Topics in Algorithmic Game Theory and Economics

Pieter Kleer

Max Planck Institute for Informatics (D1) Saarland Informatics Campus

January 20, 2020

Lecture 9 Online Bipartite Matching

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{ \{y, z\} : y \in Y, z \in Z \}.$

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{ \{y, z\} : y \in Y, z \in Z \}.$

• Edge weight function $w : E \to \mathbb{R}_{\geq 0}$.

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{ \{y, z\} : y \in Y, z \in Z \}.$ **• Edge weight function** $w : E \to \mathbb{R}_{\geq 0}$ **.**

Example *Y Z y*₁ *y*₂ *y*₂ *y*₃ *y*₄ *y*₄ *z*₁ *z*₂ *z*₂ *z*₄ *z*₄ 1 3 3 1 5 6 1

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{ \{y, z\} : y \in Y, z \in Z \}.$ • Edge weight function $w : E \to \mathbb{R}_{\geq 0}$.

• Matching *M* ⊂ *E* is set of edges where every node is incident to at most one edge from *M*:

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{\{y, z\} : y \in Y, z \in Z\}.$ **• Edge weight function** $w : E \to \mathbb{R}_{\geq 0}$ **.**

Matching *M* ⊆ *E* is set of edges where every node is incident to at most one edge from *M*: $|\{e \in M : e \cap \{v\}\}| \leq 1 \ \forall v \in Y \cup Z$.

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{\{y, z\} : y \in Y, z \in Z\}.$ **• Edge weight function** $w : E \to \mathbb{R}_{\geq 0}$ **.**

• Matching *M* ⊂ *E* is set of edges where every node is incident to at most one edge from *M*: $|\{e \in M : e \cap \{v\}\}| \leq 1 \ \forall v \in Y \cup Z$. • Weight of matching M is given by

$$
w(M)=\sum_{e\in M}w_e.
$$

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{\{y, z\} : y \in Y, z \in Z\}.$ • Edge weight function $w : E \to \mathbb{R}_{\geq 0}$.

• Matching *M* ⊂ *E* is set of edges where every node is incident to at most one edge from *M*: $|\{e \in M : e \cap \{v\}\}| < 1 \ \forall v \in Y \cup Z$. • Weight of matching M is given by

$$
w(M)=\sum_{e\in M}w_e.
$$

Goal: Compute maximum weight matching in bipartite graph *B*.

Many algorithms known for solving this in polynomial time, e.g.:

Many algorithms known for solving this in polynomial time, e.g.:

• Linear programming.

Many algorithms known for solving this in polynomial time, e.g.:

- **•** Linear programming.
- **Hungarian method.**

Many algorithms known for solving this in polynomial time, e.g.:

- **•** Linear programming.
- **Hungarian method.**

The important thing to remember is the following.

Many algorithms known for solving this in polynomial time, e.g.:

- Linear programming.
- **Hungarian method.**

The important thing to remember is the following.

Theorem (Offline bipartite matching)

There is a poly(*n*, *m*)*-time algorithm for solving the (offline) maximum weight bipartite matching problem, where* $n = |Z|$ *and* $m = |Y|$ *.*

Many algorithms known for solving this in polynomial time, e.g.:

- Linear programming.
- **Hungarian method.**

The important thing to remember is the following.

Theorem (Offline bipartite matching)

There is a poly(*n*, *m*)*-time algorithm for solving the (offline) maximum weight bipartite matching problem, where* $n = |Z|$ *and* $m = |Y|$ *.*

Parameters *n* and *m* are used interchangeably.

Many algorithms known for solving this in polynomial time, e.g.:

- Linear programming.
- **Hungarian method.**

The important thing to remember is the following.

Theorem (Offline bipartite matching)

There is a poly(*n*, *m*)*-time algorithm for solving the (offline) maximum weight bipartite matching problem, where* $n = |Z|$ *and* $m = |Y|$ *.*

- Parameters *n* and *m* are used interchangeably.
- You may assume that $m = n$ (essentially w.l.o.g.).

We consider the following (semi)-online model:

• Nodes in *Y* are the offline nodes, which are given.

- Nodes in *Y* are the offline nodes, which are given.
- **Nodes in** *Z* **arrive in (unknown) uniform random arrival order σ.**

- Nodes in *Y* are the offline nodes, which are given.
- **Nodes in** *Z* **arrive in (unknown) uniform random arrival order σ.**
	- When node *z* ∈ *Z* arrives, edge weights *wzy* for *y* ∈ *Y* are revealed.

- Nodes in *Y* are the offline nodes, which are given.
- **Nodes in** *Z* **arrive in (unknown) uniform random arrival order σ.**
	- When node *z* ∈ *Z* arrives, edge weights *wzy* for *y* ∈ *Y* are revealed.
	- Decide (irrevocably) whether to match up *z* with some $y \in Y$, or not.

We consider the following (semi)-online model:

- Nodes in *Y* are the offline nodes, which are given.
- **Nodes in** *Z* **arrive in (unknown) uniform random arrival order σ.**
	- When node *z* ∈ *Z* arrives, edge weights *wzy* for *y* ∈ *Y* are revealed.
	- **•** Decide (irrevocably) whether to match up *z* with some $y \in Y$, or not.

Goal: Select maximum weight matching (online).

We consider the following (semi)-online model:

- Nodes in *Y* are the offline nodes, which are given.
- **Nodes in** *Z* **arrive in (unknown) uniform random arrival order σ.**
	- When node *z* ∈ *Z* arrives, edge weights *wzy* for *y* ∈ *Y* are revealed.
	- **•** Decide (irrevocably) whether to match up *z* with some $y \in Y$, or not.

*y*₁ *y*₂ *y*₂ *y*₃ *y*₄

Goal: Select maximum weight matching (online).

Example

Missing edges have weight $w_{xy} = 0$. Suppose $\sigma = (2, 1, 4, 3)$.

Y

We consider the following (semi)-online model:

- Nodes in *Y* are the offline nodes, which are given.
- **Nodes in** *Z* **arrive in (unknown) uniform random arrival order σ.**
	- When node *z* ∈ *Z* arrives, edge weights *wzy* for *y* ∈ *Y* are revealed.
	- Decide (irrevocably) whether to match up *z* with some $y \in Y$, or not.

Goal: Select maximum weight matching (online).

Example

$$
Y \t (y_1)
$$
 (y₂) (y₃) (y₄)

$$
\begin{array}{c}\n3 \\
3 \\
2\n\end{array}
$$

We consider the following (semi)-online model:

- Nodes in *Y* are the offline nodes, which are given.
- **Nodes in** *Z* **arrive in (unknown) uniform random arrival order σ.**
	- When node *z* ∈ *Z* arrives, edge weights *wzy* for *y* ∈ *Y* are revealed.
	- Decide (irrevocably) whether to match up *z* with some $y \in Y$, or not.

Goal: Select maximum weight matching (online).

Example

$$
\begin{array}{c|c}\nY & (Y_1) & (Y_2) & (Y_3) & (Y_4) \\
\hline\n\vdots & \vdots & \ddots & \vdots \\
Z_2 & (Z_2) & & \end{array}
$$

We consider the following (semi)-online model:

- Nodes in *Y* are the offline nodes, which are given.
- **Nodes in** *Z* **arrive in (unknown) uniform random arrival order σ.**
	- When node *z* ∈ *Z* arrives, edge weights *wzy* for *y* ∈ *Y* are revealed.
	- Decide (irrevocably) whether to match up *z* with some $y \in Y$, or not.

Goal: Select maximum weight matching (online).

Example

*Y Z y*¹ *y*² *y*³ *y*⁴ *z*¹ 4 *z*² 3 3

We consider the following (semi)-online model:

- Nodes in *Y* are the offline nodes, which are given.
- **Nodes in** *Z* **arrive in (unknown) uniform random arrival order σ.**
	- When node *z* ∈ *Z* arrives, edge weights *wzy* for *y* ∈ *Y* are revealed.
	- Decide (irrevocably) whether to match up *z* with some $y \in Y$, or not.

Goal: Select maximum weight matching (online).

Example

We consider the following (semi)-online model:

- Nodes in *Y* are the offline nodes, which are given.
- **Nodes in** *Z* **arrive in (unknown) uniform random arrival order σ.**
	- When node *z* ∈ *Z* arrives, edge weights *wzy* for *y* ∈ *Y* are revealed.
	- Decide (irrevocably) whether to match up *z* with some $y \in Y$, or not.

Goal: Select maximum weight matching (online).

Example

We consider the following (semi)-online model:

- Nodes in *Y* are the offline nodes, which are given.
- **Nodes in** *Z* **arrive in (unknown) uniform random arrival order σ.**
	- When node *z* ∈ *Z* arrives, edge weights *wzy* for *y* ∈ *Y* are revealed.
	- Decide (irrevocably) whether to match up *z* with some $y \in Y$, or not.

Goal: Select maximum weight matching (online).

Example

We consider the following (semi)-online model:

- Nodes in *Y* are the offline nodes, which are given.
- **Nodes in** *Z* **arrive in (unknown) uniform random arrival order σ.**
	- When node *z* ∈ *Z* arrives, edge weights *wzy* for *y* ∈ *Y* are revealed.
	- Decide (irrevocably) whether to match up *z* with some $y \in Y$, or not.

Goal: Select maximum weight matching (online).

Example

Generalization of secretary problem (with uniform random arrivals).

Generalization of secretary problem (with uniform random arrivals).

Generalization of secretary problem (with uniform random arrivals).

Remark

Remark

Remark

There exist many other models for online (bipartite) matching:

• Model where all nodes arrive online.

Remark

- Model where all nodes arrive online.
	- Rather than only one side of the bipartition.

Remark

- Model where all nodes arrive online.
	- Rather than only one side of the bipartition.
- Model where the edges arrive online.

Remark

- Model where all nodes arrive online.
	- Rather than only one side of the bipartition.
- Model where the edges arrive online.
	- **.** Instead of the vertices.

Remark

- Model where all nodes arrive online.
	- Rather than only one side of the bipartition.
- Model where the edges arrive online.
	- **.** Instead of the vertices.

Deterministic, or randomized, algorithm $\mathcal A$ is α -approximation if

Deterministic, or randomized, algorithm $\mathcal A$ is α -approximation if $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] \geq \alpha \mathsf{OPT}$

Deterministic, or randomized, algorithm $\mathcal A$ is α -approximation if $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] \geq \alpha \mathsf{OPT}$

OPT is weight of an (offline) maximum weight matching.

Deterministic, or randomized, algorithm $\mathcal A$ is α -approximation if $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] \geq \alpha \mathsf{OPT}$

- OPT is weight of an (offline) maximum weight matching.
- $w(A(\sigma))$ is (expected) weight of matching selected by A under σ .

Deterministic, or randomized, algorithm $\mathcal A$ is α -approximation if $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] \geq \alpha \mathsf{OPT}$

OPT is weight of an (offline) maximum weight matching.

 \bullet *w*($A(\sigma)$) is (expected) weight of matching selected by A under σ .

Deterministic, or randomized, algorithm $\mathcal A$ is α -approximation if

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha$ OPT

- OPT is weight of an (offline) maximum weight matching.
- \bullet *w*($A(\sigma)$) is (expected) weight of matching selected by A under σ .

- [Babaioff-Immorlica-Kempe-Kleinberg, 2007]
	- $\frac{1}{16}$ -approximation for special case of uniform edge weights.

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha$ OPT

- OPT is weight of an (offline) maximum weight matching.
- \bullet *w*($A(\sigma)$) is (expected) weight of matching selected by A under σ .

- [Babaioff-Immorlica-Kempe-Kleinberg, 2007]
	- $\frac{1}{16}$ -approximation for special case of uniform edge weights.
- [Dimitrov-Plaxton, 2008]
	- $\frac{1}{8}$ -approximation for for special case of uniform edge weights.

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha$ OPT

- OPT is weight of an (offline) maximum weight matching.
- \bullet *w*($A(\sigma)$) is (expected) weight of matching selected by A under σ .

- [Babaioff-Immorlica-Kempe-Kleinberg, 2007]
	- $\frac{1}{16}$ -approximation for special case of uniform edge weights.
- [Dimitrov-Plaxton, 2008]
	- $\frac{1}{8}$ -approximation for for special case of uniform edge weights.
- [Korula-Pál, 2009]
	- $\frac{1}{8}$ -approximation

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha$ OPT

- OPT is weight of an (offline) maximum weight matching.
- \bullet *w*($A(\sigma)$) is (expected) weight of matching selected by A under σ .

- [Babaioff-Immorlica-Kempe-Kleinberg, 2007]
	- $\frac{1}{16}$ -approximation for special case of uniform edge weights.
- [Dimitrov-Plaxton, 2008]
	- $\frac{1}{8}$ -approximation for for special case of uniform edge weights.
- [Korula-Pál, 2009]
	- $\frac{1}{8}$ -approximation
- [Kesselheim-Radke-Tönnis-Vöcking, 2013].
	- $\left(\frac{1}{e} \frac{1}{n}\right)$ -approximation.

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha$ OPT

- OPT is weight of an (offline) maximum weight matching.
- \bullet *w*($A(\sigma)$) is (expected) weight of matching selected by A under σ .

- [Babaioff-Immorlica-Kempe-Kleinberg, 2007]
	- $\frac{1}{16}$ -approximation for special case of uniform edge weights.
- [Dimitrov-Plaxton, 2008]
	- $\frac{1}{8}$ -approximation for for special case of uniform edge weights.
- [Korula-Pál, 2009]
	- $\frac{1}{8}$ -approximation
- [Kesselheim-Radke-Tönnis-Vöcking, 2013].
	- $\left(\frac{1}{e} \frac{1}{n}\right)$ -approximation.
	- Best possible!

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha$ OPT

- OPT is weight of an (offline) maximum weight matching.
- \bullet *w*($A(\sigma)$) is (expected) weight of matching selected by A under σ .

- [Babaioff-Immorlica-Kempe-Kleinberg, 2007]
	- $\frac{1}{16}$ -approximation for special case of uniform edge weights.
- [Dimitrov-Plaxton, 2008]
	- $\frac{1}{8}$ -approximation for for special case of uniform edge weights.
- [Korula-Pál, 2009]
	- $\frac{1}{8}$ -approximation
- [Kesselheim-Radke-Tönnis-Vöcking, 2013].
	- $\left(\frac{1}{e} \frac{1}{n}\right)$ -approximation.
	- Best possible! Will see this algorithm later.

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha$ OPT

- OPT is weight of an (offline) maximum weight matching.
- \bullet *w*($A(\sigma)$) is (expected) weight of matching selected by A under σ .

- [Babaioff-Immorlica-Kempe-Kleinberg, 2007]
	- $\frac{1}{16}$ -approximation for special case of uniform edge weights.
- [Dimitrov-Plaxton, 2008]
	- $\frac{1}{8}$ -approximation for for special case of uniform edge weights.
- [Korula-Pál, 2009]
	- $\frac{1}{8}$ -approximation
- [Kesselheim-Radke-Tönnis-Vöcking, 2013].
	- $\left(\frac{1}{e} \frac{1}{n}\right)$ -approximation.
	- Best possible! Will see this algorithm later.
- [Reiffenhäuser, 2019].
	- Strategyproof $\frac{1}{e}$ -approximation for selling multiple items online.

Instance has uniform edge weights if for every $z \in Z$ arriving online, there is a value $v_i > 0$ such that $w_{vz} \in \{0, v_i\}.$

Instance has uniform edge weights if for every $z \in \mathbb{Z}$ arriving online, there is a value $v_i > 0$ such that $w_{vz} \in \{0, v_i\}$.

• If we interpret edges with weight zero as non-existent, then every edge adjacent to *z* has same weight.

Instance has uniform edge weights if for every $z \in Z$ arriving online, there is a value $v_i > 0$ such that $w_{vz} \in \{0, v_i\}$.

• If we interpret edges with weight zero as non-existent, then every edge adjacent to *z* has same weight.

Online bipartite matching *KRTV-algorithm*

There exists a $\left(\frac{1}{e} - \frac{1}{n}\right)$ *m -approximation for the online bipartite matching problem where nodes of one side of the bipartition arrive online in uniform random order.*

Generalization of (weight-maximization) secretary problem.

There exists a $\left(\frac{1}{e} - \frac{1}{n}\right)$ *m -approximation for the online bipartite matching problem where nodes of one side of the bipartition arrive online in uniform random order.*

Generalization of (weight-maximization) secretary problem.

- Generalization of (weight-maximization) secretary problem.
	- Corresponding to the case $|Y| = 1$.

- Generalization of (weight-maximization) secretary problem.
	- Corresponding to the case $|Y| = 1$.
- Factor $\frac{1}{e}$ therefore also best possible.

- Generalization of (weight-maximization) secretary problem.
	- Corresponding to the case $|Y| = 1$.
- Factor $\frac{1}{e}$ therefore also best possible.
	- As this is best possible for single secretary problem.

There exists a $\left(\frac{1}{e} - \frac{1}{n}\right)$ *m -approximation for the online bipartite matching problem where nodes of one side of the bipartition arrive online in uniform random order.*

- Generalization of (weight-maximization) secretary problem.
	- Corresponding to the case $|Y| = 1$.
- Factor $\frac{1}{e}$ therefore also best possible.
	- As this is best possible for single secretary problem.

Notation:

There exists a $\left(\frac{1}{e} - \frac{1}{n}\right)$ *m -approximation for the online bipartite matching problem where nodes of one side of the bipartition arrive online in uniform random order.*

- Generalization of (weight-maximization) secretary problem.
	- Corresponding to the case $|Y| = 1$.
- Factor $\frac{1}{e}$ therefore also best possible.
	- As this is best possible for single secretary problem.

Notation:

• Assume arrival order is written as $\sigma = (z_1, \ldots, z_m)$.

There exists a $\left(\frac{1}{e} - \frac{1}{n}\right)$ *m -approximation for the online bipartite matching problem where nodes of one side of the bipartition arrive online in uniform random order.*

- Generalization of (weight-maximization) secretary problem.
	- Corresponding to the case $|Y| = 1$.
- Factor $\frac{1}{e}$ therefore also best possible.
	- As this is best possible for single secretary problem.

Notation:

- Assume arrival order is written as $\sigma = (z_1, \ldots, z_m)$.
- **•** Bipartite graph *B* = (*Z* ∪ *Y*, *E*) with weights *w* : *E* → $\mathbb{R}_{>0}$.

There exists a $\left(\frac{1}{e} - \frac{1}{n}\right)$ *m -approximation for the online bipartite matching problem where nodes of one side of the bipartition arrive online in uniform random order.*

- Generalization of (weight-maximization) secretary problem.
	- Corresponding to the case $|Y| = 1$.
- Factor $\frac{1}{e}$ therefore also best possible.
	- As this is best possible for single secretary problem.

Notation:

- Assume arrival order is written as $\sigma = (z_1, \ldots, z_m)$.
- **•** Bipartite graph *B* = (*Z* ∪ *Y*, *E*) with weights *w* : *E* → $\mathbb{R}_{>0}$.
	- Induced subgraph on $Z' \cup Y'$ is given by bipartite graph $B' = (Z' \cup Y', E')$ with $\{y', z'\} \in E' \iff y' \in Y', z' \in Z'$ and $\{y', z'\} \in E$.

 $\mathsf{OPT}(Z',Y'):=w(M^*(Z',Y'))$ is weight of max. weight matching $M^*(Z', Y')$ on induced subgraph $B' = (Z' \cup Y', E').$

 $\mathsf{OPT}(Z',Y'):=w(M^*(Z',Y'))$ is weight of max. weight matching $M^*(Z', Y')$ on induced subgraph $B' = (Z' \cup Y', E').$

Algorithm constructs an online matching *M*.
Algorithm constructs an online matching *M*.

KRTV-algorithm with arrival order $\sigma = (z_1, \ldots, z_m)$

Algorithm constructs an online matching *M*.

KRTV-algorithm with arrival order $\sigma = (z_1, \ldots, z_m)$

Set $M = \emptyset$.

Algorithm constructs an online matching *M*.

KRTV-algorithm with arrival order $\sigma = (z_1, \ldots, z_m)$

Set $M = \emptyset$. **Phase I (Observation):** For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ *e* c:

Algorithm constructs an online matching *M*.

KRTV-algorithm with arrival order $\sigma = (z_1, \ldots, z_m)$

Set $M = \emptyset$.

- **Phase I (Observation):** For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ *e* c:
	- Do not match up *zⁱ* .

Algorithm constructs an online matching *M*.

KRTV-algorithm with arrival order $\sigma = (z_1, \ldots, z_m)$

Set $M = \emptyset$.

Phase I (Observation): For
$$
i = 1, ..., \lfloor \frac{m}{e} \rfloor
$$
:

Do not match up *zⁱ* .

Algorithm constructs an online matching *M*.

KRTV-algorithm with arrival order $\sigma = (\mathbf{z}_1, \dots, \mathbf{z}_m)$

Set $M = \emptyset$.

Phase I (Observation): For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ *e* c:

Do not match up *zⁱ* .

Phase II (Selection): For $i = \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$] + 1, , *m*:

Compute optimal (offline) matching *M*[∗] ({*z*1, . . . , *zi*} ∪ *Y*).

Algorithm constructs an online matching *M*.

KRTV-algorithm with arrival order $\sigma = (\mathbf{z}_1, \dots, \mathbf{z}_m)$

Set $M = \emptyset$.

Phase I (Observation): For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ *e* c:

Do not match up *zⁱ* .

- Compute optimal (offline) matching *M*[∗] ({*z*1, . . . , *zi*} ∪ *Y*).
- **o** If it holds that

Algorithm constructs an online matching *M*.

KRTV-algorithm with arrival order $\sigma = (\mathbf{z}_1, \dots, \mathbf{z}_m)$

Set $M = \emptyset$.

Phase I (Observation): For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ *e* c:

Do not match up *zⁱ* .

- Compute optimal (offline) matching *M*[∗] ({*z*1, . . . , *zi*} ∪ *Y*).
- **o** If it holds that
	- *zi* is matched up in **offline matching** *M*[∗] to some *y* ∈ *Y*

Algorithm constructs an online matching *M*.

KRTV-algorithm with arrival order $\sigma = (\mathbf{z}_1, \dots, \mathbf{z}_m)$

Set $M = \emptyset$.

Phase I (Observation): For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ *e* c:

Do not match up *zⁱ* .

- Compute optimal (offline) matching *M*[∗] ({*z*1, . . . , *zi*} ∪ *Y*).
- **•** If it holds that
	- *zi* is matched up in **offline matching** *M*[∗] to some *y* ∈ *Y* and
	- *y* is unmatched in **online matching** *M*,

Algorithm constructs an online matching *M*.

KRTV-algorithm with arrival order $\sigma = (\mathbf{z}_1, \dots, \mathbf{z}_m)$

Set $M = \emptyset$.

Phase I (Observation): For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ *e* c:

Do not match up *zⁱ* .

Phase II (Selection): For $i = \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$] + 1, , *m*:

- Compute optimal (offline) matching *M*[∗] ({*z*1, . . . , *zi*} ∪ *Y*).
- **•** If it holds that
	- *zi* is matched up in **offline matching** *M*[∗] to some *y* ∈ *Y* and
	- *y* is unmatched in **online matching** *M*,

then set $M = M \cup \{z_i, y\}$.

ALGORITHM 1: KRTV-algorithm for online bipartite matching

Input : Bipartite graph $B = (Z \cup Y, E)$ and weights $w : E \rightarrow \mathbb{R}_{\geq 0}$. Deterministic algorithm A for max. weight bipartite matching. Set $M = \emptyset$. **for** $i = 1, \ldots, \lfloor m/e \rfloor$ **do** Do nothing **end for** $i = |m/e| + 1, ..., m$ **do** Compute optimal matching $M_i^* = M^*(\{z_1, \ldots, z_i\}, Y)$ using A **if** $\{z_i, y\} \in M_i^*$ for some $y \in Y$ then $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ *M* $\sum_{i=1}$ **end end return** *M*

Example (of running Phase II for $i = 1, \ldots, m$) *Y Z* Matching *M*[∗] *i* Matching *M y*₁ *y*₂ *y*₂ *y*₃ *y*₄ *Y Z y*₁ *y*₂ *y*₂ *y*₃ *y*₄ *z*₁ *z*₂ *z*₂ *z*₄ *z*₄ 2 \vert \vert 3 2 5 5 4 / $\sqrt{5}$ 5

ALGORITHM 2: KRTV-algorithm for online bipartite matching

Input : Bipartite graph $B = (Z \cup Y, E)$ and weights $w : E \rightarrow \mathbb{R}_{\geq 0}$. Deterministic algorithm A for max. weight bipartite matching. Set $M = \emptyset$. **for** $i = 1, \ldots, \lfloor m/e \rfloor$ **do** Do nothing **end for** $i = |m/e| + 1, ..., m$ **do** Compute optimal matching $M_i^* = M^*(\{z_1, \ldots, z_i\}, Y)$ using A **if** $\{z_i, y\} \in M_i^*$ for some $y \in Y$ then $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ *M* $\sum_{i=1}$ **end end return** *M*

Example (of running Phase II for $i = 1, \ldots, m$) *Y Z* Matching *M*[∗] *i* Matching *M y*₁ *y*₂ *y*₂ *y*₃ *y*₄ *Y Z y*₁ *y*₂ *y*₂ *y*₃ *y*₄ *z*₁ *z*₂ *z*₂ *z*₄ *z*₄ 2 \vert \vert 3 2 5 5 4 / $\sqrt{5}$ 5

ALGORITHM 3: KRTV-algorithm for online bipartite matching

Input : Bipartite graph $B = (Z \cup Y, E)$ and weights $w : E \rightarrow \mathbb{R}_{\geq 0}$. Deterministic algorithm A for max. weight bipartite matching. Set $M = \emptyset$. **for** $i = 1, \ldots, \lfloor m/e \rfloor$ **do** Do nothing **end for** $i = |m/e| + 1, ..., m$ **do** Compute optimal matching $M_i^* = M^*(\{z_1, \ldots, z_i\}, Y)$ using A **if** $\{z_i, y\} \in M_i^*$ for some $y \in Y$ then $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ *M* $\sum_{i=1}$ **end end return** *M*

ALGORITHM 4: KRTV-algorithm for online bipartite matching

Input : Bipartite graph $B = (Z \cup Y, E)$ and weights $w : E \rightarrow \mathbb{R}_{\geq 0}$. Deterministic algorithm A for max. weight bipartite matching. Set $M = \emptyset$. **for** $i = 1, \ldots, \lfloor m/e \rfloor$ **do** Do nothing **end for** $i = |m/e| + 1, ..., m$ **do** Compute optimal matching $M_i^* = M^*(\{z_1, \ldots, z_i\}, Y)$ using A **if** $\{z_i, y\} \in M_i^*$ for some $y \in Y$ then $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ *M* $\sum_{i=1}$ **end end return** *M*

ALGORITHM 5: KRTV-algorithm for online bipartite matching

Input : Bipartite graph $B = (Z \cup Y, E)$ and weights $w : E \rightarrow \mathbb{R}_{\geq 0}$. Deterministic algorithm A for max. weight bipartite matching. Set $M = \emptyset$. **for** $i = 1, \ldots, \lfloor m/e \rfloor$ **do** Do nothing **end for** $i = |m/e| + 1, ..., m$ **do** Compute optimal matching $M_i^* = M^*(\{z_1, \ldots, z_i\}, Y)$ using A **if** $\{z_i, y\} \in M_i^*$ for some $y \in Y$ then $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ *M* $\sum_{i=1}$ **end end return** *M*

ALGORITHM 6: KRTV-algorithm for online bipartite matching

Input : Bipartite graph $B = (Z \cup Y, E)$ and weights $w : E \rightarrow \mathbb{R}_{\geq 0}$. Deterministic algorithm A for max. weight bipartite matching. Set $M = \emptyset$. **for** $i = 1, \ldots, \lfloor m/e \rfloor$ **do** Do nothing **end for** $i = |m/e| + 1, ..., m$ **do** Compute optimal matching $M_i^* = M^*(\{z_1, \ldots, z_i\}, Y)$ using A **if** $\{z_i, y\} \in M_i^*$ for some $y \in Y$ then $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ *M* $\sum_{i=1}$ **end end return** *M*

ALGORITHM 7: KRTV-algorithm for online bipartite matching

Input : Bipartite graph $B = (Z \cup Y, E)$ and weights $w : E \rightarrow \mathbb{R}_{\geq 0}$. Deterministic algorithm A for max. weight bipartite matching. Set $M = \emptyset$. **for** $i = 1, \ldots, \lfloor m/e \rfloor$ **do** Do nothing **end for** $i = |m/e| + 1, ..., m$ **do** Compute optimal matching $M_i^* = M^*(\{z_1, \ldots, z_i\}, Y)$ using A **if** $\{z_i, y\} \in M_i^*$ for some $y \in Y$ then $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ *M* $\sum_{i=1}$ **end end return** *M*

ALGORITHM 8: KRTV-algorithm for online bipartite matching

Input : Bipartite graph $B = (Z \cup Y, E)$ and weights $w : E \rightarrow \mathbb{R}_{\geq 0}$. Deterministic algorithm A for max. weight bipartite matching. Set $M = \emptyset$. **for** $i = 1, \ldots, \lfloor m/e \rfloor$ **do** Do nothing **end for** $i = |m/e| + 1, ..., m$ **do** Compute optimal matching $M_i^* = M^*(\{z_1, \ldots, z_i\}, Y)$ using A **if** $\{z_i, y\} \in M_i^*$ for some $y \in Y$ then $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ *M* $\sum_{i=1}$ **end end return** *M*

ALGORITHM 9: KRTV-algorithm for online bipartite matching

Input : Bipartite graph $B = (Z \cup Y, E)$ and weights $w : E \rightarrow \mathbb{R}_{\geq 0}$. Deterministic algorithm A for max. weight bipartite matching. Set $M = \emptyset$. **for** $i = 1, \ldots, \lfloor m/e \rfloor$ **do** Do nothing **end for** $i = |m/e| + 1, ..., m$ **do** Compute optimal matching $M_i^* = M^*(\{z_1, \ldots, z_i\}, Y)$ using A **if** $\{z_i, y\} \in M_i^*$ for some $y \in Y$ then $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ *M* $\sum_{i=1}$ **end end return** *M*

ALGORITHM 10: KRTV-algorithm for online bipartite matching

Input : Bipartite graph $B = (Z \cup Y, E)$ and weights $w : E \rightarrow \mathbb{R}_{\geq 0}$. Deterministic algorithm A for max. weight bipartite matching. Set $M = \emptyset$. **for** $i = 1, \ldots, \lfloor m/e \rfloor$ **do** Do nothing **end for** $i = |m/e| + 1, ..., m$ **do** Compute optimal matching $M_i^* = M^*(\{z_1, \ldots, z_i\}, Y)$ using A **if** $\{z_i, y\} \in M_i^*$ for some $y \in Y$ then $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ *M* $\sum_{i=1}$ **end end return** *M*

ALGORITHM 11: KRTV-algorithm for online bipartite matching

Input : Bipartite graph $B = (Z \cup Y, E)$ and weights $w : E \rightarrow \mathbb{R}_{\geq 0}$. Deterministic algorithm A for max. weight bipartite matching. Set $M = \emptyset$. **for** $i = 1, \ldots, |m/e|$ **do** Do nothing **end for** $i = |m/e| + 1, ..., m$ **do** Compute optimal matching $M_i^* = M^*(\{z_1, \ldots, z_i\}, Y)$ using A **if** $\{z_i, y\} \in M_i^*$ for some $y \in Y$ then $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ *M* $\sum_{i=1}$ **end end return** *M*

ALGORITHM 12: KRTV-algorithm for online bipartite matching

Input : Bipartite graph $B = (Z \cup Y, E)$ and weights $w : E \rightarrow \mathbb{R}_{\geq 0}$. Deterministic algorithm A for max. weight bipartite matching. Set $M = \emptyset$. **for** $i = 1, \ldots, |m/e|$ **do** Do nothing **end for** $i = |m/e| + 1, ..., m$ **do** Compute optimal matching $M_i^* = M^*(\{z_1, \ldots, z_i\}, Y)$ using A **if** $\{z_i, y\} \in M_i^*$ for some $y \in Y$ then $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ *M* $\sum_{i=1}$ **end end return** *M*

Example (of running Phase II for $i = 1, \ldots, m$)

 $13/2$

ALGORITHM 13: KRTV-algorithm for online bipartite matching

Input : Bipartite graph $B = (Z \cup Y, E)$ and weights $w : E \rightarrow \mathbb{R}_{\geq 0}$. Deterministic algorithm A for max. weight bipartite matching. Set $M = \emptyset$. **for** $i = 1, \ldots, |m/e|$ **do** Do nothing **end for** $i = |m/e| + 1, ..., m$ **do** Compute optimal matching $M_i^* = M^*(\{z_1, \ldots, z_i\}, Y)$ using A **if** $\{z_i, y\} \in M_i^*$ for some $y \in Y$ then $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{i=1}^{n}$ *M* $\sum_{i=1}$ **end end return** *M*

Online bipartite matching

KRTV-algorithm: Sketch of analysis

ALGORITHM 14: KRTV-algorithm for online bipartite matching

```
Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \rightarrow \mathbb{R}_{\geq 0}.
          Deterministic algorithm A for max. weight bipartite matching.
```

```
Set M = \emptyset.for i = 1, \ldots, |m/e| do
 Do nothing
end
for i = |m/e| + 1, ..., m do
     Compute optimal matching M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using A
     if \{z_i, y\} \in M_i^* for some y \in Y then<br>
Set M \leftarrow M \cup \{z_i, y\} if y is unmatched in M.
    end
end
return M
```
ALGORITHM 15: KRTV-algorithm for online bipartite matching

```
Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \to \mathbb{R}_{\geq 0}.
          Deterministic algorithm A for max. weight bipartite matching.
```

```
Set M = \emptyset.
for i = 1, \ldots, |m/e| do
 Do nothing
end
for i = |m/e| + 1, ..., m do
     Compute optimal matching M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using A
     if \{z_i, y\} \in M_i^* for some y \in Y then<br>
Set M \leftarrow M \cup \{z_i, y\} if y is unmatched in M.
    end
end
return M
```
We will bound contribution A_i of (random) node *i* arriving in step $i \geq \lceil \frac{m}{e} \rceil$:

ALGORITHM 16: KRTV-algorithm for online bipartite matching

```
Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \rightarrow \mathbb{R}_{\geq 0}.
          Deterministic algorithm A for max. weight bipartite matching.
```

```
Set M = \emptyset.
for i = 1, \ldots, |m/e| do
 Do nothing
end
for i = |m/e| + 1, ..., m do
     Compute optimal matching M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using A
     if \{z_i, y\} \in M_i^* for some y \in Y then<br>
Set M \leftarrow M \cup \{z_i, y\} if y is unmatched in M.
     end
end
return M
```
We will bound contribution A_i of (random) node *i* arriving in step $i \geq \lceil \frac{m}{e} \rceil$: *(Notation i is used for multiple things to keep everything readable.)*

ALGORITHM 17: KRTV-algorithm for online bipartite matching

```
Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \rightarrow \mathbb{R}_{\geq 0}.
          Deterministic algorithm A for max. weight bipartite matching.
```

```
Set M = \emptyset.
for i = 1, \ldots, |m/e| do
 Do nothing
end
for i = |m/e| + 1, ..., m do
     Compute optimal matching M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using A
     if \{z_i, y\} \in M_i^* for some y \in Y then<br>
Set M \leftarrow M \cup \{z_i, y\} if y is unmatched in M.
     end
end
return M
```
We will bound contribution A_i of (random) node *i* arriving in step $i \geq \lceil \frac{m}{e} \rceil$: *(Notation i is used for multiple things to keep everything readable.)*

• For arrival order σ , we have

ALGORITHM 18: KRTV-algorithm for online bipartite matching

```
Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \rightarrow \mathbb{R}_{\geq 0}.
          Deterministic algorithm A for max. weight bipartite matching.
```

```
Set M = \emptyset.
for i = 1, \ldots, |m/e| do
 Do nothing
end
for i = |m/e| + 1, ..., m do
     Compute optimal matching M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using A
     if \{z_i, y\} \in M_i^* for some y \in Y then<br>
Set M \leftarrow M \cup \{z_i, y\} if y is unmatched in M.
     end
end
return M
```
We will bound contribution A_i of (random) node *i* arriving in step $i \geq \lceil \frac{m}{e} \rceil$: *(Notation i is used for multiple things to keep everything readable.)*

• For arrival order σ , we have

$$
A_i = \left\{ \begin{array}{ll} w_{ir} & \text{if } i \text{ gets matched up with } r \text{ under } \sigma, \\ 0 & \text{otherwise.} \end{array} \right.
$$

ALGORITHM 19: KRTV-algorithm for online bipartite matching

```
Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \rightarrow \mathbb{R}_{\geq 0}.
          Deterministic algorithm A for max. weight bipartite matching.
```

```
Set M = \emptyset.
for i = 1, \ldots, |m/e| do
 Do nothing
end
for i = |m/e| + 1, ..., m do
     Compute optimal matching M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using A
     if \{z_i, y\} \in M_i^* for some y \in Y then<br>
Set M \leftarrow M \cup \{z_i, y\} if y is unmatched in M.
     end
end
return M
```
We will bound contribution A_i of (random) node *i* arriving in step $i \geq \lceil \frac{m}{e} \rceil$: *(Notation i is used for multiple things to keep everything readable.)*

• For arrival order σ , we have

$$
A_i = \left\{ \begin{array}{ll} w_{ir} & \text{if } i \text{ gets matched up with } r \text{ under } \sigma, \\ 0 & \text{otherwise.} \end{array} \right.
$$

• Then

 $\mathbb{E}_{\sigma}[\mathcal{A}_i]=\mathbb{E}_{\sigma}[\mathsf{Weight\ of\ edge}\ e^{(i)}=\{i,r\}\ \text{assigned\ to}\ i\ \text{in}\ \mathcal{M}_i^*]$ \times \mathbb{P}_{σ} [Node *i* can be added to the online matching *M*].

 $\mathbb{E}_{\sigma}[\mathsf{Weight~of~edge}~e^{(i)}=\{i,r\}$ assigned to *i* in $M^*_i] \geq \frac{\mathsf{OPT}}{n}$ *n*

 $\mathbb{P}_{\sigma}[\mathsf{Node}\;i\; \mathsf{can}\;\mathsf{be}\;\mathsf{added}\;\mathsf{to}\;\mathsf{the}\;\mathsf{online}\;\mathsf{matching}\;\mathsf{M}]\geq \frac{\lfloor n/e\rfloor}{i-1}$ *i* − 1

where OPT is the offline optimum (on the whole instance).

 $\mathbb{E}_{\sigma}[\mathsf{Weight~of~edge}~e^{(i)}=\{i,r\}$ assigned to *i* in $M^*_i] \geq \frac{\mathsf{OPT}}{n}$ *n*

 $\mathbb{P}_{\sigma}[\mathsf{Node}\;i\; \mathsf{can}\;\mathsf{be}\;\mathsf{added}\;\mathsf{to}\;\mathsf{the}\;\mathsf{online}\;\mathsf{matching}\;\mathsf{M}]\geq \frac{\lfloor n/e\rfloor}{i-1}$ *i* − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

 $\mathbb{E}_{\sigma}[\mathsf{Weight~of~edge}~e^{(i)}=\{i,r\}$ assigned to *i* in $M^*_i] \geq \frac{\mathsf{OPT}}{n}$ *n*

 $\mathbb{P}_{\sigma}[\mathsf{Node}\;i\; \mathsf{can}\;\mathsf{be}\;\mathsf{added}\;\mathsf{to}\;\mathsf{the}\;\mathsf{online}\;\mathsf{matching}\;\mathsf{M}]\geq \frac{\lfloor n/e\rfloor}{i-1}$ *i* − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The $(\frac{1}{e} - \frac{1}{n})$ $\frac{1}{m}$)-approximation then follows, because

 $\mathbb{E}_{\sigma}[\mathsf{Weight~of~edge}~e^{(i)}=\{i,r\}$ assigned to *i* in $M^*_i] \geq \frac{\mathsf{OPT}}{n}$ *n*

 $\mathbb{P}_{\sigma}[\mathsf{Node}\;i\; \mathsf{can}\;\mathsf{be}\;\mathsf{added}\;\mathsf{to}\;\mathsf{the}\;\mathsf{online}\;\mathsf{matching}\;\mathsf{M}]\geq \frac{\lfloor n/e\rfloor}{i-1}$ *i* − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The $(\frac{1}{e} - \frac{1}{n})$ $\frac{1}{m}$)-approximation then follows, because

 $\mathbb{E}_{\sigma}[w(M)]$

 $\mathbb{E}_{\sigma}[\mathsf{Weight~of~edge}~e^{(i)}=\{i,r\}$ assigned to *i* in $M^*_i] \geq \frac{\mathsf{OPT}}{n}$ *n*

 $\mathbb{P}_{\sigma}[\mathsf{Node}\;i\; \mathsf{can}\;\mathsf{be}\;\mathsf{added}\;\mathsf{to}\;\mathsf{the}\;\mathsf{online}\;\mathsf{matching}\;\mathsf{M}]\geq \frac{\lfloor n/e\rfloor}{i-1}$ *i* − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The $(\frac{1}{e} - \frac{1}{n})$ $\frac{1}{m}$)-approximation then follows, because

$$
\mathbb{E}_{\sigma}[w(M)] = \sum_{i=\lfloor m/e\rfloor+1}^{m} \mathbb{E}_{\sigma}[A_i]
$$

 $\mathbb{E}_{\sigma}[\mathsf{Weight~of~edge}~e^{(i)}=\{i,r\}$ assigned to *i* in $M^*_i] \geq \frac{\mathsf{OPT}}{n}$ *n*

 $\mathbb{P}_{\sigma}[\mathsf{Node}\;i\; \mathsf{can}\;\mathsf{be}\;\mathsf{added}\;\mathsf{to}\;\mathsf{the}\;\mathsf{online}\;\mathsf{matching}\;\mathsf{M}]\geq \frac{\lfloor n/e\rfloor}{i-1}$ *i* − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The $(\frac{1}{e} - \frac{1}{n})$ $\frac{1}{m}$)-approximation then follows, because

$$
\mathbb{E}_{\sigma}[w(M)] = \sum_{i=\lfloor m/e\rfloor+1}^{m} \mathbb{E}_{\sigma}[A_i] \geq \sum_{i=\lfloor m/e\rfloor+1}^{m} \frac{\text{OPT}}{m} \frac{\lfloor m/e\rfloor}{i-1}
$$
Two claims:

 $\mathbb{E}_{\sigma}[\mathsf{Weight~of~edge}~e^{(i)}=\{i,r\}$ assigned to *i* in $M^*_i] \geq \frac{\mathsf{OPT}}{n}$ *n*

 $\mathbb{P}_{\sigma}[\mathsf{Node}\;i\; \mathsf{can}\;\mathsf{be}\;\mathsf{added}\;\mathsf{to}\;\mathsf{the}\;\mathsf{online}\;\mathsf{matching}\;\mathsf{M}]\geq \frac{\lfloor n/e\rfloor}{i-1}$ *i* − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The $(\frac{1}{e} - \frac{1}{n})$ $\frac{1}{m}$)-approximation then follows, because

$$
\mathbb{E}_{\sigma}[w(M)] = \sum_{\substack{i=\lfloor m/e \rfloor+1}}^m \mathbb{E}_{\sigma}[A_i] \ge \sum_{\substack{i=\lfloor m/e \rfloor+1}}^m \frac{\text{OPT}}{m} \frac{\lfloor m/e \rfloor}{i-1}
$$

$$
= \frac{\lfloor m/e \rfloor}{m} \cdot \text{OPT} \cdot \sum_{\substack{i=\lfloor m/e \rfloor+1}}^m \frac{1}{i-1}
$$

Two claims:

 $\mathbb{E}_{\sigma}[\mathsf{Weight~of~edge}~e^{(i)}=\{i,r\}$ assigned to *i* in $M^*_i] \geq \frac{\mathsf{OPT}}{n}$ *n*

 $\mathbb{P}_{\sigma}[\mathsf{Node}\;i\; \mathsf{can}\;\mathsf{be}\;\mathsf{added}\;\mathsf{to}\;\mathsf{the}\;\mathsf{online}\;\mathsf{matching}\;\mathsf{M}]\geq \frac{\lfloor n/e\rfloor}{i-1}$ *i* − 1

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The $(\frac{1}{e} - \frac{1}{n})$ $\frac{1}{m}$)-approximation then follows, because

$$
\mathbb{E}_{\sigma}[w(M)] = \sum_{i=\lfloor m/e \rfloor+1}^{m} \mathbb{E}_{\sigma}[A_i] \ge \sum_{i=\lfloor m/e \rfloor+1}^{m} \frac{\text{OPT} \lfloor m/e \rfloor}{m} \frac{\lfloor m/e \rfloor}{i-1}
$$

$$
= \frac{\lfloor m/e \rfloor}{m} \cdot \text{OPT} \cdot \sum_{i=\lfloor m/e \rfloor+1}^{m} \frac{1}{i-1}
$$

$$
\ge \left(\frac{1}{e} - \frac{1}{m}\right) \cdot \text{OPT} \cdot 1
$$

Offline mechanism design (recap)

Unit-demand setting:

• Set of items $M = \{1, \ldots, m\}$

- Set of items $M = \{1, \ldots, m\}$
- Set of bidders $N = \{1, \ldots, n\}$

- Set of items $M = \{1, \ldots, m\}$
- Set of bidders $N = \{1, \ldots, n\}$
- For every $i \in \mathsf{N}$ a private valuation function $\mathsf{v}_i : \mathsf{M} \to \mathbb{R}_{\geq 0}.$

- Set of items $M = \{1, \ldots, m\}$
- Set of bidders $N = \{1, \ldots, n\}$
- For every $i \in \mathsf{N}$ a private valuation function $\mathsf{v}_i : \mathsf{M} \to \mathbb{R}_{\geq 0}.$
	- Value $v_{ij} = v_i(j)$ is value of bidder *i* for item *j*.

- Set of items $M = \{1, \ldots, m\}$
- Set of bidders $N = \{1, \ldots, n\}$
- For every $i \in \mathsf{N}$ a private valuation function $\mathsf{v}_i : \mathsf{M} \to \mathbb{R}_{\geq 0}.$
	- Value $v_{ij} = v_i(j)$ is value of bidder *i* for item *j*.
- For every $i \in N$ a bid function $b_i : M \to \mathbb{R}_{\geq 0}.$

- Set of items $M = \{1, \ldots, m\}$
- \bullet Set of bidders $N = \{1, \ldots, n\}$
- For every $i \in \mathsf{N}$ a private valuation function $\mathsf{v}_i : \mathsf{M} \to \mathbb{R}_{\geq 0}.$
	- Value $v_{ij} = v_i(j)$ is value of bidder *i* for item *j*.
- For every $i \in N$ a bid function $b_i : M \to \mathbb{R}_{\geq 0}.$
	- Bid $b_{ij} = b_i(j)$ is maximum amount *i* is willing to pay for item *j*.

- Set of items $M = \{1, \ldots, m\}$
- \bullet Set of bidders $N = \{1, \ldots, n\}$
- For every $i \in \mathsf{N}$ a private valuation function $\mathsf{v}_i : \mathsf{M} \to \mathbb{R}_{\geq 0}.$
	- Value $v_{ij} = v_i(j)$ is value of bidder *i* for item *j*.
- For every $i \in N$ a bid function $b_i : M \to \mathbb{R}_{\geq 0}.$
	- Bid $b_{ij} = b_i(j)$ is maximum amount *i* is willing to pay for item *j*.

The goal is to assign (at most) one item to every bidder.

- Set of items $M = \{1, \ldots, m\}$
- \bullet Set of bidders $N = \{1, \ldots, n\}$
- For every $i \in \mathsf{N}$ a private valuation function $\mathsf{v}_i : \mathsf{M} \to \mathbb{R}_{\geq 0}.$
	- Value $v_{ij} = v_i(j)$ is value of bidder *i* for item *j*.
- For every $i \in N$ a bid function $b_i : M \to \mathbb{R}_{\geq 0}.$
	- Bid $b_{ii} = b_i(i)$ is maximum amount *i* is willing to pay for item *j*.

The goal is to assign (at most) one item to every bidder.

Example

An (offline) mechanism (x, p) is given by an allocation rule

$$
x:\mathbb{R}_{\geq 0}^{n\times m}\to \{0,1\}^{n\times m},
$$

with $\sum_i x_{ij} \leq 1$ and $\sum_j x_{ij} \leq 1$, and pricing rule $\rho: \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^m.$

An (offline) mechanism (x, p) is given by an allocation rule

$$
x:\mathbb{R}_{\geq 0}^{n\times m}\to \{0,1\}^{n\times m},
$$

with $\sum_i x_{ij} \leq 1$ and $\sum_j x_{ij} \leq 1$, and pricing rule $\rho: \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^m.$

• For bidder *i*, we have bid vector $b_i = (b_{i1}, \ldots, b_{im})$.

An (offline) mechanism (*x*, *p*) is given by an allocation rule $x: \mathbb{R}_{\geq 0}^{n \times m} \rightarrow \{0, 1\}^{n \times m}$,

with $\sum_i x_{ij} \leq 1$ and $\sum_j x_{ij} \leq 1$, and pricing rule $\rho: \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^m.$

• For bidder *i*, we have bid vector $b_i = (b_{i1}, \ldots, b_{im})$. • With $b = (b_1, \ldots, b_n)$, we have $x = x(b)$ and $p = p(b)$.

An (offline) mechanism (*x*, *p*) is given by an allocation rule $x: \mathbb{R}_{\geq 0}^{n \times m} \rightarrow \{0, 1\}^{n \times m}$, with $\sum_i x_{ij} \leq 1$ and $\sum_j x_{ij} \leq 1$, and pricing rule $\rho: \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^m.$

- For bidder *i*, we have bid vector $b_i = (b_{i1}, \ldots, b_{im})$. • With $b = (b_1, \ldots, b_n)$, we have $x = x(b)$ and $p = p(b)$.
- Utility of bidder *i* is

$$
u_i(b) = \left\{ \begin{array}{ll} v_{ij} - p_j(b) & \text{if } j \\ 0 & \text{if } i \end{array} \right.
$$

is the item *i* receives, does not get an item.

An (offline) mechanism (*x*, *p*) is given by an allocation rule $x: \mathbb{R}_{\geq 0}^{n \times m} \rightarrow \{0, 1\}^{n \times m}$,

with $\sum_i x_{ij} \leq 1$ and $\sum_j x_{ij} \leq 1$, and pricing rule $\rho: \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^m.$

- For bidder *i*, we have bid vector $b_i = (b_{i1}, \ldots, b_{im})$. • With $b = (b_1, \ldots, b_n)$, we have $x = x(b)$ and $p = p(b)$.
- Utility of bidder *i* is

$$
u_i(b) = \begin{cases} v_{ij} - p_j(b) & \text{if } j \text{ is the item } i \text{ receives,} \\ 0 & \text{if } i \text{ does not get an item.} \end{cases}
$$

Desired properties:

An (offline) mechanism (*x*, *p*) is given by an allocation rule $x: \mathbb{R}_{\geq 0}^{n \times m} \rightarrow \{0, 1\}^{n \times m}$,

with $\sum_i x_{ij} \leq 1$ and $\sum_j x_{ij} \leq 1$, and pricing rule $\rho: \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^m.$

- For bidder *i*, we have bid vector $b_i = (b_{i1}, \ldots, b_{im})$. • With $b = (b_1, \ldots, b_n)$, we have $x = x(b)$ and $p = p(b)$.
- Utility of bidder *i* is

$$
u_i(b) = \left\{ \begin{array}{ll} v_{ij} - p_j(b) & \text{if } j \\ 0 & \text{if } i \end{array} \right.
$$

is the item *i* receives, does not get an item.

Desired properties:

Strategyproof:

An (offline) mechanism (*x*, *p*) is given by an allocation rule $x: \mathbb{R}_{\geq 0}^{n \times m} \rightarrow \{0, 1\}^{n \times m}$,

with $\sum_i x_{ij} \leq 1$ and $\sum_j x_{ij} \leq 1$, and pricing rule $\rho: \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^m.$

- For bidder *i*, we have bid vector $b_i = (b_{i1}, \ldots, b_{im})$. • With $b = (b_1, \ldots, b_n)$, we have $x = x(b)$ and $p = p(b)$.
- Utility of bidder *i* is

$$
u_i(b) = \begin{cases} v_{ij} - p_j(b) & \text{if } j \text{ is the item } i \text{ receives,} \\ 0 & \text{if } i \text{ does not get an item.} \end{cases}
$$

Desired properties:

Strategyproof: For every *i* ∈ *N*, bidding true valuations $v_i = (v_{i1}, \ldots, v_{im})$ is dominant strategy.

An (offline) mechanism (x, p) is given by an allocation rule

$$
x:\mathbb{R}_{\geq 0}^{n\times m}\to\{0,1\}^{n\times m},
$$

with $\sum_i x_{ij} \leq 1$ and $\sum_j x_{ij} \leq 1$, and pricing rule $\rho: \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^m.$

- For bidder *i*, we have bid vector $b_i = (b_{i1}, \ldots, b_{im})$. • With $b = (b_1, \ldots, b_n)$, we have $x = x(b)$ and $p = p(b)$.
- Utility of bidder *i* is

 $u_i(b) = \begin{cases} v_{ij} - p_j(b) & \text{if } j \text{ is the item } i \text{ receives,} \\ 0 & \text{if } j \text{ does not get an item.} \end{cases}$ 0 if i does not get an item.

Desired properties:

- *Strategyproof:* For every *i* ∈ *N*, bidding true valuations $v_i = (v_{i1}, \ldots, v_{im})$ is dominant strategy.
	- It should hold that

 $u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b_i')$

for all $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$ and other bid vector b_i' .

An (offline) mechanism (*x*, *p*) is given by an allocation rule

$$
x:\mathbb{R}_{\geq 0}^{n\times m}\to\{0,1\}^{n\times m},
$$

with $\sum_i x_{ij} \leq 1$ and $\sum_j x_{ij} \leq 1$, and pricing rule $\rho: \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^m.$

- For bidder *i*, we have bid vector $b_i = (b_{i1}, \ldots, b_{im})$. • With $b = (b_1, \ldots, b_n)$, we have $x = x(b)$ and $p = p(b)$.
- Utility of bidder *i* is

 $u_i(b) = \begin{cases} v_{ij} - p_j(b) & \text{if } j \text{ is the item } i \text{ receives,} \\ 0 & \text{if } j \text{ does not get an item.} \end{cases}$ 0 if i does not get an item.

Desired properties:

- *Strategyproof:* For every *i* ∈ *N*, bidding true valuations $v_i = (v_{i1}, \ldots, v_{im})$ is dominant strategy.
	- It should hold that

 $u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b_i')$

for all $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$ and other bid vector b_i' .

Also would like to have *individual rationality*, *welfare maximization*, and *computational tractability*.

Notation:

Notation:

• Bipartite graph *B* = (*X* ∪ *Y*, *E*) with edge-weights *w* : *E* \rightarrow R_{>0}.

Notation:

• Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{>0}$.

OPT(X', Y') is sum of edge weights of max. weight bipartite m atching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

Notation:

• Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{>0}$.

OPT(X', Y') is sum of edge weights of max. weight bipartite m atching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

VCG mechanism

Notation:

• Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{>0}$.

OPT(X', Y') is sum of edge weights of max. weight bipartite m atching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

VCG mechanism

• Collect bid vectors b_1, \ldots, b_n from bidders.

Notation:

• Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{>0}$.

OPT(X', Y') is sum of edge weights of max. weight bipartite m atching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

VCG mechanism

- Collect bid vectors b_1, \ldots, b_n from bidders.
- Compute maximum weight bipartite matching *L* ∗ (the allocation *x*)

Notation:

• Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{>0}$.

OPT(X', Y') is sum of edge weights of max. weight bipartite m atching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

VCG mechanism

- Collect bid vectors b_1, \ldots, b_n from bidders.
- Compute maximum weight bipartite matching *L* ∗ (the allocation *x*)
- If bidder *i* gets item *j*, i.e., $\{i, j\} \in L^*(N, M)$,

Notation:

• Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{>0}$.

OPT(X', Y') is sum of edge weights of max. weight bipartite m atching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

VCG mechanism

- Collect bid vectors b_1, \ldots, b_n from bidders.
- Compute maximum weight bipartite matching *L* ∗ (the allocation *x*)
- If bidder *i* gets item *j*, i.e., $\{i, j\} \in L^*(N, M)$, then charge her

 $p_{ii}(b) = \text{OPT}(N \setminus \{i\}, M) - \text{OPT}(N \setminus \{i\}, M \setminus \{i\}),$

Notation:

• Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{>0}$.

OPT(X', Y') is sum of edge weights of max. weight bipartite m atching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

VCG mechanism

- Collect bid vectors b_1, \ldots, b_n from bidders.
- Compute maximum weight bipartite matching *L* ∗ (the allocation *x*)
- If bidder *i* gets item *j*, i.e., $\{i, j\} \in L^*(N, M)$, then charge her

 $p_{ii}(b) = \text{OPT}(N \setminus \{i\}, M) - \text{OPT}(N \setminus \{i\}, M \setminus \{i\}),$

and otherwise nothing.

Notation:

• Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{>0}$.

OPT(X', Y') is sum of edge weights of max. weight bipartite m atching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

VCG mechanism

- Collect bid vectors b_1, \ldots, b_n from bidders.
- Compute maximum weight bipartite matching *L* ∗ (the allocation *x*)
- If bidder *i* gets item *j*, i.e., $\{i, j\} \in L^*(N, M)$, then charge her

 $p_{ij}(b) = \text{OPT}(N \setminus \{i\}, M) - \text{OPT}(N \setminus \{i\}, M \setminus \{j\}),$

and otherwise nothing.

OPT($N \setminus \{i\}, M$) – OPT($N \setminus \{i\}, M \setminus \{j\}$) is welfare loss for other players by assigning *j* to *i*.

Online bipartite matching

Strategyproof online mechanism

Selling multiple items online

Setting:

Selling multiple items online

Setting:

Bidder has valuation vector *vⁱ* for items in *M*.
Selling multiple items online

Setting:

- Bidder has valuation vector *vⁱ* for items in *M*.
- Whenever bidder arrives online, it submits bid vector *bⁱ* .

- Bidder has valuation vector *vⁱ* for items in *M*.
- Whenever bidder arrives online, it submits bid vector *bⁱ* .

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(n))$.

- Bidder has valuation vector *vⁱ* for items in *M*.
- Whenever bidder arrives online, it submits bid vector *bⁱ* .

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(n))$.

Online mechanism (informal)

- Bidder has valuation vector *vⁱ* for items in *M*.
- Whenever bidder arrives online, it submits bid vector *bⁱ* .

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(n))$.

Online mechanism (informal)

For $k = 1, \ldots, n$, upon arrival of bidder $\sigma(k)$:

- Bidder has valuation vector *vⁱ* for items in *M*.
- Whenever bidder arrives online, it submits bid vector *bⁱ* .

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(n))$.

Online mechanism (informal)

For $k = 1, \ldots, n$, upon arrival of bidder $\sigma(k)$:

 \bullet Bid vector b_k is revealed.

- Bidder has valuation vector *vⁱ* for items in *M*.
- Whenever bidder arrives online, it submits bid vector *bⁱ* .

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(n))$.

Online mechanism (informal)

For $k = 1, \ldots, n$, upon arrival of bidder $\sigma(k)$:

- \bullet Bid vector b_k is revealed.
- **•** Decide (irrevocably) whether to assign an item to $\sigma(k)$.

- Bidder has valuation vector *vⁱ* for items in *M*.
- Whenever bidder arrives online, it submits bid vector *bⁱ* .

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(n))$.

Online mechanism (informal)

For $k = 1, \ldots, n$, upon arrival of bidder $\sigma(k)$:

- \bullet Bid vector b_k is revealed.
- **•** Decide (irrevocably) whether to assign an item to $\sigma(k)$.
	- If yes, charge price $p(b_{\sigma(1)}, \ldots, b_{\sigma(k)})$.

- Bidder has valuation vector *vⁱ* for items in *M*.
- Whenever bidder arrives online, it submits bid vector *bⁱ* .

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(n))$.

Online mechanism (informal)

For $k = 1, \ldots, n$, upon arrival of bidder $\sigma(k)$:

- \bullet Bid vector b_k is revealed.
- **•** Decide (irrevocably) whether to assign an item to $\sigma(k)$.
	- If yes, charge price $p(b_{\sigma(1)}, \ldots, b_{\sigma(k)})$.

Utility of bidder *i*, when $\sigma(k) = i$, is given by

$$
u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k)}) = \begin{cases} v_{ij} - p(b_{\sigma(1)},\ldots,b_{\sigma(k)}) & \text{if } i \text{ gets item } j, \\ 0 & \text{otherwise.} \end{cases}
$$

Takes as input deterministic ordering (y_1, \ldots, y_n) and bid vectors b_1, \ldots, b_n for the item.

• Specifies for every $k = 1, \ldots, n$ whether to allocate an item to y_k .

- \bullet Specifies for every $k = 1, \ldots, n$ whether to allocate an item to y_k .
- The $\{0,1\}$ -variable $x_{k\ell}$ for whether or not to allocate item ℓ to bidder y_k (and price p_k , if yes) is function of:

- \bullet Specifies for every $k = 1, \ldots, n$ whether to allocate an item to y_k .
- The $\{0,1\}$ -variable $x_{k\ell}$ for whether or not to allocate item ℓ to bidder y_k (and price p_k , if yes) is function of:
	- Total number of bidders *n*.

- \bullet Specifies for every $k = 1, \ldots, n$ whether to allocate an item to y_k .
- The $\{0,1\}$ -variable $x_{k\ell}$ for whether or not to allocate item ℓ to bidder y_k (and price p_k , if yes) is function of:
	- Total number of bidders *n*.
	- Bidders *y*1, . . . , *y^k* .

- \bullet Specifies for every $k = 1, \ldots, n$ whether to allocate an item to y_k .
- The $\{0,1\}$ -variable $x_{k\ell}$ for whether or not to allocate item ℓ to bidder y_k (and price p_k , if yes) is function of:
	- Total number of bidders *n*.
	- Bidders *y*1, . . . , *y^k* .
	- \bullet Bids b_1, \ldots, b_k .

- \bullet Specifies for every $k = 1, \ldots, n$ whether to allocate an item to y_k .
- The $\{0,1\}$ -variable $x_{k\ell}$ for whether or not to allocate item ℓ to bidder y_k (and price p_k , if yes) is function of:
	- Total number of bidders *n*.
	- Bidders *y*1, . . . , *y^k* .
	- \bullet Bids b_1, \ldots, b_k .
	- The order (y_1, \ldots, y_k) .

Takes as input deterministic ordering (y_1, \ldots, y_n) and bid vectors b_1, \ldots, b_n for the item.

- \bullet Specifies for every $k = 1, \ldots, n$ whether to allocate an item to y_k .
- The $\{0,1\}$ -variable $x_{k\ell}$ for whether or not to allocate item ℓ to bidder y_k (and price p_k , if yes) is function of:
	- Total number of bidders *n*.
	- Bidders *y*1, . . . , *y^k* .
	- \bullet Bids b_1, \ldots, b_k .
	- The order (y_1, \ldots, y_k) .

As before, $\sum_{k} \mathsf{x}_{k\ell} \leq 1$ and $\sum_{\ell} \mathsf{x}_{k\ell} \leq 1$.

Takes as input deterministic ordering (y_1, \ldots, y_n) and bid vectors b_1, \ldots, b_n for the item.

- \bullet Specifies for every $k = 1, \ldots, n$ whether to allocate an item to y_k .
- The $\{0,1\}$ -variable $x_{k\ell}$ for whether or not to allocate item ℓ to bidder y_k (and price p_k , if yes) is function of:
	- Total number of bidders *n*.
	- Bidders *y*1, . . . , *y^k* .
	- \bullet Bids b_1, \ldots, b_k .
	- The order (y_1, \ldots, y_k) .

As before, $\sum_{k} \mathsf{x}_{k\ell} \leq 1$ and $\sum_{\ell} \mathsf{x}_{k\ell} \leq 1$.

Mechanism is truthful, if, upon arrival, reporting truthful bids is optimal (assuming bidders have full knowledge about (*x*, *p*) and bidders arrived so far), for every possible arrival order σ .

ALGORITHM 20: KRTV-algorithm for online bipartite matching

```
Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \to \mathbb{R}_{>0}.
            Deterministic algorithm A for max. weight bipartite matching.
Set M = \emptyset.
for i = 1, ..., \lfloor m/e \rfloor do \lfloor 0 Do nothing
end
for i = |m/e| + 1, ..., m do
      \mu = \frac{m}{g} + 1, \ldots, m do M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using A
      if \{z_i, y\} \in M_i^* for some y \in Y then
           \mathcal{S} is \mathcal{Y} and \mathcal{Y} is \mathcal{Y} is unmatched in M.
     end
end
return M
```


ALGORITHM 21: KRTV-algorithm for online bipartite matching

```
Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \to \mathbb{R}_{>0}.
            Deterministic algorithm A for max. weight bipartite matching.
Set M = \emptyset.
for i = 1, ..., \lfloor m/e \rfloor do \lfloor 0 Do nothing
end
for i = |m/e| + 1, ..., m do
      \mu = \frac{m}{g} + 1, \ldots, m do M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using A
      if \{z_i, y\} \in M_i^* for some y \in Y then
           \mathcal{S} is \mathcal{Y} and \mathcal{Y} is \mathcal{Y} is unmatched in M.
     end
end
return M
```


ALGORITHM 22: KRTV-algorithm for online bipartite matching

```
Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \to \mathbb{R}_{>0}.
            Deterministic algorithm A for max. weight bipartite matching.
Set M = \emptyset.
for i = 1, \ldots, \lfloor m/e \rfloor do \lfloor 100 \rfloor Do nothing
end
for i = |m/e| + 1, ..., m do
      \mu = \frac{m}{g} + 1, \ldots, m do M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using A
      if \{z_i, y\} \in M_i^* for some y \in Y then
           \mathcal{S} is \mathcal{Y} and \mathcal{Y} is \mathcal{Y} is unmatched in M.
     end
end
return M
```


ALGORITHM 23: KRTV-algorithm for online bipartite matching

```
Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \to \mathbb{R}_{>0}.
            Deterministic algorithm A for max. weight bipartite matching.
Set M = \emptyset.
for i = 1, \ldots, \lfloor m/e \rfloor do \lfloor 100 \rfloor Do nothing
end
for i = |m/e| + 1, ..., m do
      \mu = \frac{m}{g} + 1, \ldots, m do M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using A
      if \{z_i, y\} \in M_i^* for some y \in Y then
           \mathcal{S} is \mathcal{Y} and \mathcal{Y} is \mathcal{Y} is unmatched in M.
     end
end
return M
```


ALGORITHM 24: KRTV-algorithm for online bipartite matching

```
Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \to \mathbb{R}_{>0}.
            Deterministic algorithm A for max. weight bipartite matching.
Set M = \emptyset.
for i = 1, \ldots, \lfloor m/e \rfloor do \lfloor 100 \rfloor Do nothing
end
for i = |m/e| + 1, ..., m do
      \mu = \frac{m}{g} + 1, \ldots, m do M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using A
      if \{z_i, y\} \in M_i^* for some y \in Y then
           \mathcal{S} is \mathcal{Y} and \mathcal{Y} is \mathcal{Y} is unmatched in M.
     end
end
return M
```


ALGORITHM 25: KRTV-algorithm for online bipartite matching

```
Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \to \mathbb{R}_{>0}.
            Deterministic algorithm A for max. weight bipartite matching.
Set M = \emptyset.
for i = 1, \ldots, \lfloor m/e \rfloor do \lfloor 100 \rfloor Do nothing
end
for i = |m/e| + 1, ..., m do
      \mu = \frac{m}{g} + 1, \ldots, m do M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using A
      if \{z_i, y\} \in M_i^* for some y \in Y then
           \mathcal{S} is \mathcal{Y} and \mathcal{Y} is \mathcal{Y} is unmatched in M.
     end
end
return M
```


ALGORITHM 26: KRTV-algorithm for online bipartite matching

```
Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \to \mathbb{R}_{>0}.
            Deterministic algorithm A for max. weight bipartite matching.
Set M = \emptyset.
for i = 1, \ldots, \lfloor m/e \rfloor do \lfloor 100 \rfloor Do nothing
end
for i = |m/e| + 1, ..., m do
      \mu = \frac{m}{g} + 1, \ldots, m do M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using A
      if \{z_i, y\} \in M_i^* for some y \in Y then
           \mathcal{S} is \mathcal{Y} and \mathcal{Y} is \mathcal{Y} is unmatched in M.
     end
end
return M
```


ALGORITHM 27: KRTV-algorithm for online bipartite matching

• Bidder might have incentive to misreport true valuations, as, in the offline matching M^*_i she is matched up with item already assigned to an earlier bidder.

Strategyproof online mechanism

There exists a strategyproof $\frac{1}{e}$ -approximation for the online bipartite *matching problem with uniform random arrivals of the bidders.*

There exists a strategyproof $\frac{1}{e}$ -approximation for the online bipartite *matching problem with uniform random arrivals of the bidders.*

Mechanism keeps track of items *J* ⊆ *M* not yet allocated.

There exists a strategyproof $\frac{1}{e}$ -approximation for the online bipartite *matching problem with uniform random arrivals of the bidders.*

Mechanism keeps track of items *J* ⊆ *M* not yet allocated.

Upon arrival of bidder *zⁱ* , it computes VCG-price for every unallocated item in *J*:

 $p_j(k) = \text{OPT}(\{z_1, \ldots, z_{i-1}\}, J) - \text{OPT}(\{z_1, \ldots, z_{i-1}\}, J \setminus \{j\}).$

There exists a strategyproof $\frac{1}{e}$ -approximation for the online bipartite *matching problem with uniform random arrivals of the bidders.*

Mechanism keeps track of items *J* ⊆ *M* not yet allocated.

Upon arrival of bidder *zⁱ* , it computes VCG-price for every unallocated item in *J*:

 $p_i(k) = \text{OPT}(\{z_1, \ldots, z_{i-1}\}, J) - \text{OPT}(\{z_1, \ldots, z_{i-1}\}, J \setminus \{j\}).$

 \bullet If there exists at least one item *j* ∈ *J* for which $b_{ii} \geq p_i(k)$, then we assign an item

$$
j^* = \text{argmax}\{b_{ij} - p_j(k) : j \in J\}
$$

to bidder *i*, and set $J = J \setminus \{j^*\}.$

There exists a strategyproof $\frac{1}{e}$ -approximation for the online bipartite *matching problem with uniform random arrivals of the bidders.*

Mechanism keeps track of items *J* ⊆ *M* not yet allocated.

Upon arrival of bidder *zⁱ* , it computes VCG-price for every unallocated item in *J*:

 $p_i(k) = \text{OPT}(\{z_1, \ldots, z_{i-1}\}, J) - \text{OPT}(\{z_1, \ldots, z_{i-1}\}, J \setminus \{j\}).$

 \bullet If there exists at least one item *j* ∈ *J* for which $b_{ii} \geq p_i(k)$, then we assign an item

$$
j^* = \text{argmax}\{b_{ij} - p_j(k) : j \in J\}
$$

to bidder *i*, and set $J = J \setminus \{j^*\}.$

We charge price *p^j* [∗] (*k*) to bidder *i*.

Strategyproof online mechanism

There exists a strategyproof $\frac{1}{e}$ -approximation for the online bipartite *matching problem with uniform random arrivals of the bidders.*

There exists a strategyproof $\frac{1}{e}$ -approximation for the online bipartite *matching problem with uniform random arrivals of the bidders.*

Although the algorithm is still relatively simple to describe, analysis is much harder.