Topics in Algorithmic Game Theory and Economics

Pieter Kleer

Max Planck Institute for Informatics Saarland Informatics Campus

January 6, 2020

Lecture 7 Online Selection Problems

(Offline) selection problems

Given is

Given is

• Finite set of elements $E = \{e_1, \ldots, e_m\}.$

Given is

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.

Given is

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of (downward-closed) feasible subsets

$$
\mathcal{F}\subseteq 2^E=\{X:X\subseteq E\}.
$$

Given is

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of (downward-closed) feasible subsets

$$
\mathcal{F}\subseteq 2^E=\{X:X\subseteq E\}.
$$

Goal: Compute (in poly-time) feasible subset *X* ⊆ *E* maximizing $w(X) := \sum_{e \in X} w(e).$

Given is

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of (downward-closed) feasible subsets

$$
\mathcal{F}\subseteq 2^E=\{X:X\subseteq E\}.
$$

Goal: Compute (in poly-time) feasible subset *X* ⊆ *E* maximizing $w(X) := \sum_{e \in X} w(e).$

$$
\begin{array}{ll}\n\text{max} & \sum_{e \in X} w(e) \\
\text{subject to} & X \in \mathcal{F}.\n\end{array}
$$

Given is

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of (downward-closed) feasible subsets

$$
\mathcal{F}\subseteq 2^E=\{X:X\subseteq E\}.
$$

Goal: Compute (in poly-time) feasible subset $X \subseteq E$ maximizing $w(X) := \sum_{e \in X} w(e).$

Combinatorial examples of \mathcal{F} :

Given is

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of (downward-closed) feasible subsets

$$
\mathcal{F}\subseteq 2^E=\{X:X\subseteq E\}.
$$

Goal: Compute (in poly-time) feasible subset $X \subseteq E$ maximizing $w(X) := \sum_{e \in X} w(e).$

Combinatorial examples of \mathcal{F} :

• Spanning trees in given graph;

Given is

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of (downward-closed) feasible subsets

$$
\mathcal{F}\subseteq 2^E=\{X:X\subseteq E\}.
$$

Goal: Compute (in poly-time) feasible subset *X* ⊆ *E* maximizing $w(X) := \sum_{e \in X} w(e).$

Combinatorial examples of \mathcal{F} :

- Spanning trees in given graph;
- Bases of a matroid;

Given is

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of (downward-closed) feasible subsets

$$
\mathcal{F}\subseteq 2^E=\{X:X\subseteq E\}.
$$

Goal: Compute (in poly-time) feasible subset $X \subseteq E$ maximizing $w(X) := \sum_{e \in X} w(e).$

Combinatorial examples of \mathcal{F} :

- Spanning trees in given graph;
- Bases of a matroid;
- Matchings in given (bipartite) graph. $\frac{3}{3}$ 3131

Some examples

Maximum weight spanning tree

Given is undirected graph $G = (V, E)$ with edge-weight function $w: E \to \mathbb{R}_{\geq 0}$.

Given is undirected graph $G = (V, E)$ with edge-weight function $w : E \to \mathbb{R}_{\geq 0}$. Feasible sets in *F* are spanning trees of *G*.

Given is undirected graph $G = (V, E)$ with edge-weight function $w : E \to \mathbb{R}_{\geq 0}$. Feasible sets in *F* are spanning trees of *G*.

• Subgraph connecting all nodes and not having cycles.

Given is undirected graph $G = (V, E)$ with edge-weight function $w : E \to \mathbb{R}_{\geq 0}$. Feasible sets in *F* are spanning trees of *G*.

• Subgraph connecting all nodes and not having cycles.

Given is undirected graph $G = (V, E)$ with edge-weight function $w : E \to \mathbb{R}_{\geq 0}$. Feasible sets in *F* are spanning trees of *G*.

• Subgraph connecting all nodes and not having cycles.

More general, compute maximum weight base of matroid.

Given is undirected graph $G = (V, E)$ with edge-weight function $w : E \to \mathbb{R}_{>0}$. Feasible sets in *F* are spanning trees of *G*.

• Subgraph connecting all nodes and not having cycles.

More general, compute maximum weight base of matroid.

Remember that $M = (E, F)$ is matroid if:

Given is undirected graph $G = (V, E)$ with edge-weight function $w : E \to \mathbb{R}_{>0}$. Feasible sets in *F* are spanning trees of *G*.

• Subgraph connecting all nodes and not having cycles.

More general, compute maximum weight base of matroid.

Remember that $M = (E, F)$ is matroid if:

o Downward-closed: $A \in \mathcal{F}$ and $B \subset A \Rightarrow B \in \mathcal{F}$,

Given is undirected graph $G = (V, E)$ with edge-weight function $w : E \to \mathbb{R}_{\geq 0}$. Feasible sets in *F* are spanning trees of *G*.

• Subgraph connecting all nodes and not having cycles.

More general, compute maximum weight base of matroid.

Remember that $M = (E, F)$ is matroid if:

- *o Downward-closed:* $A \in \mathcal{F}$ and $B \subset A \Rightarrow B \in \mathcal{F}$,
- *Augmentation property*:

A, $C \in \mathcal{F}$ and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{F}$.

Rename edges such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Rename edges such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm (for spanning trees)

Set $X = \emptyset$.

Rename edges such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm (for spanning trees)

Set $X = \emptyset$. For $i = 1, \ldots, m$:

Rename edges such that $w_1 > w_2 > \cdots > w_m > 0$.

Greedy algorithm (for spanning trees)

Set $X = \emptyset$. For $i = 1, \ldots, m$:

If $X + e_i$ does not contain a cycle, set $X = X + e_i$.

Rename edges such that $w_1 > w_2 > \cdots > w_m > 0$.

Greedy algorithm (for spanning trees)

- Set $X = \emptyset$. For $i = 1, \ldots, m$:
	- If $X + e_i$ does not contain a cycle, set $X = X + e_i$.

Rename edges such that $w_1 > w_2 > \cdots > w_m > 0$.

Greedy algorithm (for spanning trees)

- Set $X = \emptyset$. For $i = 1, \ldots, m$:
	- If $X + e_i$ does not contain a cycle, set $X = X + e_i$.

Rename edges such that $w_1 > w_2 > \cdots > w_m > 0$.

Greedy algorithm (for spanning trees)

- Set $X = \emptyset$. For $i = 1, \ldots, m$:
	- If $X + e_i$ does not contain a cycle, set $X = X + e_i$.

Rename edges such that $w_1 > w_2 > \cdots > w_m > 0$.

Greedy algorithm (for spanning trees)

- Set $X = \emptyset$. For $i = 1, \ldots, m$:
	- If $X + e_i$ does not contain a cycle, set $X = X + e_i$.

Rename edges such that $w_1 > w_2 > \cdots > w_m > 0$.

Greedy algorithm (for spanning trees)

Set
$$
X = \emptyset
$$
. For $i = 1, ..., m$:

If $X + e_i$ does not contain a cycle, set $X = X + e_i$.

Rename edges such that $w_1 > w_2 > \cdots > w_m > 0$.

Greedy algorithm (for spanning trees)

- Set $X = \emptyset$. For $i = 1, \ldots, m$:
	- If $X + e_i$ does not contain a cycle, set $X = X + e_i$.

Rename edges such that $w_1 > w_2 > \cdots > w_m > 0$.

Greedy algorithm (for spanning trees)

Set
$$
X = \emptyset
$$
. For $i = 1, ..., m$:

If $X + e_i$ does not contain a cycle, set $X = X + e_i$.

As the weights are non-negative, the output of the greedy algorithm is always a maximum weight spanning tree.

Maximum weight bipartite matching

Maximum weight bipartite matching

Example

Maximum weight bipartite matching

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{ \{y, z\} : y \in Y, z \in Z \}.$

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{ \{y, z\} : y \in Y, z \in Z \}.$

• Edge weight function $w : E \to \mathbb{R}_{\geq 0}$.

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{ \{y, z\} : y \in Y, z \in Z \}.$

- Edge weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Feasible sets are (bipartite) matchings of *B*.

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{\{y, z\} : y \in Y, z \in Z\}.$

- **Edge weight function** $w : E \to \mathbb{R}_{\geq 0}$ **.**
- Feasible sets are (bipartite) matchings of *B*.
	- Matching *M* ⊆ *E* is set of edges where every node is incident to at most one edge from *M*:

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{\{y, z\} : y \in Y, z \in Z\}.$

- **Edge weight function** $w : E \to \mathbb{R}_{\geq 0}$ **.**
- Feasible sets are (bipartite) matchings of *B*.
	- Matching *M* ⊆ *E* is set of edges where every node is incident to at most one edge from *M*: $|\{e \in M : e \cap \{v\}\}| < 1 \ \forall v \in Y \cup Z$.

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{\{y, z\} : y \in Y, z \in Z\}.$

- **Edge weight function** $w : E \to \mathbb{R}_{\geq 0}$ **.**
- Feasible sets are (bipartite) matchings of *B*.
	- Matching *M* ⊆ *E* is set of edges where every node is incident to at most one edge from *M*: $|\{e \in M : e \cap \{v\}\}| < 1 \ \forall v \in Y \cup Z$.

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{\{y, z\} : y \in Y, z \in Z\}.$

- **Edge weight function** $w : E \to \mathbb{R}_{\geq 0}$ **.**
- Feasible sets are (bipartite) matchings of *B*.
	- Matching *M* ⊆ *E* is set of edges where every node is incident to at most one edge from *M*: $|\{e \in M : e \cap \{v\}\}| < 1 \ \forall v \in Y \cup Z$.

Poly-time algorithms known for solving maximum matching problem.

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{ \{y, z\} : y \in Y, z \in Z \}.$

- **Edge weight function** $w : E \to \mathbb{R}_{\geq 0}$ **.**
- Feasible sets are (bipartite) matchings of *B*.
	- Matching *M* ⊆ *E* is set of edges where every node is incident to at most one edge from *M*: $|\{e \in M : e \cap \{v\}\}| \leq 1 \ \forall v \in Y \cup Z$.

Poly-time algorithms known for solving maximum matching problem.

• Linear programming can be used.

Given bipartite graph $B = (Y \cup Z, E)$ with $E = \{\{y, z\} : y \in Y, z \in Z\}.$

- **Edge weight function** $w : E \to \mathbb{R}_{\geq 0}$ **.**
- Feasible sets are (bipartite) matchings of *B*.
	- Matching *M* ⊆ *E* is set of edges where every node is incident to at most one edge from *M*: $|\{e \in M : e \cap \{v\}\}| < 1 \ \forall v \in Y \cup Z$.

Poly-time algorithms known for solving maximum matching problem.

- Linear programming can be used.
- Well-known combinatorial algorithm: Hungarian method.

Sometimes solving the program

$$
OPT = \max \qquad \sum_{e \in X} w(e)
$$

subject to $X \in \mathcal{F}$.

is NP-complete.

Sometimes solving the program

$$
OPT = \max \qquad \sum_{e \in X} w(e)
$$

subject to $X \in \mathcal{F}$.

is NP-complete.

For example, Traveling Salesman Problem (TSP).

Sometimes solving the program

$$
OPT = \max \qquad \qquad \sum_{e \in X} w(e) \n \text{subject to} \qquad X \in \mathcal{F}.
$$

is NP-complete.

For example, Traveling Salesman Problem (TSP).

Therefore, we also study (constant-factor) α -approximation algorithms:

Sometimes solving the program

$$
OPT = \max \qquad \qquad \sum_{e \in X} w(e) \n \text{subject to} \qquad X \in \mathcal{F}.
$$

is NP-complete.

For example, Traveling Salesman Problem (TSP).

Therefore, we also study (constant-factor) α -approximation algorithms:

Goal: Compute (in poly-time) $X \in \mathcal{F}$ such that

$$
w(X) := \sum_{e \in X} w(e) \geq \alpha \cdot \mathsf{OPT}.
$$

Given is

- Finite set of elements $E = \{e_1, \ldots, e_m\},\$
- Weight function $w : E \to \mathbb{R}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Given is

- Finite set of elements $E = \{e_1, \ldots, e_m\},\$
- Weight function $w : E \to \mathbb{R}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Remark

In general, we assume to have a feasibility oracle for \mathcal{F} :

Given is

- Finite set of elements $E = \{e_1, \ldots, e_m\}$,
- Weight function $w : E \to \mathbb{R}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Remark

In general, we assume to have a feasibility oracle for \mathcal{F} : Given $X \subset E$, oracle tells us whether $X \in \mathcal{F}$ or not, i.e., whether X is feasible.

Given is

- Finite set of elements $E = \{e_1, \ldots, e_m\}$,
- Weight function $w : E \to \mathbb{R}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Remark

In general, we assume to have a feasibility oracle for \mathcal{F} : Given $X \subset E$, oracle tells us whether $X \in \mathcal{F}$ or not, i.e., whether X is feasible.

Computational complexity measured in terms of *m*, representation size of weights *w*(*e*), and number of oracle calls.

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Online selection problem

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

• Permutation of elements, e.g., (e_4, e_2, e_1, e_3) .

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

- Permutation of elements, e.g., (e_4, e_2, e_1, e_3) .
- For $i = 1, \ldots, m$, upon arrival of element $\sigma(i)$:

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

- Permutation of elements, e.g., (e_4, e_2, e_1, e_3) .
- For $i = 1, \ldots, m$, upon arrival of element $\sigma(i)$:
	- Weight $\mathsf{w}_{\sigma(i)}$ is revealed.

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

• Permutation of elements, e.g., (e_4, e_2, e_1, e_3) .

For $i = 1, \ldots, m$, upon arrival of element $\sigma(i)$:

- Weight $\mathsf{w}_{\sigma(i)}$ is revealed.
- **•** Decide (irrevocably) whether to select or reject $\sigma(i)$.

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

• Permutation of elements, e.g., (e_4, e_2, e_1, e_3) .

For $i = 1, \ldots, m$, upon arrival of element $\sigma(i)$:

- Weight $\mathsf{w}_{\sigma(i)}$ is revealed.
- **•** Decide (irrevocably) whether to select or reject $\sigma(i)$.

Goal: Select feasible subset $X \in \mathcal{F}$ *maximizing* $w(X) = \sum_{e \in X} w(e)$ *.*

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

• Permutation of elements, e.g., (e_4, e_2, e_1, e_3) .

For $i = 1, \ldots, m$, upon arrival of element $\sigma(i)$:

- Weight $\mathsf{w}_{\sigma(i)}$ is revealed.
- **•** Decide (irrevocably) whether to select or reject $\sigma(i)$.

Goal: Select feasible subset $X \in \mathcal{F}$ *maximizing* $w(X) = \sum_{e \in X} w(e)$ *.*

• Algorithm knows F up front (or has oracle access)

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}.$
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Collection of feasible subsets $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}.$

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

• Permutation of elements, e.g., (e_4, e_2, e_1, e_3) .

For $i = 1, \ldots, m$, upon arrival of element $\sigma(i)$:

- Weight $\mathsf{w}_{\sigma(i)}$ is revealed.
- **•** Decide (irrevocably) whether to select or reject $\sigma(i)$.

Goal: Select feasible subset $X \in \mathcal{F}$ *maximizing* $w(X) = \sum_{e \in X} w(e)$ *.*

- Algorithm knows F up front (or has oracle access)
- It has to base decisions only on elements and weights seen so far!

Given is undirected graph $G = (V, E)$.

Given is undirected graph $G = (V, E)$.

Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

● Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

● Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

● Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

● Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

● Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

● Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

● Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

• Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

• Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

• Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

• Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

• Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

• Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

● Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

● Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

● Edges in *E* arrive one by one in unknown order.

Given is undirected graph $G = (V, E)$.

● Edges in *E* arrive one by one in unknown order.

Want to select collection of edges of maximum weight that does not contain a cycle (i.e., a spanning tree).

• In general, output might not be spanning tree!

Given is undirected graph $G = (V, E)$.

Edges in *E* arrive one by one in unknown order.

Want to select collection of edges of maximum weight that does not contain a cycle (i.e., a spanning tree).

• In general, output might not be spanning tree!

• We might reject too many edges.

Given is undirected graph $G = (V, E)$.

Edges in *E* arrive one by one in unknown order.

Want to select collection of edges of maximum weight that does not contain a cycle (i.e., a spanning tree).

• In general, output might not be spanning tree!

• We might reject too many edges.

Without any prior knowledge of arrival order or element weights (that still have to arrive),

Given is undirected graph $G = (V, E)$.

Edges in *E* arrive one by one in unknown order.

Want to select collection of edges of maximum weight that does not contain a cycle (i.e., a spanning tree).

• In general, output might not be spanning tree!

• We might reject too many edges.

Without any prior knowledge of arrival order or element weights (that still have to arrive), not much is possible algorithmically.

Online selection problems

Uniform random arrivals

Elements arrive in uniform random order σ .

Elements arrive in uniform random order σ .

• There are $m! = m(m-1)\cdots 1$ orderings.

Elements arrive in uniform random order σ .

• There are $m! = m(m-1)\cdots 1$ orderings. Probability that elements arrive in order σ is $\frac{1}{m!}$ for every σ .

Elements arrive in uniform random order σ .

• There are $m! = m(m-1)\cdots 1$ orderings. Probability that elements arrive in order σ is $\frac{1}{m!}$ for every σ .

Example

Suppose we have $E = \{a, b, c\}$,

Elements arrive in uniform random order σ .

• There are $m! = m(m-1)\cdots 1$ orderings. Probability that elements arrive in order σ is $\frac{1}{m!}$ for every σ .

Example

Suppose we have $E = \{a, b, c\}$, then possible arrival orderings are $\sigma \in \{(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)\}.$

Elements arrive in uniform random order σ .

• There are $m! = m(m-1)\cdots 1$ orderings. Probability that elements arrive in order σ is $\frac{1}{m!}$ for every σ .

Example

Suppose we have $E = \{a, b, c\}$, then possible arrival orderings are $\sigma \in \{(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)\}.$ Probability of seeing given ordering σ is 1/6.

Elements arrive in uniform random order σ .

• There are $m! = m(m-1)\cdots 1$ orderings. Probability that elements arrive in order σ is $\frac{1}{m!}$ for every σ .

Example

Suppose we have $E = \{a, b, c\}$, then possible arrival orderings are $\sigma \in \{(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)\}.$ Probability of seeing given ordering σ is 1/6.

Goal: Give a (possibly randomized) α -approximation A, i.e., $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] \geq \alpha \cdot \mathsf{OPT}$

Ideally, $0 < \alpha < 1$ is constant.

- \bullet OPT = max $_{X \in \mathcal{F}} w(X)$ is the offline optimum.
- $w(\mathcal{A}(\sigma))$ is (expected) weight of set outputted by $\mathcal{A}(\sigma)$.

Elements arrive in uniform random order σ .

• There are $m! = m(m-1)\cdots 1$ orderings. Probability that elements arrive in order σ is $\frac{1}{m!}$ for every σ .

Example

Suppose we have $E = \{a, b, c\}$, then possible arrival orderings are $\sigma \in \{(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)\}.$ Probability of seeing given ordering σ is 1/6.

Goal: Give a (possibly randomized) α -approximation A, i.e., $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha \cdot \mathsf{OPT}$

Ideally, $0 < \alpha < 1$ is constant.

- \bullet OPT = max $_{X \in \mathcal{F}} w(X)$ is the offline optimum.
- $w(\mathcal{A}(\sigma))$ is (expected) weight of set outputted by $\mathcal{A}(\sigma)$.

• Polynomial running time is also desired, although not required. $14/31$

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] \geq \alpha \cdot \mathsf{OPT}$

Ideally, $0 < \alpha < 1$ is constant.

- \bullet OPT = max $_{X \in \mathcal{F}} w(X)$ is the offline optimum
- $w(A(\sigma))$ is (expected) weight of set outputted by $A(\sigma)$.

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha \cdot \mathsf{OPT}$

Ideally, $0 < \alpha < 1$ is constant.

- \bullet OPT = max $_{X \in \mathcal{F}} w(X)$ is the offline optimum
- $w(\mathcal{A}(\sigma))$ is (expected) weight of set outputted by $\mathcal{A}(\sigma)$.

Polynomial running time is also desired, although not required.

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha \cdot \mathsf{OPT}$

Ideally, $0 < \alpha < 1$ is constant.

- \bullet OPT = max $_{X \in \mathcal{F}} w(X)$ is the offline optimum
- *w*($A(\sigma)$) is (expected) weight of set outputted by $A(\sigma)$.
- Polynomial running time is also desired, although not required.

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha \cdot \mathsf{OPT}$

Ideally, $0 < \alpha < 1$ is constant.

- \bullet OPT = max $_{X \in \mathcal{F}} w(X)$ is the offline optimum
- *w*($A(\sigma)$) is (expected) weight of set outputted by $A(\sigma)$.
- Polynomial running time is also desired, although not required.

For offline problem:

There is trivial $O(2^m)$ time algorithm for computing OPT.

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha \cdot \mathsf{OPT}$

Ideally, $0 < \alpha < 1$ is constant.

- \bullet OPT = max $_{X \in \mathcal{F}} w(X)$ is the offline optimum
- *w*($A(\sigma)$) is (expected) weight of set outputted by $A(\sigma)$.
- Polynomial running time is also desired, although not required.

- There is trivial $O(2^m)$ time algorithm for computing OPT.
	- Simply check weight of every *X* ∈ $\mathcal{F} = \{X : X \subseteq E\}.$

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha \cdot \mathsf{OPT}$

Ideally, $0 < \alpha < 1$ is constant.

- \bullet OPT = max $_{X \in \mathcal{F}} w(X)$ is the offline optimum
- *w*($A(\sigma)$) is (expected) weight of set outputted by $A(\sigma)$.
- Polynomial running time is also desired, although not required.

- There is trivial $O(2^m)$ time algorithm for computing OPT.
	- Simply check weight of every *X* ∈ $\mathcal{F} = \{X : X \subseteq E\}.$
	- Remember that $|E| = m$.

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha \cdot \mathsf{OPT}$

Ideally, $0 < \alpha < 1$ is constant.

- \bullet OPT = max $_{X \in \mathcal{F}} w(X)$ is the offline optimum
- *w*($A(\sigma)$) is (expected) weight of set outputted by $A(\sigma)$.
- Polynomial running time is also desired, although not required.

- There is trivial $O(2^m)$ time algorithm for computing OPT.
	- Simply check weight of every *X* ∈ $\mathcal{F} = \{X : X \subseteq E\}.$
	- Remember that $|E| = m$.
- Therefore, goal is to find poly-time algorithm for OPT.

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] > \alpha \cdot \mathsf{OPT}$

Ideally, $0 < \alpha < 1$ is constant.

- \bullet OPT = max $_{X \in \mathcal{F}} w(X)$ is the offline optimum
- *w*($A(\sigma)$) is (expected) weight of set outputted by $A(\sigma)$.
- Polynomial running time is also desired, although not required.

For offline problem:

- There is trivial $O(2^m)$ time algorithm for computing OPT.
	- Simply check weight of every *X* ∈ $\mathcal{F} = \{X : X \subseteq E\}.$
	- Remember that $|E| = m$.
- Therefore, goal is to find poly-time algorithm for OPT.

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] \geq \alpha \cdot \mathsf{OPT}$

Ideally, $0 < \alpha < 1$ is constant.

- \bullet OPT = max $_{X \in \mathcal{F}} w(X)$ is the offline optimum
- $w(A(\sigma))$ is (expected) weight of set outputted by $A(\sigma)$.
- Polynomial running time is also desired, although not required.

For offline problem:

- There is trivial $O(2^m)$ time algorithm for computing OPT.
	- Simply check weight of every *X* ∈ $\mathcal{F} = \{X : X \subseteq E\}.$
	- Remember that $|E| = m$.
- Therefore, goal is to find poly-time algorithm for OPT.

For online problem:

• (Exponential time) algorithm choosing, for every ordering σ , an X with maximum weight is impossible.

 $\mathbb{E}_{\sigma}[\mathbf{w}(\mathcal{A}(\sigma))] \geq \alpha \cdot \mathsf{OPT}$

Ideally, $0 < \alpha < 1$ is constant.

- \bullet OPT = max $_{X \in \mathcal{F}} w(X)$ is the offline optimum
- *w*($A(\sigma)$) is (expected) weight of set outputted by $A(\sigma)$.
- Polynomial running time is also desired, although not required.

For offline problem:

- There is trivial $O(2^m)$ time algorithm for computing OPT.
	- Simply check weight of every *X* ∈ $\mathcal{F} = \{X : X \subseteq E\}.$
	- Remember that $|E| = m$.
- Therefore, goal is to find poly-time algorithm for OPT.

- \bullet (Exponential time) algorithm choosing, for every ordering σ , an X with maximum weight is impossible.
- **Even finding (exponential time)** α -approximation is non-trivial.

Formal requirements for (online) algorithm A**:**

Takes as input deterministic ordering (x_1, \ldots, x_m) and weights W_{X_1}, \ldots, W_{X_m} .

Formal requirements for (online) algorithm A**:**

Takes as input deterministic ordering (x_1, \ldots, x_m) and weights W_{X_1}, \ldots, W_{X_m} .

Specifies for every $i = 1, \ldots, m$ whether or not it selects x_i .

Formal requirements for (online) algorithm A**:**

Takes as input deterministic ordering (x_1, \ldots, x_m) and weights W_{X_1}, \ldots, W_{X_m} .

- Specifies for every $i = 1, \ldots, m$ whether or not it selects x_i .
- For given *i*, this YES-NO decision is a (randomized) function of:
- Specifies for every $i = 1, \ldots, m$ whether or not it selects x_i .
- For given *i*, this YES-NO decision is a (randomized) function of:
	- Total number of elements *m*.

- Specifies for every $i = 1, \ldots, m$ whether or not it selects x_i .
- For given *i*, this YES-NO decision is a (randomized) function of:
	- Total number of elements *m*.
	- Elements *x*1, . . . , *xi*−1.

- Specifies for every $i = 1, \ldots, m$ whether or not it selects x_i .
- For given *i*, this YES-NO decision is a (randomized) function of:
	- Total number of elements *m*.
	- Elements *x*1, . . . , *xi*−1.
	- Weights $w_{x_1}, \ldots, w_{x_{i-1}}.$

- Specifies for every $i = 1, \ldots, m$ whether or not it selects x_i .
- For given *i*, this YES-NO decision is a (randomized) function of:
	- Total number of elements *m*.
	- Elements *x*1, . . . , *xi*−1.
	- Weights *w_{x₁*,…, *w_{x_{i−1}*.}}
	- The order (x_1, \ldots, x_i) .

- Specifies for every $i = 1, \ldots, m$ whether or not it selects x_i .
- For given *i*, this YES-NO decision is a (randomized) function of:
	- Total number of elements *m*.
	- Elements *x*1, . . . , *xi*−1.
	- Weights *w_{x₁*,…, *w_{x_{i−1}*.}}
	- The order (x_1, \ldots, x_i) .
		- Last aspect is usually irrelevant.

- Specifies for every $i = 1, \ldots, m$ whether or not it selects x_i .
- For given *i*, this YES-NO decision is a (randomized) function of:
	- Total number of elements *m*.
	- Elements *x*1, . . . , *xi*−1.
	- Weights *w_{x₁*,…, *w_{x_{i−1}*.}}
	- The order (x_1, \ldots, x_i) .
		- Last aspect is usually irrelevant.

If we would (again) drop the assumption of a uniform random arrival order,

If we would (again) drop the assumption of a uniform random arrival order, the performance quarantee of A can be defined w.r.t. worst-case ordering.

If we would (again) drop the assumption of a uniform random arrival order, the performance quarantee of A can be defined w.r.t. worst-case ordering. Then A is called α -approximation if

If we would (again) drop the assumption of a uniform random arrival order, the performance quarantee of A can be defined w.r.t. worst-case ordering. Then A is called α -approximation if

 $\min_{\sigma} w(A(\sigma)) > \alpha \cdot \text{OPT}$,

If we would (again) drop the assumption of a uniform random arrival order, the performance quarantee of A can be defined w.r.t. worst-case ordering. Then A is called α -approximation if

 $\min_{\sigma} w(A(\sigma)) > \alpha \cdot \text{OPT}$,

again with OPT = $max_{X \in \mathcal{F}} w(X)$ the offline optimum.

If we would (again) drop the assumption of a uniform random arrival order, the performance quarantee of A can be defined w.r.t. worst-case ordering. Then A is called α -approximation if

 $\min_{\sigma} w(A(\sigma)) > \alpha \cdot \text{OPT}$,

again with OPT = $max_{X \in \mathcal{F}} w(X)$ the offline optimum.

• In worst-case arrival setting, no constant-factor algorithm exists.

Online selection problems

Uniform random arrivals: Secretary problem

• Elements (secretaries) $E = \{e_1, \ldots, e_n\}$ arrive one by one.

• Elements (secretaries) $E = \{e_1, \ldots, e_n\}$ arrive one by one. • Uniform random arrival order $\sigma = (\sigma(1), \ldots, \sigma(m))$

- Elements (secretaries) $E = \{e_1, \ldots, e_n\}$ arrive one by one.
	- Uniform random arrival order $\sigma = (\sigma(1), \ldots, \sigma(m))$
	- \bullet *σ* is permutation of elements { e_1, \ldots, e_n }.

- Elements (secretaries) $E = \{e_1, \ldots, e_n\}$ arrive one by one.
	- Uniform random arrival order $\sigma = (\sigma(1), \ldots, \sigma(m))$
	- \bullet *σ* is permutation of elements { e_1, \ldots, e_n }.
- Weight $w_{\sigma(i)}$ revealed upon arrival of $\sigma(i).$

- Elements (secretaries) $E = \{e_1, \ldots, e_n\}$ arrive one by one.
	- Uniform random arrival order $\sigma = (\sigma(1), \ldots, \sigma(m))$
	- \bullet σ is permutation of elements $\{e_1, \ldots, e_n\}.$
- Weight $w_{\sigma(i)}$ revealed upon arrival of $\sigma(i).$
- **•** Irrevocably decide whether to select or reject $\sigma(i)$.

- Elements (secretaries) $E = \{e_1, \ldots, e_n\}$ arrive one by one.
	- Uniform random arrival order $\sigma = (\sigma(1), \ldots, \sigma(m))$
	- \bullet σ is permutation of elements $\{e_1, \ldots, e_n\}$.
- Weight $w_{\sigma(i)}$ revealed upon arrival of $\sigma(i).$
- **•** Irrevocably decide whether to select or reject $\sigma(i)$.

Goal: Select a secretary with maximum weight $w^* = \max_i w_i$.

- Elements (secretaries) $E = \{e_1, \ldots, e_n\}$ arrive one by one.
	- Uniform random arrival order $\sigma = (\sigma(1), \ldots, \sigma(m))$
	- \bullet σ is permutation of elements $\{e_1, \ldots, e_n\}$.
- Weight $w_{\sigma(i)}$ revealed upon arrival of $\sigma(i).$
- **•** Irrevocably decide whether to select or reject $\sigma(i)$.

Goal: Select a secretary with maximum weight $w^* = \max_i w_i$.

• Formally speaking, we have $\mathcal{F} = \{ \{e_1\}, \{e_2\}, \ldots, \{e_m\} \}.$

- Elements (secretaries) $E = \{e_1, \ldots, e_n\}$ arrive one by one.
	- Uniform random arrival order $\sigma = (\sigma(1), \ldots, \sigma(m))$
	- \bullet σ is permutation of elements $\{e_1, \ldots, e_n\}.$
- Weight $w_{\sigma(i)}$ revealed upon arrival of $\sigma(i).$
- **•** Irrevocably decide whether to select or reject $\sigma(i)$.

Goal: Select a secretary with maximum weight $w^* = \max_i w_i$.

• Formally speaking, we have $\mathcal{F} = \{ \{e_1\}, \{e_2\}, \ldots, \{e_m\} \}.$

Theorem (Lindley (1961) and Dynkin (1963))

There is a $\left(\frac{1}{e} - \frac{1}{m}\right)$ *m*)*-approximation algorithm for the (weight maximization) secretary problem.*

- Elements (secretaries) $E = \{e_1, \ldots, e_n\}$ arrive one by one.
	- Uniform random arrival order $\sigma = (\sigma(1), \ldots, \sigma(m))$
	- \bullet σ is permutation of elements $\{e_1, \ldots, e_n\}.$
- Weight $w_{\sigma(i)}$ revealed upon arrival of $\sigma(i).$
- **•** Irrevocably decide whether to select or reject $\sigma(i)$.

Goal: Select a secretary with maximum weight $w^* = \max_i w_i$.

• Formally speaking, we have $\mathcal{F} = \{ \{e_1\}, \{e_2\}, \ldots, \{e_m\} \}.$

Theorem (Lindley (1961) and Dynkin (1963))

There is a $\left(\frac{1}{e} - \frac{1}{m}\right)$ *m*)*-approximation algorithm for the (weight maximization) secretary problem.*

Side note: Original version of secretary problem asks for maximizing probability with which best element is selected.

- Elements (secretaries) $E = \{e_1, \ldots, e_n\}$ arrive one by one.
	- Uniform random arrival order $\sigma = (\sigma(1), \ldots, \sigma(m))$
	- \bullet σ is permutation of elements $\{e_1, \ldots, e_n\}$.
- Weight $w_{\sigma(i)}$ revealed upon arrival of $\sigma(i).$
- **•** Irrevocably decide whether to select or reject $\sigma(i)$.

Goal: Select a secretary with maximum weight $w^* = \max_i w_i$.

• Formally speaking, we have $\mathcal{F} = \{ \{e_1\}, \{e_2\}, \ldots, \{e_m\} \}.$

Theorem (Lindley (1961) and Dynkin (1963))

There is a $\left(\frac{1}{e} - \frac{1}{m}\right)$ *m*)*-approximation algorithm for the (weight maximization) secretary problem.*

Side note: Original version of secretary problem asks for maximizing probability with which best element is selected. If one picks maximum weight element with prob. $\geq \frac{1}{e}$,

- Elements (secretaries) $E = \{e_1, \ldots, e_n\}$ arrive one by one.
	- Uniform random arrival order $\sigma = (\sigma(1), \ldots, \sigma(m))$
	- \bullet σ is permutation of elements $\{e_1, \ldots, e_n\}.$
- Weight $w_{\sigma(i)}$ revealed upon arrival of $\sigma(i).$
- **•** Irrevocably decide whether to select or reject $\sigma(i)$.

Goal: Select a secretary with maximum weight $w^* = \max_i w_i$.

• Formally speaking, we have $\mathcal{F} = \{ \{e_1\}, \{e_2\}, \ldots, \{e_m\} \}.$

Theorem (Lindley (1961) and Dynkin (1963))

There is a $\left(\frac{1}{e} - \frac{1}{m}\right)$ *m*)*-approximation algorithm for the (weight maximization) secretary problem.*

- **Side note:** Original version of secretary problem asks for maximizing probability with which best element is selected.
	- If one picks maximum weight element with prob. $\geq \frac{1}{e}$, then expected weight of chosen element is $\geq \frac{1}{e}w^*$.

Phase I (Observation):

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\dots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\dots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\dots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

- $\operatorname{\sf Set}$ threshold $t = \max_{j=1,...,\lfloor\frac{m}{e}\rfloor} \mathsf{W}_{\sigma(j)}.$
- For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\ldots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\dots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\dots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\dots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\dots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

If in future statements we write $\frac{m}{e}$, we mean $\lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$].

20 / 31

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\dots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

If in future statements we write $\frac{m}{e}$, we mean $\lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$].

20 / 31

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\dots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\dots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\dots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\dots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

Phase I (Observation):

For $i = 1, \ldots, \lfloor \frac{m}{e} \rfloor$ $\frac{m}{e}$]: Do not select $\sigma(i)$.

Phase II (Selection):

• Set threshold
$$
t = \max_{j=1,\dots,\lfloor \frac{m}{e} \rfloor} W_{\sigma(j)}
$$
.

For $i = \lfloor \frac{m}{e} \rfloor$ $\left\lfloor \frac{m}{e} \right\rfloor +1, \ldots, n$: If $w_{\sigma(i)} \geq t,$ select $\sigma(i)$ and STOP.

Consider $w^* = \max_i w_i$ (assume w.l.o.g. that weights are distinct).

Consider $w^* = \max_i w_i$ (assume w.l.o.g. that weights are distinct).

• For readability, we assume (wrongfully) that $r = m/e$ is integer.

Consider $w^* = \max_i w_i$ (assume w.l.o.g. that weights are distinct).

- For readability, we assume (wrongfully) that $r = m/e$ is integer.
	- Simple adjustments to analysis suffice to deal with this issue.

Consider $w^* = \max_i w_i$ (assume w.l.o.g. that weights are distinct).

- For readability, we assume (wrongfully) that $r = m/e$ is integer.
	- Simple adjustments to analysis suffice to deal with this issue.

Claim: Secretary algorithm is $\approx \frac{1}{e}$ *e* -approximation for *w* ∗ .

Consider $w^* = \max_i w_i$ (assume w.l.o.g. that weights are distinct).

- For readability, we assume (wrongfully) that $r = m/e$ is integer.
	- Simple adjustments to analysis suffice to deal with this issue.

Claim: Secretary algorithm is $\approx \frac{1}{e}$ *e* -approximation for *w* ∗ .

Consider $w^* = \max_i w_i$ (assume w.l.o.g. that weights are distinct). • For readability, we assume (wrongfully) that $r = m/e$ is integer. Simple adjustments to analysis suffice to deal with this issue.

Claim: Secretary algorithm is $\approx \frac{1}{e}$ *e* -approximation for *w* ∗ .

Consider $w^* = \max_i w_i$ (assume w.l.o.g. that weights are distinct). • For readability, we assume (wrongfully) that $r = m/e$ is integer. Simple adjustments to analysis suffice to deal with this issue.

Claim: Secretary algorithm is $\approx \frac{1}{e}$ *e* -approximation for *w* ∗ .

Consider $w^* = \max_i w_i$ (assume w.l.o.g. that weights are distinct). • For readability, we assume (wrongfully) that $r = m/e$ is integer. Simple adjustments to analysis suffice to deal with this issue.

Claim: Secretary algorithm is $\approx \frac{1}{e}$ *e* -approximation for *w* ∗ .

Consider $w^* = \max_i w_i$ (assume w.l.o.g. that weights are distinct). • For readability, we assume (wrongfully) that $r = m/e$ is integer. Simple adjustments to analysis suffice to deal with this issue.

Claim: Secretary algorithm is $\approx \frac{1}{e}$ *e* -approximation for *w* ∗ .

Consider $w^* = \max_i w_i$ (assume w.l.o.g. that weights are distinct). • For readability, we assume (wrongfully) that $r = m/e$ is integer. Simple adjustments to analysis suffice to deal with this issue.

Claim: Secretary algorithm is $\approx \frac{1}{e}$ *e* -approximation for *w* ∗ .

For fixed position $k \geq r + 1$, we select weight w^* at k if

For fixed position $k \geq r + 1$, we select weight w^* at k if **•** Best secretary in $\{1, \ldots, r\}$ is same as best in $\{1, \ldots, k - 1\}$. (Z)

For fixed position $k \geq r + 1$, we select weight w^* at k if **•** Best secretary in $\{1, \ldots, r\}$ is same as best in $\{1, \ldots, k - 1\}$. (Z) For given $k > r + 1$, using uniform random order assumption,

• Best secretary in $\{1, \ldots, r\}$ is same as best in $\{1, \ldots, k - 1\}$. (Z)

For given $k > r + 1$, using uniform random order assumption, this happens with probability

• Best secretary in $\{1, \ldots, r\}$ is same as best in $\{1, \ldots, k - 1\}$. (Z)

For given $k > r + 1$, using uniform random order assumption, this happens with probability

P(*w* [∗] appears at *k* and (*Z*) holds)

• Best secretary in $\{1, \ldots, r\}$ is same as best in $\{1, \ldots, k - 1\}$. (Z)

For given $k > r + 1$, using uniform random order assumption, this happens with probability

 $\mathbb{P}(w^*$ appears at *k* and (*Z*) holds) = $\mathbb{P}(w^*$ appears at $k)\mathbb{P}((Z)$ holds)

• Best secretary in $\{1, \ldots, r\}$ is same as best in $\{1, \ldots, k - 1\}$. (Z)

For given $k > r + 1$, using uniform random order assumption, this happens with probability

 $\mathbb{P}(w^*$ appears at *k* and (*Z*) holds) = $\mathbb{P}(w^*$ appears at $k)\mathbb{P}((Z)$ holds) $=$ $\frac{1}{x}$ *m r* $\frac{1}{k-1}$.

• Best secretary in $\{1, \ldots, r\}$ is same as best in $\{1, \ldots, k - 1\}$. (Z)

For given $k > r + 1$, using uniform random order assumption, this happens with probability

 $\mathbb{P}(w^*$ appears at *k* and (*Z*) holds) = $\mathbb{P}(w^*$ appears at $k)\mathbb{P}((Z)$ holds) $=$ $\frac{1}{x}$ *m r* $\frac{1}{k-1}$.

Exercise: Convince yourself that these events are indeed independent!

• Best secretary in $\{1, \ldots, r\}$ is same as best in $\{1, \ldots, k - 1\}$. (Z)

For given $k > r + 1$, using uniform random order assumption, this happens with probability

 $\mathbb{P}(w^*$ appears at *k* and (*Z*) holds) = $\mathbb{P}(w^*$ appears at $k)\mathbb{P}((Z)$ holds) $=$ $\frac{1}{x}$ *m r* $\frac{1}{k-1}$.

Exercise: Convince yourself that these events are indeed independent! It follows that

• Best secretary in $\{1, \ldots, r\}$ is same as best in $\{1, \ldots, k - 1\}$. (Z)

For given $k > r + 1$, using uniform random order assumption, this happens with probability

 $\mathbb{P}(w^*$ appears at *k* and (*Z*) holds) = $\mathbb{P}(w^*$ appears at $k)\mathbb{P}((Z)$ holds) $=$ $\frac{1}{x}$ *m r* $\frac{1}{k-1}$.

Exercise: Convince yourself that these events are indeed independent! It follows that *m*

$$
\mathbb{P}(w^* \text{ is selected}) = \sum_{k=r+1}^{m} \frac{r}{k-1} \frac{1}{m} = \frac{r}{m} \sum_{k=r}^{m-1} \frac{1}{k}.
$$

$$
\mathbb{P}(w^* \text{ is selected}) = \sum_{k=r+1}^m \frac{r}{k-1} \frac{1}{m} = \frac{r}{m} \sum_{k=r}^{m-1} \frac{1}{k}.
$$

At this point, it becomes a matter of calculus.

$$
\mathbb{P}(w^* \text{ is selected}) = \sum_{k=r+1}^m \frac{r}{k-1} \frac{1}{m} = \frac{r}{m} \sum_{k=r}^{m-1} \frac{1}{k}.
$$

$$
\mathbb{P}(w^* \text{ is selected}) = \sum_{k=r+1}^m \frac{r}{k-1} \frac{1}{m} = \frac{r}{m} \sum_{k=r}^{m-1} \frac{1}{k}.
$$

$$
\frac{r}{m}\sum_{k=r}^{m-1}\frac{1}{k}\approx-\frac{r}{m}\ln\left(\frac{r}{m}\right)\approx\frac{1}{e}\quad\text{for }r=\frac{m}{e}.
$$

$$
\mathbb{P}(w^* \text{ is selected}) = \sum_{k=r+1}^m \frac{r}{k-1} \frac{1}{m} = \frac{r}{m} \sum_{k=r}^{m-1} \frac{1}{k}.
$$

$$
\frac{r}{m}\sum_{k=r}^{m-1}\frac{1}{k}\approx-\frac{r}{m}\ln\left(\frac{r}{m}\right)\approx\frac{1}{e}\quad\text{for }r=\frac{m}{e}.
$$

This completes the analysis.

$$
\mathbb{P}(w^* \text{ is selected}) = \sum_{k=r+1}^m \frac{r}{k-1} \frac{1}{m} = \frac{r}{m} \sum_{k=r}^{m-1} \frac{1}{k}.
$$

$$
\frac{r}{m}\sum_{k=r}^{m-1}\frac{1}{k}\approx-\frac{r}{m}\ln\left(\frac{r}{m}\right)\approx\frac{1}{e}\quad\text{for }r=\frac{m}{e}.
$$

This completes the analysis.

Theorem (Lindley (1961) and Dynkin (1963))

There is a $(\frac{1}{e} - \frac{1}{m})$ *m*)*-approximation algorithm for the (weight maximization) secretary problem.*

$$
\mathbb{P}(w^* \text{ is selected}) = \sum_{k=r+1}^m \frac{r}{k-1} \frac{1}{m} = \frac{r}{m} \sum_{k=r}^{m-1} \frac{1}{k}.
$$

$$
\frac{r}{m}\sum_{k=r}^{m-1}\frac{1}{k}\approx-\frac{r}{m}\ln\left(\frac{r}{m}\right)\approx\frac{1}{e}\quad\text{for }r=\frac{m}{e}.
$$

This completes the analysis.

Theorem (Lindley (1961) and Dynkin (1963))

There is a $(\frac{1}{e} - \frac{1}{m})$ *m*)*-approximation algorithm for the (weight maximization) secretary problem.*

• Factor 1/*e* is also best possible.

$$
\mathbb{P}(w^* \text{ is selected}) = \sum_{k=r+1}^m \frac{r}{k-1} \frac{1}{m} = \frac{r}{m} \sum_{k=r}^{m-1} \frac{1}{k}.
$$

$$
\frac{r}{m}\sum_{k=r}^{m-1}\frac{1}{k}\approx-\frac{r}{m}\ln\left(\frac{r}{m}\right)\approx\frac{1}{e}\quad\text{for }r=\frac{m}{e}.
$$

This completes the analysis.

Theorem (Lindley (1961) and Dynkin (1963))

There is a $(\frac{1}{e} - \frac{1}{m})$ *m*)*-approximation algorithm for the (weight maximization) secretary problem.*

- Factor 1/*e* is also best possible.
- Secretary algorithm is polynomial time algorithm.

Online selection problems

Prophet Inequalities

Bayesian setting (for selecting one element)

Instead of making assumption on arrival order (uniform random), we make assumption on the (unknown) weights of the elements.
Instead of making assumption on arrival order (uniform random), we make assumption on the (unknown) weights of the elements.

In Bayesian setting, we have for every element *i* a probability distribution X_i : $\mathbb{R}_{\geq 0} \to [0, 1]$.

Instead of making assumption on arrival order (uniform random), we make assumption on the (unknown) weights of the elements.

In Bayesian setting, we have for every element *i* a probability distribution X_i : $\mathbb{R}_{\geq 0} \to [0, 1]$.

You may also think of X_i as discrete distribution $X_i: \mathbb{N} \to [0,1].$

Instead of making assumption on arrival order (uniform random), we make assumption on the (unknown) weights of the elements.

In Bayesian setting, we have for every element *i* a probability distribution X_i : $\mathbb{R}_{\geq 0} \to [0, 1]$.

- You may also think of X_i as discrete distribution $X_i: \mathbb{N} \to [0,1].$
- Weight w_i of element e_i is sample from X_i .

Instead of making assumption on arrival order (uniform random), we make assumption on the (unknown) weights of the elements.

In Bayesian setting, we have for every element *i* a probability distribution X_i : $\mathbb{R}_{\geq 0} \to [0, 1]$.

- You may also think of X_i as discrete distribution $X_i: \mathbb{N} \to [0,1].$
- Weight w_i of element e_i is sample from X_i .
	- That is, we have *w^j* ∼ *X^j*

Instead of making assumption on arrival order (uniform random), we make assumption on the (unknown) weights of the elements.

In Bayesian setting, we have for every element *i* a probability distribution X_i : $\mathbb{R}_{\geq 0} \to [0, 1]$.

- You may also think of X_i as discrete distribution $X_i: \mathbb{N} \to [0,1].$
- Weight w_i of element e_i is sample from X_i .

That is, we have *w^j* ∼ *X^j*

Online selection problem

Instead of making assumption on arrival order (uniform random), we make assumption on the (unknown) weights of the elements.

In Bayesian setting, we have for every element *i* a probability distribution X_i : $\mathbb{R}_{\geq 0} \to [0, 1]$.

- You may also think of X_i as discrete distribution $X_i: \mathbb{N} \to [0,1].$
- Weight w_i of element e_i is sample from X_i .
	- That is, we have *w^j* ∼ *X^j*

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

Instead of making assumption on arrival order (uniform random), we make assumption on the (unknown) weights of the elements.

In Bayesian setting, we have for every element *i* a probability distribution X_i : $\mathbb{R}_{\geq 0} \to [0, 1]$.

- You may also think of X_i as discrete distribution $X_i: \mathbb{N} \to [0,1].$
- Weight w_i of element e_i is sample from X_i .
	- That is, we have *w^j* ∼ *X^j*

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

• Permutation of elements $e.g., (e_4, e_2, e_1, e_3)$.

Instead of making assumption on arrival order (uniform random), we make assumption on the (unknown) weights of the elements.

In Bayesian setting, we have for every element *i* a probability distribution X_i : $\mathbb{R}_{\geq 0} \to [0, 1]$.

- You may also think of X_i as discrete distribution $X_i: \mathbb{N} \to [0,1].$
- Weight w_i of element e_i is sample from X_i .
	- That is, we have *w^j* ∼ *X^j*

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

• Permutation of elements $e.g., (e_4, e_2, e_1, e_3)$.

Upon arrival of element $\sigma(i)$:

Instead of making assumption on arrival order (uniform random), we make assumption on the (unknown) weights of the elements.

In Bayesian setting, we have for every element *i* a probability distribution X_i : $\mathbb{R}_{\geq 0} \to [0, 1]$.

- You may also think of X_i as discrete distribution $X_i: \mathbb{N} \to [0,1].$
- Weight w_i of element e_i is sample from X_i .
	- That is, we have *w^j* ∼ *X^j*

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

• Permutation of elements $e.g., (e_4, e_2, e_1, e_3)$.

Upon arrival of element $\sigma(i)$:

Weight $\mathsf{w}_{\sigma(i)}$ is revealed.

Instead of making assumption on arrival order (uniform random), we make assumption on the (unknown) weights of the elements.

In Bayesian setting, we have for every element *i* a probability distribution X_i : $\mathbb{R}_{\geq 0} \to [0, 1]$.

- You may also think of X_i as discrete distribution $X_i: \mathbb{N} \to [0,1].$
- Weight w_i of element e_i is sample from X_i .
	- That is, we have *w^j* ∼ *X^j*

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

• Permutation of elements $e.g., (e_4, e_2, e_1, e_3)$.

Upon arrival of element $\sigma(i)$:

- Weight $\mathsf{w}_{\sigma(i)}$ is revealed.
- **•** Decide (irrevocably) whether to select or reject $\sigma(i)$.

Instead of making assumption on arrival order (uniform random), we make assumption on the (unknown) weights of the elements.

In Bayesian setting, we have for every element *i* a probability distribution X_i : $\mathbb{R}_{\geq 0} \to [0, 1]$.

- You may also think of X_i as discrete distribution $X_i: \mathbb{N} \to [0,1].$
- Weight w_i of element e_i is sample from X_i .
	- That is, we have *w^j* ∼ *X^j*

Online selection problem

Elements arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(m))$.

• Permutation of elements $e.g., (e_4, e_2, e_1, e_3)$.

Upon arrival of element σ(*i*):

- Weight $\mathsf{w}_{\sigma(i)}$ is revealed.
- **•** Decide (irrevocably) whether to select or reject $\sigma(i)$.

Goal: *Select element with weight* $w^* = \max_{e \in F} w(e)$.

For every *i*, a realization $w_i \sim X_i$ is generated.

- For every *i*, a realization $w_i \sim X_i$ is generated.
- **•** Elements are presented by adversary in unknown order σ .

- For every *i*, a realization $w_i \sim X_i$ is generated.
- **•** Elements are presented by adversary in unknown order σ .
	- Adversary has seen all realizations.

- For every *i*, a realization $w_i \sim X_i$ is generated.
- **•** Elements are presented by adversary in unknown order σ .
	- Adversary has seen all realizations.
- \bullet In step *i*, algorithm decides whether to select/reject $\sigma(i)$.

- For every *i*, a realization $w_i \sim X_i$ is generated.
- **•** Elements are presented by adversary in unknown order σ .
	- Adversary has seen all realizations.
- \bullet In step *i*, algorithm decides whether to select/reject $\sigma(i)$.

Algorithm has access to same information as on Slide [17,](#page-114-0)

- For every *i*, a realization $w_i \sim X_i$ is generated.
- **•** Elements are presented by adversary in unknown order σ .
	- Adversary has seen all realizations.
- **•** In step *i*, algorithm decides whether to select/reject $\sigma(i)$.

Algorithm has access to same information as on Slide [17,](#page-114-0) and, in addition, it knows the distributions Xⁱ .

- For every *i*, a realization $w_i \sim X_i$ is generated.
- **•** Elements are presented by adversary in unknown order σ .
	- Adversary has seen all realizations.
- **•** In step *i*, algorithm decides whether to select/reject $\sigma(i)$.

Algorithm has access to same information as on Slide [17,](#page-114-0) and, in addition, it knows the distributions Xⁱ .

(But not realizations of not yet arrived elements.)

- For every *i*, a realization $w_i \sim X_i$ is generated.
- **•** Elements are presented by adversary in unknown order σ .
	- Adversary has seen all realizations.
- **•** In step *i*, algorithm decides whether to select/reject $\sigma(i)$.

Algorithm has access to same information as on Slide [17,](#page-114-0) and, in addition, it knows the distributions Xⁱ .

(But not realizations of not yet arrived elements.)

About the adversary

- For every *i*, a realization $w_i \sim X_i$ is generated.
- **•** Elements are presented by adversary in unknown order σ .
	- Adversary has seen all realizations.
- **•** In step *i*, algorithm decides whether to select/reject $\sigma(i)$.

Algorithm has access to same information as on Slide [17,](#page-114-0) and, in addition, it knows the distributions Xⁱ .

(But not realizations of not yet arrived elements.)

About the adversary

In general, we assume to have an all-knowing, adaptive adversary

- For every *i*, a realization $w_i \sim X_i$ is generated.
- **•** Elements are presented by adversary in unknown order σ .
	- Adversary has seen all realizations.
- **•** In step *i*, algorithm decides whether to select/reject $\sigma(i)$.

Algorithm has access to same information as on Slide [17,](#page-114-0) and, in addition, it knows the distributions Xⁱ .

(But not realizations of not yet arrived elements.)

About the adversary

In general, we assume to have an all-knowing, adaptive adversary

Can choose which element to present in step *i*, based on

- For every *i*, a realization $w_i \sim X_i$ is generated.
- **•** Elements are presented by adversary in unknown order σ .
	- Adversary has seen all realizations.
- **•** In step *i*, algorithm decides whether to select/reject $\sigma(i)$.

Algorithm has access to same information as on Slide [17,](#page-114-0) and, in addition, it knows the distributions Xⁱ .

(But not realizations of not yet arrived elements.)

About the adversary

In general, we assume to have an all-knowing, adaptive adversary

- Can choose which element to present in step *i*, based on
	- Choices of online algorithm in steps 1, . . . , *i* − 1.

- For every *i*, a realization $w_i \sim X_i$ is generated.
- **•** Elements are presented by adversary in unknown order σ .
	- Adversary has seen all realizations.
- **•** In step *i*, algorithm decides whether to select/reject $\sigma(i)$.

Algorithm has access to same information as on Slide [17,](#page-114-0) and, in addition, it knows the distributions Xⁱ .

(But not realizations of not yet arrived elements.)

About the adversary

In general, we assume to have an all-knowing, adaptive adversary

- Can choose which element to present in step *i*, based on
	- Choices of online algorithm in steps 1, . . . , *i* − 1.
	- Realizations of all elements (including those that have not

- For every *i*, a realization $w_i \sim X_i$ is generated.
- **•** Elements are presented by adversary in unknown order σ .
	- Adversary has seen all realizations.
- **•** In step *i*, algorithm decides whether to select/reject $\sigma(i)$.

Algorithm has access to same information as on Slide [17,](#page-114-0) and, in addition, it knows the distributions Xⁱ .

(But not realizations of not yet arrived elements.)

About the adversary

In general, we assume to have an all-knowing, adaptive adversary

- Can choose which element to present in step *i*, based on
	- Choices of online algorithm in steps 1, . . . , *i* − 1.
	- Realizations of all elements (including those that have not arrived).

Adversary is non-adaptive if order is fixed after seeing all realizations.

 $E = \{e_1, e_2\}$ with following distributions.

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$.

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

$$
w_1 \sim X_1 = \begin{cases} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 0 & \text{with probability } 1 - \epsilon \end{cases}
$$

(1)

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

$$
w_1 \sim X_1 = \begin{cases} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 0 & \text{with probability } 1 - \epsilon \end{cases}
$$

$$
w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.} \tag{2}
$$

(1)

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

> w_1 ∼ X_1 = $\int \frac{1}{\epsilon}$ with probability ϵ 0 with probability 1 – ϵ (1) $w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.}$ (2)

Note that $\mathbb{E}[X_1] = \frac{1}{\epsilon} \times \epsilon + 0 \times (1 - \epsilon) = 1$ and $\mathbb{E}[X_2] = 1 + \delta$.

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

> w_1 ∼ X_1 = $\int \frac{1}{\epsilon}$ with probability ϵ 0 with probability 1 – ϵ (1) $w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.}$ (2)

Note that $\mathbb{E}[X_1] = \frac{1}{\epsilon} \times \epsilon + 0 \times (1 - \epsilon) = 1$ and $\mathbb{E}[X_2] = 1 + \delta$.

• If arrival order would be (e_1, e_2) , simply observe realization w_1 .

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

> w_1 ∼ X_1 = $\int \frac{1}{\epsilon}$ with probability ϵ 0 with probability 1 – ϵ (1) $w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.}$ (2)

Note that $\mathbb{E}[X_1] = \frac{1}{\epsilon} \times \epsilon + 0 \times (1 - \epsilon) = 1$ and $\mathbb{E}[X_2] = 1 + \delta$.

- **•** If arrival order would be (e_1, e_2) , simply observe realization w_1 .
	- If $w_1 = 1/\epsilon$, then select e_1 (as $\frac{1}{\epsilon} > 1 + \delta$).

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

> w_1 ∼ X_1 = $\int \frac{1}{\epsilon}$ with probability ϵ 0 with probability 1 – ϵ (1) $w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.}$ (2)

Note that $\mathbb{E}[X_1] = \frac{1}{\epsilon} \times \epsilon + 0 \times (1 - \epsilon) = 1$ and $\mathbb{E}[X_2] = 1 + \delta$.

- **•** If arrival order would be (e_1, e_2) , simply observe realization w_1 .
	- If $w_1 = 1/\epsilon$, then select e_1 (as $\frac{1}{\epsilon} > 1 + \delta$).
	- If $w_1 = 0$, reject e_1 and select e_2 .

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

> w_1 ∼ X_1 = $\int \frac{1}{\epsilon}$ with probability ϵ 0 with probability 1 – ϵ (1) $w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.}$ (2)

Note that $\mathbb{E}[X_1] = \frac{1}{\epsilon} \times \epsilon + 0 \times (1 - \epsilon) = 1$ and $\mathbb{E}[X_2] = 1 + \delta$.

• If arrival order would be (e_1, e_2) , simply observe realization w_1 .

- If $w_1 = 1/\epsilon$, then select e_1 (as $\frac{1}{\epsilon} > 1 + \delta$).
- If $w_1 = 0$, reject e_1 and select e_2 .

• Worst-case arrival order is (e_2, e_1) .

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

> w_1 ∼ X_1 = $\int \frac{1}{\epsilon}$ with probability ϵ 0 with probability 1 – ϵ (1) $w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.}$ (2)

Note that $\mathbb{E}[X_1] = \frac{1}{\epsilon} \times \epsilon + 0 \times (1 - \epsilon) = 1$ and $\mathbb{E}[X_2] = 1 + \delta$.

- **•** If arrival order would be (e_1, e_2) , simply observe realization w_1 .
	- If $w_1 = 1/\epsilon$, then select e_1 (as $\frac{1}{\epsilon} > 1 + \delta$).
	- If $w_1 = 0$, reject e_1 and select e_2 .
- Worst-case arrival order is (e_2, e_1) .
	- We don't know realization w_1 , when deciding on element e_2 .

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

> w_1 ∼ X_1 = $\int \frac{1}{\epsilon}$ with probability ϵ 0 with probability 1 – ϵ (1) $w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.}$ (2)

Note that $\mathbb{E}[X_1] = \frac{1}{\epsilon} \times \epsilon + 0 \times (1 - \epsilon) = 1$ and $\mathbb{E}[X_2] = 1 + \delta$.

- **•** If arrival order would be (e_1, e_2) , simply observe realization w_1 .
	- If $w_1 = 1/\epsilon$, then select e_1 (as $\frac{1}{\epsilon} > 1 + \delta$).
	- If $w_1 = 0$, reject e_1 and select e_2 .
- Worst-case arrival order is (e_2, e_1) .
	- We don't know realization w_1 , when deciding on element e_2 .
	- Nevertheless, it is (intuitively) optimal to select e_2 .
$E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

> w_1 ∼ X_1 = $\int \frac{1}{\epsilon}$ with probability ϵ 0 with probability 1 – ϵ (1) $w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.}$ (2)

- **•** If arrival order would be (e_1, e_2) , simply observe realization w_1 .
	- If $w_1 = 1/\epsilon$, then select e_1 (as $\frac{1}{\epsilon} > 1 + \delta$).
	- If $w_1 = 0$, reject e_1 and select e_2 .
- Worst-case arrival order is (e_2, e_1) .
	- We don't know realization w_1 , when deciding on element e_2 .
	- Nevertheless, it is (intuitively) optimal to select e_2 .
	- Why?

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

> w_1 ∼ X_1 = $\int \frac{1}{\epsilon}$ with probability ϵ 0 with probability 1 – ϵ (1) $w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.}$ (2)

- **•** If arrival order would be (e_1, e_2) , simply observe realization w_1 .
	- If $w_1 = 1/\epsilon$, then select e_1 (as $\frac{1}{\epsilon} > 1 + \delta$).
	- If $w_1 = 0$, reject e_1 and select e_2 .
- Worst-case arrival order is (e_2, e_1) .
	- We don't know realization w_1 , when deciding on element e_2 .
	- Nevertheless, it is (intuitively) optimal to select e_2 .
	- Why? Deterministic value $w_2 = 1 + \delta > \mathbb{E}[X_1]$.

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

> w_1 ∼ X_1 = $\int \frac{1}{\epsilon}$ with probability ϵ 0 with probability 1 – ϵ (1) $w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.}$ (2)

- **•** If arrival order would be (e_1, e_2) , simply observe realization w_1 .
	- If $w_1 = 1/\epsilon$, then select e_1 (as $\frac{1}{\epsilon} > 1 + \delta$).
	- If $w_1 = 0$, reject e_1 and select e_2 .
- \bullet Worst-case arrival order is (e_2, e_1) .
	- We don't know realization w_1 , when deciding on element e_2 .
	- Nevertheless, it is (intuitively) optimal to select e_2 .
	- Why? Deterministic value $w_2 = 1 + \delta > \mathbb{E}[X_1]$.
		- \bullet In expectation (of X_1), we cannot do better if we reject e_2 .

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

> w_1 ∼ X_1 = $\int \frac{1}{\epsilon}$ with probability ϵ 0 with probability 1 – ϵ (1) $w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.}$ (2)

- **•** If arrival order would be (e_1, e_2) , simply observe realization w_1 .
	- If $w_1 = 1/\epsilon$, then select e_1 (as $\frac{1}{\epsilon} > 1 + \delta$).
	- If $w_1 = 0$, reject e_1 and select e_2 .
- \bullet Worst-case arrival order is (e_2, e_1) .
	- We don't know realization w_1 , when deciding on element e_2 .
	- Nevertheless, it is (intuitively) optimal to select e_2 .
	- Why? Deterministic value $w_2 = 1 + \delta > \mathbb{E}[X_1]$.
		- \bullet In expectation (of X_1), we cannot do better if we reject e_2 .
- Performance objective is formalized next.

Performance is measured against that of the prophet.

Performance is measured against that of the prophet.

Prophet gets to see all realizations *wⁱ* ∼ *Xⁱ* after they are sampled.

Performance is measured against that of the prophet.

- Prophet gets to see all realizations *wⁱ* ∼ *Xⁱ* after they are sampled.
- Independent of ordering, she simply selects $w^* = \max_i w_i$.

Performance is measured against that of the prophet.

- Prophet gets to see all realizations *wⁱ* ∼ *Xⁱ* after they are sampled.
- Independent of ordering, she simply selects $w^* = \max_i w_i$.

Expected weight of chosen element for prophet is

Performance is measured against that of the prophet.

- Prophet gets to see all realizations *wⁱ* ∼ *Xⁱ* after they are sampled.
- Independent of ordering, she simply selects $w^* = \max_i w_i$.

Expected weight of chosen element for prophet is

$$
\mathsf{OPT} = \mathbb{E}_{(y_1,\ldots,y_m)\sim X_1\times\cdots\times X_m}[\max_i y_i].
$$

Performance is measured against that of the prophet.

- Prophet gets to see all realizations *wⁱ* ∼ *Xⁱ* after they are sampled.
- Independent of ordering, she simply selects $w^* = \max_i w_i$.

Expected weight of chosen element for prophet is

$$
\mathsf{OPT} = \mathbb{E}_{(y_1,\ldots,y_m)\sim X_1\times\cdots\times X_m}[\max_i y_i].
$$

Expected weight of algorithm $\mathcal A$ (under worst-case arrival order) is

Performance is measured against that of the prophet.

- Prophet gets to see all realizations *wⁱ* ∼ *Xⁱ* after they are sampled.
- Independent of ordering, she simply selects $w^* = \max_i w_i$.

Expected weight of chosen element for prophet is

$$
\mathsf{OPT} = \mathbb{E}_{(y_1,\ldots,y_m)\sim X_1\times\cdots\times X_m}[\max_i y_i].
$$

Expected weight of algorithm $\mathcal A$ (under worst-case arrival order) is

$$
\mathsf{ALG} = \mathbb{E}_{(y_1,\ldots,y_m)\sim X_1\times\cdots\times X_m}[\min_{\sigma} w(\mathcal{A}(\sigma,y_1,\ldots,y_m))].
$$

Performance is measured against that of the prophet.

- Prophet gets to see all realizations *wⁱ* ∼ *Xⁱ* after they are sampled.
- Independent of ordering, she simply selects $w^* = \max_i w_i$.

Expected weight of chosen element for prophet is

$$
\mathsf{OPT} = \mathbb{E}_{(y_1,\ldots,y_m)\sim X_1\times\cdots\times X_m}[\max_i y_i].
$$

Expected weight of algorithm $\mathcal A$ (under worst-case arrival order) is

$$
\mathsf{ALG} = \mathbb{E}_{(y_1,\ldots,y_m)\sim X_1\times \cdots \times X_m}[\min_{\sigma} w(\mathcal{A}(\sigma,y_1,\ldots,y_m))].
$$

• With $w(A(\sigma, y_1, \ldots, y_m))$ (expected) weight of set outputted by A.

Performance is measured against that of the prophet.

- Prophet gets to see all realizations *wⁱ* ∼ *Xⁱ* after they are sampled.
- Independent of ordering, she simply selects $w^* = \max_i w_i$.

Expected weight of chosen element for prophet is

$$
\mathsf{OPT} = \mathbb{E}_{(y_1,\ldots,y_m)\sim X_1\times\cdots\times X_m}[\max_i y_i].
$$

Expected weight of algorithm $\mathcal A$ (under worst-case arrival order) is

$$
\mathsf{ALG} = \mathbb{E}_{(y_1,\ldots,y_m)\sim X_1\times\cdots\times X_m}[\min_{\sigma} w(\mathcal{A}(\sigma,y_1,\ldots,y_m))].
$$

• With $w(A(\sigma, y_1, \ldots, y_m))$ (expected) weight of set outputted by A. For $0 < \alpha < 1$, algorithm A is α -approximation if

Performance is measured against that of the prophet.

- Prophet gets to see all realizations *wⁱ* ∼ *Xⁱ* after they are sampled.
- Independent of ordering, she simply selects $w^* = \max_i w_i$.

Expected weight of chosen element for prophet is

$$
\mathsf{OPT} = \mathbb{E}_{(y_1,\ldots,y_m)\sim X_1\times\cdots\times X_m}[\max_i y_i].
$$

Expected weight of algorithm $\mathcal A$ (under worst-case arrival order) is

$$
\mathsf{ALG} = \mathbb{E}_{(y_1,\ldots,y_m)\sim X_1\times\cdots\times X_m}[\min_{\sigma} w(\mathcal{A}(\sigma,y_1,\ldots,y_m))].
$$

• With $w(A(\sigma, y_1, \ldots, y_m))$ (expected) weight of set outputted by A.

For $0 < \alpha < 1$, algorithm A is α -approximation if

$$
\mathsf{ALG} \geq \alpha \mathsf{OPT}
$$

Performance is measured against that of the prophet.

- Prophet gets to see all realizations *wⁱ* ∼ *Xⁱ* after they are sampled.
- Independent of ordering, she simply selects $w^* = \max_i w_i$.

Expected weight of chosen element for prophet is

$$
\mathsf{OPT} = \mathbb{E}_{(y_1,\ldots,y_m)\sim X_1\times\cdots\times X_m}[\max_i y_i].
$$

Expected weight of algorithm $\mathcal A$ (under worst-case arrival order) is

$$
\mathsf{ALG} = \mathbb{E}_{(y_1,\ldots,y_m)\sim X_1\times\cdots\times X_m}[\min_{\sigma} w(\mathcal{A}(\sigma,y_1,\ldots,y_m))].
$$

• With $w(A(\sigma, y_1, \ldots, y_m))$ (expected) weight of set outputted by A.

For $0 < \alpha < 1$, algorithm A is α -approximation if

ALG $> \alpha$ OPT

• This is called a prophet inequality.

$E = \{e_1, e_2\}$ with following distributions.

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$.

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

$$
w_1 \sim X_1 = \begin{cases} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 0 & \text{with probability } 1 - \epsilon \end{cases}
$$

(3)

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

$$
w_1 \sim X_1 = \begin{cases} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 0 & \text{with probability } 1 - \epsilon \end{cases}
$$

$$
w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.} \tag{4}
$$

(3)

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

$$
w_1 \sim X_1 = \begin{cases} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 0 & \text{with probability } 1 - \epsilon \end{cases}
$$
(3)

$$
w_2 \sim X_2 = \begin{cases} 1 + \delta & \text{with probability } 1. \end{cases}
$$
(4)

What can prophet get?

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

$$
w_1 \sim X_1 = \begin{cases} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 0 & \text{with probability } 1 - \epsilon \end{cases}
$$

$$
w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.} \tag{4}
$$

What can prophet get?

$$
\max\{w_1, w_2\} = \begin{cases} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 1 + \delta & \text{with probability } 1 - \epsilon \end{cases}
$$

(3)

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

$$
w_1 \sim X_1 = \begin{cases} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 0 & \text{with probability } 1 - \epsilon \end{cases}
$$
 (3)

$$
w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.} \tag{4}
$$

What can prophet get?

$$
\max\{w_1, w_2\} = \left\{ \begin{array}{ll} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 1 + \delta & \text{with probability } 1 - \epsilon \end{array} \right.
$$

Then

$$
\mathbb{E}_{(x_1,x_2)}[\max_i x_i] = \frac{1}{\epsilon} \times \epsilon + (1+\delta) \times (1-\epsilon) \to 2 \text{ as } \epsilon, \delta \to 0.
$$

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

$$
w_1 \sim X_1 = \begin{cases} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 0 & \text{with probability } 1 - \epsilon \end{cases}
$$
 (3)

$$
w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.} \tag{4}
$$

What can prophet get?

$$
\max\{w_1, w_2\} = \left\{\begin{array}{ll} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 1 + \delta & \text{with probability } 1 - \epsilon \end{array}\right.
$$

Then

$$
\mathbb{E}_{(x_1,x_2)}[\max_i x_i] = \frac{1}{\epsilon} \times \epsilon + (1+\delta) \times (1-\epsilon) \to 2 \text{ as } \epsilon, \delta \to 0.
$$

Optimal algorithm $\mathcal A$ is to select e_2 (again, think about it).

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

$$
w_1 \sim X_1 = \begin{cases} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 0 & \text{with probability } 1 - \epsilon \end{cases}
$$
 (3)

$$
w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.} \tag{4}
$$

What can prophet get?

$$
\max\{w_1, w_2\} = \left\{\begin{array}{ll} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 1 + \delta & \text{with probability } 1 - \epsilon \end{array}\right.
$$

Then

$$
\mathbb{E}_{(x_1,x_2)}[\max_i x_i] = \frac{1}{\epsilon} \times \epsilon + (1+\delta) \times (1-\epsilon) \to 2 \text{ as } \epsilon, \delta \to 0.
$$

Optimal algorithm $\mathcal A$ is to select e_2 (again, think about it).

 \bullet In worst-case order (e_2, e_1).

 $E = \{e_1, e_2\}$ with following distributions. Let $1 > \epsilon, \delta > 0$, and assume that $\frac{1}{\epsilon} > 1 + \delta$. Let

$$
w_1 \sim X_1 = \begin{cases} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 0 & \text{with probability } 1 - \epsilon \end{cases}
$$
 (3)

$$
w_2 \sim X_2 = \{ 1 + \delta \text{ with probability 1.} \tag{4}
$$

What can prophet get?

$$
\max\{w_1, w_2\} = \left\{\begin{array}{ll} \frac{1}{\epsilon} & \text{with probability } \epsilon \\ 1 + \delta & \text{with probability } 1 - \epsilon \end{array}\right.
$$

Then

$$
\mathbb{E}_{(x_1,x_2)}[\max_i x_i] = \frac{1}{\epsilon} \times \epsilon + (1+\delta) \times (1-\epsilon) \to 2 \text{ as } \epsilon, \delta \to 0.
$$

Optimal algorithm $\mathcal A$ is to select e_2 (again, think about it).

 \bullet In worst-case order (e_2, e_1).

Then
$$
\mathbb{E}_{(x_1,x_2)}[w(\mathcal{A}(x_1,x_2))] = 1.
$$

I.e., optimal algorithm only half as bad as prophet ($\alpha = \frac{1}{2}$ $\frac{1}{2}$).

Outline for remaining lectures

Related to this lecture, we will see:

Algorithms for combinatorial settings where more than one element can be selected (in uniform random arrival model).

- Algorithms for combinatorial settings where more than one element can be selected (in uniform random arrival model).
	- Online bipartite matching.

- Algorithms for combinatorial settings where more than one element can be selected (in uniform random arrival model).
	- Online bipartite matching.
		- 1 *e* -approximation (significant generalization of secretary problem).

- Algorithms for combinatorial settings where more than one element can be selected (in uniform random arrival model).
	- Online bipartite matching.
		- 1 *e* -approximation (significant generalization of secretary problem).
	- Matroid secretary problems.

- Algorithms for combinatorial settings where more than one element can be selected (in uniform random arrival model).
	- Online bipartite matching.
		- 1 *e* -approximation (significant generalization of secretary problem).
	- Matroid secretary problems.
		- Still mayor open problem to find constant-factor approximation.

- Algorithms for combinatorial settings where more than one element can be selected (in uniform random arrival model).
	- Online bipartite matching.
		- 1 *e* -approximation (significant generalization of secretary problem).
	- Matroid secretary problems.
		- Still mayor open problem to find constant-factor approximation.
- Algorithm for single element prophet inequality (with $\alpha = \frac{1}{2}$ $\frac{1}{2}$).

Related to this lecture, we will see:

- Algorithms for combinatorial settings where more than one element can be selected (in uniform random arrival model).
	- Online bipartite matching.
		- 1 *e* -approximation (significant generalization of secretary problem).
	- Matroid secretary problems.
		- Still mayor open problem to find constant-factor approximation.
- Algorithm for single element prophet inequality (with $\alpha = \frac{1}{2}$ $\frac{1}{2}$).

Problems can also be turned into *(online) auction* problems.

Related to this lecture, we will see:

- Algorithms for combinatorial settings where more than one element can be selected (in uniform random arrival model).
	- Online bipartite matching.
		- 1 *e* -approximation (significant generalization of secretary problem).
	- Matroid secretary problems.
		- Still mayor open problem to find constant-factor approximation.
- Algorithm for single element prophet inequality (with $\alpha = \frac{1}{2}$ $\frac{1}{2}$).

Problems can also be turned into *(online) auction* problems.

• Will see some (offline) mechanism design basics next week.