Upon arrival of bidder zi , it computes VCG-price for every
unallocated item in J:

pj(k) = OPT({z1, . . . , zi−1}, J)−OPT({z1, . . . , zi−1}, J \ {j}).

If there exists at least one item j ∈ J for which bij ≥ pj(k), then we
assign an item

j∗ = argmax{bij − pj(k) : j ∈ J}

to bidder i , and set J = J \ {j∗}.

We charge price pj∗(k) to bidder i .

25 / 26

Strategyproof online mechanism

Theorem (Reiffenhäuser, 2019)

There exists a strategyproof 1
e -approximation for the online bipartite

matching problem with uniform random arrivals of the bidders.

Mechanism keeps track of items J ⊆ M not yet allocated.
Upon arrival of bidder zi , it computes VCG-price for every
unallocated item in J:

pj(k) = OPT({z1, . . . , zi−1}, J)−OPT({z1, . . . , zi−1}, J \ {j}).

If there exists at least one item j ∈ J for which bij ≥ pj(k), then we
assign an item

j∗ = argmax{bij − pj(k) : j ∈ J}

to bidder i , and set J = J \ {j∗}.
We charge price pj∗(k) to bidder i .

25 / 26

Strategyproof online mechanism

Theorem (Reiffenhäuser, 2019)

There exists a strategyproof 1
e -approximation for the online bipartite

matching problem with uniform random arrivals of the bidders.

Although the algorithm is still relatively simple to describe,
analysis is much harder.

26 / 26

Strategyproof online mechanism

Theorem (Reiffenhäuser, 2019)

There exists a strategyproof 1
e -approximation for the online bipartite

matching problem with uniform random arrivals of the bidders.

Although the algorithm is still relatively simple to describe,
analysis is much harder.

26 / 26

Strategyproof online mechanism

Theorem (Reiffenhäuser, 2019)

There exists a strategyproof 1
e -approximation for the online bipartite

matching problem with uniform random arrivals of the bidders.

Although the algorithm is still relatively simple to describe,
analysis is much harder.

26 / 26

