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Offline bipartite matching

Given bipartite graph B = (Y ∪ Z ,E) with E = {{y , z} : y ∈ Y , z ∈ Z}.

Edge weight function w : E → R≥0.

Example

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
1

5 6
1

Matching M ⊆ E is set of edges where every node is incident to at
most one edge from M: |{e ∈ M : e ∩ {v}}| ≤ 1 ∀v ∈ Y ∪ Z .

Weight of matching M is given by

w(M) =
∑
e∈M

we.

Goal: Compute maximum weight matching in bipartite graph B.
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Goal: Compute maximum weight matching in bipartite graph B.

Many algorithms known for solving this in polynomial time, e.g.:
Linear programming.
Hungarian method.

The important thing to remember is the following.

Theorem (Offline bipartite matching)
There is a poly(n,m)-time algorithm for solving the (offline) maximum
weight bipartite matching problem, where n = |Z | and m = |Y |.

Parameters n and m are used interchangeably.
You may assume that m = n (essentially w.l.o.g.).
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Vertex arrival model

We consider the following (semi)-online model:
Nodes in Y are the offline nodes, which are given.
Nodes in Z arrive in (unknown) uniform random arrival order σ.

When node z ∈ Z arrives, edge weights wzy for y ∈ Y are revealed.
Decide (irrevocably) whether to match up z with some y ∈ Y , or not.

Goal: Select maximum weight matching (online).

Example
Missing edges have weight wxy = 0. Suppose σ = (2,1,4,3).

Y

Z

y1 y2 y3 y4
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Generalization of secretary problem (with uniform random arrivals).

Example
Y

Z

y

z1

4

z2

33

z3

1

z4

5

Remark
There exist many other models for online (bipartite) matching:

Model where all nodes arrive online.
Rather than only one side of the bipartition.

Model where the edges arrive online.
Instead of the vertices.
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Constant-factor approximations

Deterministic, or randomized, algorithm A is α-approximation if

Eσ[w(A(σ))] ≥ αOPT

OPT is weight of an (offline) maximum weight matching.
w(A(σ)) is (expected) weight of matching selected by A under σ.

Know results:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

1
16 -approximation for special case of uniform edge weights.

[Dimitrov-Plaxton, 2008]
1
8 -approximation for for special case of uniform edge weights.

[Korula-Pál, 2009]
1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].( 1
e −

1
n

)
-approximation.

Best possible! Will see this algorithm later.
[Reiffenhäuser, 2019].

Strategyproof 1
e -approximation for selling multiple items online.
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Special case of uniform edge weights

Instance has uniform edge weights if for every z ∈ Z arriving online,
there is a value vi > 0 such that wyz ∈ {0, vi}.

If we interpret edges with weight zero as non-existent, then every
edge adjacent to z has same weight.

Example

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
2

5 5
5
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Online bipartite matching
KRTV-algorithm
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KRTV-algorithm

Theorem (Kesselheim-Radke-Tönnis-Vöcking, 2013)

There exists a
(1

e −
1
m

)
-approximation for the online bipartite matching

problem where nodes of one side of the bipartition arrive online in
uniform random order.

Generalization of (weight-maximization) secretary problem.
Corresponding to the case |Y | = 1.

Factor 1
e therefore also best possible.

As this is best possible for single secretary problem.

Notation:
Assume arrival order is written as σ = (z1, . . . , zm).
Bipartite graph B = (Z ∪ Y ,E) with weights w : E → R≥0.

Induced subgraph on Z ′ ∪ Y ′ is given by bipartite graph
B′ = (Z ′ ∪ Y ′,E ′) with {y ′, z ′} ∈ E ′ ⇔ y ′ ∈ Y ′, z ′ ∈ Z ′ and
{y ′, z ′} ∈ E .
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OPT(Z ′,Y ′) := w(M∗(Z ′,Y ′)) is weight of max. weight matching
M∗(Z ′,Y ′) on induced subgraph B′ = (Z ′ ∪ Y ′,E ′).

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order σ = (z1, . . . , zm)

Set M = ∅.
Phase I (Observation): For i = 1, . . . , bm

e c:
Do not match up zi .

Phase II (Selection): For i = bm
e c+ 1, . . . ,m:

Compute optimal (offline) matching M∗({z1, . . . , zi} ∪ Y ).
If it holds that

zi is matched up in offline matching M∗ to some y ∈ Y and
y is unmatched in online matching M,

then set M = M ∪ {zi , y}.
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ALGORITHM 1: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y ) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Matching M∗i

Matching M

y1 y2 y3 y4

Y

Z

y1 y2 y3 y4

z1 z2 z3 z4

2 3
2

5
5

4 5
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ALGORITHM 3: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y ) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)
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ALGORITHM 4: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do
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ALGORITHM 5: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y ) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M
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ALGORITHM 6: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do
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for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y ) using A
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ALGORITHM 7: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
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for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y ) using A
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ALGORITHM 8: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do
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ALGORITHM 9: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
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for i = bm/ec+ 1, . . . ,m do
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ALGORITHM 10: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do
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ALGORITHM 11: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.
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ALGORITHM 12: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
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ALGORITHM 13: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do
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Online bipartite matching
KRTV-algorithm: Sketch of analysis
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Analysis (sketch)

ALGORITHM 14: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y ) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

We will bound contribution Ai of (random) node i arriving in step i ≥ dm
e e:

(Notation i is used for multiple things to keep everything readable.)

For arrival order σ, we have

Ai =

{
wir if i gets matched up with r under σ,
0 otherwise.

Then

Eσ[Ai ] = Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i ]
× Pσ[Node i can be added to the online matching M].
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ALGORITHM 15: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
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Analysis (sketch)

ALGORITHM 16: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
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Analysis (sketch)

ALGORITHM 17: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y ) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
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0 otherwise.
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Analysis (sketch)

ALGORITHM 18: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y ) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
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0 otherwise.

Then

Eσ[Ai ] = Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i ]
× Pσ[Node i can be added to the online matching M].
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Analysis (sketch)

ALGORITHM 19: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y ) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
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Two claims:

Eσ[Weight of edge e(i) = {i , r} assigned to i in M∗i ] ≥
OPT

n

Pσ[Node i can be added to the online matching M] ≥ bn/ec
i − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The
(1

e −
1
m

)
-approximation then follows, because

Eσ[w(M)] =
m∑

i=bm/ec+1

Eσ[Ai ] ≥
m∑

i=bm/ec+1

OPT
m
bm/ec
i − 1

=
bm/ec

m
·OPT ·

m∑
i=bm/ec+1

1
i − 1

≥
(

1
e
− 1

m

)
·OPT · 1
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Offline mechanism design (recap)
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Recap offline setting

Unit-demand setting:

Set of items M = {1, . . . ,m}
Set of bidders N = {1, . . . ,n}
For every i ∈ N a private valuation function vi : M → R≥0.

Value vij = vi(j) is value of bidder i for item j .
For every i ∈ N a bid function bi : M → R≥0.

Bid bij = bi(j) is maximum amount i is willing to pay for item j .

The goal is to assign (at most) one item to every bidder.

Example
Non-existing edges have bij = 0.

Items

Bidders

1 2 3 4

1 2 3 4

1
3

3
1

5 6 bij = 1
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Definition (Mechanism)
An (offline) mechanism (x ,p) is given by an allocation rule

x : Rn×m
≥0 → {0,1}n×m,

with
∑

i xij ≤ 1 and
∑

j xij ≤ 1, and pricing rule p : Rn×m
≥0 → Rm

≥0.

For bidder i , we have bid vector bi = (bi1, . . . ,bim).
With b = (b1, . . . ,bn), we have x = x(b) and p = p(b).

Utility of bidder i is

ui(b) =
{

vij − pj(b) if j is the item i receives,
0 if i does not get an item.

Desired properties:
Strategyproof: For every i ∈ N, bidding true valuations
vi = (vi1, . . . , vim) is dominant strategy.

It should hold that
ui(b−i , vi) ≥ ui(b−i ,b′i )

for all b−i = (b1, . . . ,bi−1,bi+1, . . . ,bn) and other bid vector b′i .
Also would like to have individual rationality, welfare maximization,
and computational tractability.
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Vickrey-Clarke-Groves (VCG) mechanism

Notation:
Bipartite graph B = (X ∪ Y ,E) with edge-weights w : E → R≥0.

OPT(X ′,Y ′) is sum of edge weights of max. weight bipartite
matching on induced subgraph B′ = (X ′ ∪ Y ′,E) where
X ′ ⊆ X ,Y ′ ⊆ Y .

VCG mechanism
Collect bid vectors b1, . . . ,bn from bidders.

Compute maximum weight bipartite matching L∗ (the allocation x)
If bidder i gets item j , i.e., {i , j} ∈ L∗(N,M), then charge her

pij(b) = OPT(N \ {i},M)−OPT(N \ {i},M \ {j}),

and otherwise nothing.

OPT(N \ {i},M)−OPT(N \ {i},M \ {j}) is welfare loss for other players by
assigning j to i .
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Online bipartite matching
Strategyproof online mechanism
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Selling multiple items online

Setting:
Bidder has valuation vector vi for items in M.
Whenever bidder arrives online, it submits bid vector bi .

Bidders arrive one by one in unknown order σ = (σ(1), . . . , σ(n)).

Online mechanism (informal)
For k = 1, . . . ,n, upon arrival of bidder σ(k):

Bid vector bk is revealed.
Decide (irrevocably) whether to assign an item to σ(k).

If yes, charge price p(bσ(1), . . . ,bσ(k)).

Utility of bidder i , when σ(k) = i , is given by

ui,k (bσ(1), . . . ,bσ(k)) =
{

vij − p(bσ(1), . . . ,bσ(k)) if i gets item j ,
0 otherwise.
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Requirements for (online) deterministic mechanism (x ,p):

Takes as input deterministic ordering (y1, . . . , yn) and bid vectors b1, . . . ,bn

for the item.

Specifies for every k = 1, . . . ,n whether to allocate an item to yk .
The {0,1}-variable xk` for whether or not to allocate item ` to
bidder yk (and price pk , if yes) is function of:

Total number of bidders n.
Bidders y1, . . . , yk .
Bids b1, . . . ,bk .
The order (y1, . . . , yk ).

As before,
∑

k xk` ≤ 1 and
∑

` xk` ≤ 1.

Mechanism is truthful, if, upon arrival, reporting truthful bids is
optimal (assuming bidders have full knowledge about (x ,p) and
bidders arrived so far), for every possible arrival order σ.
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An observation regarding the KRTV-algorithm

ALGORITHM 20: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y ) using A
if {zi , y} ∈ M∗i for some y ∈ Y then

Set M ← M ∪ {zi , y} if y is unmatched in M.
end

end
return M

Example (of running Phase II for i = 1, . . . ,m)

Y

Z

Online process

y1 y2 y3
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An observation regarding the KRTV-algorithm

ALGORITHM 22: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.
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An observation regarding the KRTV-algorithm

ALGORITHM 23: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.
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ALGORITHM 24: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.
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An observation regarding the KRTV-algorithm

ALGORITHM 25: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
for i = 1, . . . , bm/ec do

Do nothing
end
for i = bm/ec+ 1, . . . ,m do

Compute optimal matching M∗i = M∗({z1, . . . , zi},Y ) using A
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end

end
return M

Example (of running Phase II for i = 1, . . . ,m)
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An observation regarding the KRTV-algorithm

ALGORITHM 26: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.
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ALGORITHM 27: KRTV-algorithm for online bipartite matching
Input : Bipartite graph B = (Z ∪ Y ,E) and weights w : E → R≥0.

Deterministic algorithm A for max. weight bipartite matching.

Set M = ∅.
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Bidder might have incentive to misreport true valuations, as, in the
offline matching M∗i she is matched up with item already assigned
to an earlier bidder.
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Strategyproof online mechanism

Theorem (Reiffenhäuser, 2019)

There exists a strategyproof 1
e -approximation for the online bipartite

matching problem with uniform random arrivals of the bidders.

Mechanism keeps track of items J ⊆ M not yet allocated.
Upon arrival of bidder zi , it computes VCG-price for every
unallocated item in J:

pj(k) = OPT({z1, . . . , zi−1}, J)−OPT({z1, . . . , zi−1}, J \ {j}).

If there exists at least one item j ∈ J for which bij ≥ pj(k), then we
assign an item

j∗ = argmax{bij − pj(k) : j ∈ J}

to bidder i , and set J = J \ {j∗}.
We charge price pj∗(k) to bidder i .
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Strategyproof online mechanism

Theorem (Reiffenhäuser, 2019)

There exists a strategyproof 1
e -approximation for the online bipartite

matching problem with uniform random arrivals of the bidders.

Although the algorithm is still relatively simple to describe,
analysis is much harder.
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