Topics in Algorithmic Game Theory and Economics

Pieter Kleer

Max Planck Institute for Informatics (D1) Saarland Informatics Campus

January 20, 2020

Lecture 9
Online Bipartite Matching

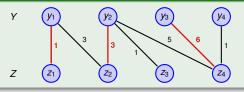
Offline bipartite matching

Offline bipartite matching

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{\{y, z\} : y \in Y, z \in Z\}$.

• Edge weight function $w : E \to \mathbb{R}_{\geq 0}$.

Example



- Matching $M \subseteq E$ is set of edges where every node is incident to at most one edge from M: $|\{e \in M : e \cap \{v\}\}| \le 1 \ \forall v \in Y \cup Z$.
 - Weight of matching M is given by

$$w(M) = \sum_{e \in M} w_e$$
.

Goal: Compute maximum weight matching in bipartite graph *B*.

Goal: Compute maximum weight matching in bipartite graph *B*.

Many algorithms known for solving this in polynomial time, e.g.:

- Linear programming.
- Hungarian method.

The important thing to remember is the following.

Theorem (Offline bipartite matching)

There is a poly(n, m)-time algorithm for solving the (offline) maximum weight bipartite matching problem, where n = |Z| and m = |Y|.

- Parameters *n* and *m* are used interchangeably.
- You may assume that m = n (essentially w.l.o.g.).

Online bipartite matching

Vertex arrival model

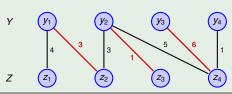
We consider the following (semi)-online model:

- Nodes in *Y* are the offline nodes, which are given.
- Nodes in Z arrive in (unknown) uniform random arrival order σ .
 - When node $z \in Z$ arrives, edge weights w_{zy} for $y \in Y$ are revealed.
 - Decide (irrevocably) whether to match up z with some $y \in Y$, or not.

Goal: Select maximum weight matching (online).

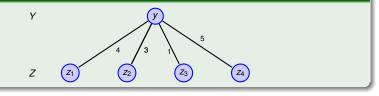
Example

Missing edges have weight $w_{xy} = 0$. Suppose $\sigma = (2, 1, 4, 3)$.



Generalization of secretary problem (with uniform random arrivals).

Example



Remark

There exist many other models for online (bipartite) matching:

- Model where all nodes arrive online.
 - Rather than only one side of the bipartition.
- Model where the edges arrive online.
 - Instead of the vertices.

Constant-factor approximations

Deterministic, or randomized, algorithm A is α -approximation if

$$\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] \geq \alpha \mathsf{OPT}$$

- OPT is weight of an (offline) maximum weight matching.
- $w(A(\sigma))$ is (expected) weight of matching selected by A under σ .

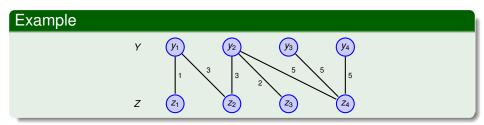
Know results:

- [Babaioff-Immorlica-Kempe-Kleinberg, 2007]
 - $\frac{1}{16}$ -approximation for special case of uniform edge weights.
- [Dimitrov-Plaxton, 2008]
 - $\frac{1}{8}$ -approximation for for special case of uniform edge weights.
- [Korula-Pál, 2009]
 - ½-approximation
- [Kesselheim-Radke-Tönnis-Vöcking, 2013].
 - $(\frac{1}{e} \frac{1}{n})$ -approximation.
 - Best possible! Will see this algorithm later.
- [Reiffenhäuser, 2019].
 - Strategyproof $\frac{1}{e}$ -approximation for selling multiple items online.

Special case of uniform edge weights

Instance has uniform edge weights if for every $z \in Z$ arriving online, there is a value $v_i > 0$ such that $w_{vz} \in \{0, v_i\}$.

• If we interpret edges with weight zero as non-existent, then every edge adjacent to z has same weight.



Online bipartite matching

KRTV-algorithm

KRTV-algorithm

Theorem (Kesselheim-Radke-Tönnis-Vöcking, 2013)

There exists a $(\frac{1}{e} - \frac{1}{m})$ -approximation for the online bipartite matching problem where nodes of one side of the bipartition arrive online in uniform random order.

- Generalization of (weight-maximization) secretary problem.
 - Corresponding to the case |Y| = 1.
- Factor $\frac{1}{e}$ therefore also best possible.
 - As this is best possible for single secretary problem.

Notation:

- Assume arrival order is written as $\sigma = (z_1, \dots, z_m)$.
- Bipartite graph $B = (Z \cup Y, E)$ with weights $w : E \to \mathbb{R}_{>0}$.
 - Induced subgraph on $Z' \cup Y'$ is given by bipartite graph $B' = (Z' \cup Y', E')$ with $\{y', z'\} \in E' \Leftrightarrow y' \in Y', z' \in Z'$ and $\{y', z'\} \in E$.

• OPT(Z', Y') := $w(M^*(Z', Y'))$ is weight of max. weight matching $M^*(Z', Y')$ on induced subgraph $B' = (Z' \cup Y', E')$.

Algorithm constructs an online matching M.

KRTV-algorithm with arrival order $\sigma = (z_1, \dots, z_m)$

Set $M = \emptyset$.

Phase I (Observation): For $i = 1, ..., \lfloor \frac{m}{e} \rfloor$:

• Do not match up z_i .

Phase II (Selection): For $i = \lfloor \frac{m}{e} \rfloor + 1, \dots, m$:

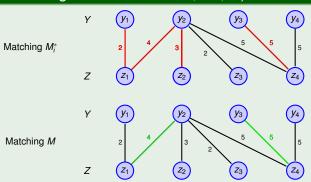
- Compute optimal (offline) matching $M^*(\{z_1,\ldots,z_i\}\cup Y)$.
- If it holds that
 - z_i is matched up in **offline matching** M^* to some $y \in Y$ and
 - y is unmatched in **online matching** M,

then set $M = M \cup \{z_i, y\}$.

ALGORITHM 1: KRTV-algorithm for online bipartite matching

```
Input: Bipartite graph B = (Z \cup Y, E) and weights w : E \to \mathbb{R}_{\geq 0}. Deterministic algorithm \mathcal{A} for max. weight bipartite matching. Set M = \emptyset. for i = 1, \dots, \lfloor m/e \rfloor do \mid Do nothing end for i = \lfloor m/e \rfloor + 1, \dots, m do \mid Compute optimal matching M_i^* = M^*(\{z_1, \dots, z_i\}, Y) using \mathcal{A} if \{z_i, y\} \in M_i^* for some y \in Y then \mid Set M \leftarrow M \cup \{z_i, y\} if y is unmatched in M. end end return M
```

Example (of running Phase II for i = 1, ..., m)



Online bipartite matching

KRTV-algorithm: Sketch of analysis

Analysis (sketch)

ALGORITHM 2: KRTV-algorithm for online bipartite matching

```
Input: Bipartite graph B = (Z \cup Y, E) and weights w : E \to \mathbb{R}_{\geq 0}. Deterministic algorithm \mathcal{A} for max. weight bipartite matching. Set M = \emptyset. for i = 1, \ldots, \lfloor m/e \rfloor do \mid Do nothing end for i = \lfloor m/e \rfloor + 1, \ldots, m do \mid Compute optimal matching M_i^* = M^*(\{z_1, \ldots, z_i\}, Y) using \mathcal{A} if \{z_i, y\} \in M_i^* for some y \in Y then \mid Set M \leftarrow M \cup \{z_i, y\} if y is unmatched in M. end end return M
```

We will bound contribution A_i of (random) node i arriving in step $i \ge \lceil \frac{m}{e} \rceil$: (Notation i is used for multiple things to keep everything readable.)

• For arrival order σ , we have

$$A_i = \begin{cases} w_{ir} & \text{if } i \text{ gets matched up with } r \text{ under } \sigma, \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$\mathbb{E}_{\sigma}[A_i] = \mathbb{E}_{\sigma}[\text{Weight of edge } e^{(i)} = \{i, r\} \text{ assigned to } i \text{ in } M_i^*] \times \mathbb{P}_{\sigma}[\text{Node } i \text{ can be added to the online matching } M].$$

Two claims:

 $\mathbb{E}_{\sigma}[\text{Weight of edge }e^{(i)}=\{i,r\} \text{ assigned to } i \text{ in } M_i^*] \geq \frac{\mathsf{OPT}}{m}$

 $\mathbb{P}_{\sigma}[\mathsf{Node}\ i\ \mathsf{can}\ \mathsf{be}\ \mathsf{added}\ \mathsf{to}\ \mathsf{the}\ \mathsf{online}\ \mathsf{matching}\ M] \geq \frac{\lfloor m/e \rfloor}{i-1}$

where OPT is the offline optimum (on the whole instance).

Exercise: Prove these claims.

The $(\frac{1}{e} - \frac{1}{m})$ -approximation then follows, because

$$\mathbb{E}_{\sigma}[w(M)] = \sum_{i=\lfloor m/e \rfloor + 1}^{m} \mathbb{E}_{\sigma}[A_{i}] \ge \sum_{i=\lfloor m/e \rfloor + 1}^{m} \frac{\mathsf{OPT}}{m} \frac{\lfloor m/e \rfloor}{i - 1}$$

$$= \frac{\lfloor m/e \rfloor}{m} \cdot \mathsf{OPT} \cdot \sum_{i=\lfloor m/e \rfloor + 1}^{m} \frac{1}{i - 1}$$

$$\ge \left(\frac{1}{e} - \frac{1}{m}\right) \cdot \mathsf{OPT} \cdot 1$$

Offline mechanism design (recap)

Recap offline setting

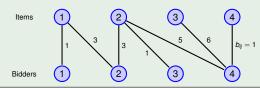
Unit-demand setting:

- Set of items $M = \{1, ..., m\}$
- Set of bidders $N = \{1, \dots, n\}$
- For every $i \in N$ a private valuation function $v_i : M \to \mathbb{R}_{>0}$.
 - Value $v_{ij} = v_i(j)$ is value of bidder i for item j.
- For every $i \in N$ a bid function $b_i : M \to \mathbb{R}_{>0}$.
 - Bid $b_{ij} = b_i(j)$ is maximum amount i is willing to pay for item j.

The goal is to assign (at most) one item to every bidder.

Example

Non-existing edges have $b_{ij} = 0$.



Definition (Mechanism)

An (offline) mechanism (x, p) is given by an allocation rule

$$x: \mathbb{R}^{n\times m}_{>0} \to \{0,1\}^{n\times m},$$

with $\sum_{i} x_{ij} \leq 1$ and $\sum_{j} x_{ij} \leq 1$, and pricing rule $p : \mathbb{R}_{\geq 0}^{n \times m} \to \mathbb{R}_{\geq 0}^{m}$.

- For bidder i, we have bid vector $b_i = (b_{i1}, \dots, b_{im})$.
 - With $b = (b_1, \ldots, b_n)$, we have x = x(b) and p = p(b).
- Utility of bidder i is

$$u_i(b) = \begin{cases} v_{ij} - p_j(b) & \text{if j is the item } i \text{ receives,} \\ 0 & \text{if i does not get an item.} \end{cases}$$

Desired properties:

- *Strategyproof:* For every $i \in N$, bidding true valuations $v_i = (v_{i1}, \dots, v_{im})$ is dominant strategy.
 - It should hold that

$$u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b'_i)$$

for all $b_{-i} = (b_1, \dots, b_{i-1}, b_{i+1}, \dots, b_n)$ and other bid vector b'_i .

 Also would like to have individual rationality, welfare maximization, and computational tractability.

Vickrey-Clarke-Groves (VCG) mechanism

Notation:

- Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{\geq 0}$.
 - OPT(X', Y') is sum of edge weights of max. weight bipartite matching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X, Y' \subseteq Y$.

VCG mechanism

- Collect bid vectors b_1, \ldots, b_n from bidders.
- Compute maximum weight bipartite matching L^* (the allocation x)
- If bidder i gets item j, i.e., $\{i,j\} \in L^*(N,M)$, then charge her

$$\rho_{ij}(b) = \mathsf{OPT}(N \setminus \{i\}, M) - \mathsf{OPT}(N \setminus \{i\}, M \setminus \{j\}),$$

and otherwise nothing.

 $\mathsf{OPT}(N \setminus \{i\}, M) - \mathsf{OPT}(N \setminus \{i\}, M \setminus \{j\})$ is welfare loss for other players by assigning j to i.

Online bipartite matching

Strategyproof online mechanism

Selling multiple items online

Setting:

- Bidder has valuation vector v_i for items in M.
- Whenever bidder arrives online, it submits bid vector b_i .

Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \dots, \sigma(n))$.

Online mechanism (informal)

For k = 1, ..., n, upon arrival of bidder $\sigma(k)$:

- Bid vector b_k is revealed.
- Decide (irrevocably) whether to assign an item to $\sigma(k)$.
 - If yes, charge price $p(b_{\sigma(1)}, \ldots, b_{\sigma(k)})$.

Utility of bidder i, when $\sigma(k) = i$, is given by

$$u_{i,k}(b_{\sigma(1)},\ldots,b_{\sigma(k)}) = \begin{cases} v_{ij} - p(b_{\sigma(1)},\ldots,b_{\sigma(k)}) & \text{if } i \text{ gets item } j, \\ 0 & \text{otherwise.} \end{cases}$$

Requirements for (online) deterministic mechanism (x, p):

Takes as input deterministic ordering (y_1, \ldots, y_n) and bid vectors b_1, \ldots, b_n for the item.

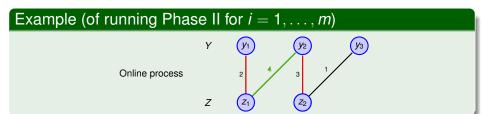
- Specifies for every k = 1, ..., n whether to allocate an item to y_k .
- The $\{0,1\}$ -variable $x_{k\ell}$ for whether or not to allocate item ℓ to bidder y_k (and price p_k , if yes) is function of:
 - Total number of bidders n.
 - Bidders y_1, \ldots, y_k .
 - Bids b_1, \ldots, b_k .
 - The order (y_1, \ldots, y_k) .

As before, $\sum_{k} x_{k\ell} \leq 1$ and $\sum_{\ell} x_{k\ell} \leq 1$.

Mechanism is truthful, if, upon arrival, reporting truthful bids is optimal (assuming bidders have full knowledge about (x, p) and bidders arrived so far), for every possible arrival order σ .

An observation regarding the KRTV-algorithm

```
ALGORITHM 3: KRTV-algorithm for online bipartite matching Input : Bipartite graph B = (Z \cup Y, E) and weights w : E \to \mathbb{R}_{\geq 0}. Deterministic algorithm \mathcal{A} for max. weight bipartite matching. Set M = \emptyset. for i = 1, \ldots, \lfloor m/e \rfloor do \mid Do nothing end for i = \lfloor m/e \rfloor + 1, \ldots, m do \mid Compute optimal matching M_i^* = M^*(\{z_1, \ldots, z_l\}, Y) using \mathcal{A} if \{z_i, y\} \in M_i^* for some y \in Y then \mid Set M \leftarrow M \cup \{z_i, y\} if y is unmatched in M. end end return M
```



• Bidder might have incentive to misreport true valuations, as, in the offline matching M_i^* she is matched up with item already assigned to an earlier bidder.

Strategyproof online mechanism

Theorem (Reiffenhäuser, 2019)

There exists a strategyproof $\frac{1}{e}$ -approximation for the online bipartite matching problem with uniform random arrivals of the bidders.

Mechanism keeps track of items $J \subseteq M$ not yet allocated.

 Upon arrival of bidder z_i, it computes VCG-price for every unallocated item in J:

$$p_j(k) = \mathsf{OPT}(\{z_1, \dots, z_{i-1}\}, J) - \mathsf{OPT}(\{z_1, \dots, z_{i-1}\}, J \setminus \{j\}).$$

• If there exists at least one item $j \in J$ for which $b_{ij} \ge p_j(k)$, then we assign an item

$$j^* = \operatorname{argmax}\{b_{ij} - p_j(k) : j \in J\}$$

to bidder i, and set $J = J \setminus \{j^*\}$.

• We charge price $p_{i*}(k)$ to bidder i.

Strategyproof online mechanism

Theorem (Reiffenhäuser, 2019)

There exists a strategyproof $\frac{1}{e}$ -approximation for the online bipartite matching problem with uniform random arrivals of the bidders.

 Although the algorithm is still relatively simple to describe, analysis is much harder.