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Selection problem

Given is

Finite set of elements E = {e1, . . . ,em}.
Weight function w : E → R≥0.
Collection of (downward-closed) feasible subsets

F ⊆ 2E = {X : X ⊆ E}.

Goal: Compute (in poly-time) feasible subset X ⊆ E maximizing
w(X ) :=

∑
e∈X w(e).

max
∑
e∈X

w(e)

subject to X ∈ F .

Combinatorial examples of F :
Spanning trees in given graph;
Bases of a matroid;
Matchings in given (bipartite) graph.
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Some examples
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Maximum weight spanning tree

Example (Spanning tree)
Given is undirected graph G = (V ,E) with edge-weight function
w : E → R≥0. Feasible sets in F are spanning trees of G.

Subgraph connecting all nodes and not having cycles.
a b

c

de

f

1

3

2

4

5

6

7
8

9

More general, compute maximum weight base of matroid.

Remember thatM = (E ,F) is matroid if:
Downward-closed : A ∈ F and B ⊆ A⇒ B ∈ F ,
Augmentation property :

A,C ∈ F and |C| > |A| ⇒ ∃e ∈ C \ A such that A ∪ {e} ∈ F .
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Greedy algorithm

Rename edges such that w1 ≥ w2 ≥ · · · ≥ wm ≥ 0.

Greedy algorithm (for spanning trees)
Set X = ∅. For i = 1, . . . ,m:

If X + ei does not contain a cycle, set X = X + ei .

Example (cont’d)

a b

c

de

f

1

3

2

4

5

6

7
8

9

As the weights are non-negative, the output of the greedy algorithm is
always a maximum weight spanning tree.
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Maximum weight bipartite matching

Example
y1 y2 y3 y4

z1 z2 z3 z4

1
3

3
1

5 6
1

Given bipartite graph B = (Y ∪ Z ,E) with E = {{y , z} : y ∈ Y , z ∈ Z}.
Edge weight function w : E → R≥0.
Feasible sets are (bipartite) matchings of B.

Matching M ⊆ E is set of edges where every node is incident to at
most one edge from M: |{e ∈ M : e ∩ {v}}| ≤ 1 ∀v ∈ Y ∪ Z .

Poly-time algorithms known for solving maximum matching problem.
Linear programming can be used.
Well-known combinatorial algorithm: Hungarian method.
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Approximation algorithms

Sometimes solving the program

OPT = max
∑
e∈X

w(e)

subject to X ∈ F .

is NP-complete.

For example, Traveling Salesman Problem (TSP).

Therefore, we also study (constant-factor) α-approximation algorithms:

Goal: Compute (in poly-time) X ∈ F such that

w(X ) :=
∑
e∈X

w(e) ≥ α ·OPT.
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Computational aspects

Given is
Finite set of elements E = {e1, . . . ,em},
Weight function w : E → R.
Collection of feasible subsets F ⊆ 2E = {X : X ⊆ E}.

max
∑
e∈X

w(e)

subject to X ∈ F .

Remark
In general, we assume to have a feasibility oracle for F : Given X ⊂ E ,
oracle tells us whether X ∈ F or not, i.e., whether X is feasible.

Computational complexity measured in terms of m, representation
size of weights w(e), and number of oracle calls.
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Online selection problem

Consider
Finite set of elements E = {e1, . . . ,em}.
Weight function w : E → R≥0.
Collection of feasible subsets F ⊆ 2E = {X : X ⊆ E}.

Online selection problem
Elements arrive one by one in unknown order σ = (σ(1), . . . , σ(m)).

Permutation of elements, e.g., (e4,e2,e1,e3).
For i = 1, . . . ,m, upon arrival of element σ(i):

Weight wσ(i) is revealed.
Decide (irrevocably) whether to select or reject σ(i).

Goal: Select feasible subset X ∈ F maximizing w(X ) =
∑

e∈X w(e).

Algorithm knows F up front (or has oracle access)
It has to base decisions only on elements and weights seen so far!
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Example: Online spanning tree selection

Given is undirected graph G = (V ,E).

Edges in E arrive one by one in unknown order.

Want to select collection of edges of maximum weight that does not
contain a cycle (i.e., a spanning tree).

a b

c

de

f

In general, output might not be spanning tree!
We might reject too many edges.

Without any prior knowledge of arrival order or element weights (that
still have to arrive), not much is possible algorithmically.
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Online selection problems
Uniform random arrivals
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Uniform random arrival order

Elements arrive in uniform random order σ.

There are m! = m(m − 1) · · · 1 orderings. Probability that
elements arrive in order σ is 1

m! for every σ.

Example
Suppose we have E = {a,b, c}, then possible arrival orderings are

σ ∈ {(a,b, c), (a, c,b), (b,a, c), (b, c,a), (c,a,b), (c,b,a)}.
Probability of seeing given ordering σ is 1/6.

Goal: Give a (possibly randomized) α-approximation A, i.e.,
Eσ[w(A(σ))] ≥ α ·OPT

Ideally, 0 < α < 1 is constant.
OPT = maxX∈F w(X ) is the offline optimum.
w(A(σ)) is (expected) weight of set outputted by A(σ).

Polynomial running time is also desired, although not required.
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Goal: Give a (possibly randomized) α-approximation A, i.e.,
Eσ[w(A(σ))] ≥ α ·OPT

Ideally, 0 < α < 1 is constant.
OPT = maxX∈F w(X ) is the offline optimum
w(A(σ)) is (expected) weight of set outputted by A(σ).
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Formal requirements for (online) algorithm A:

Takes as input deterministic ordering (x1, . . . , xm) and weights
wx1 , . . . ,wxm .

Specifies for every i = 1, . . . ,m whether or not it selects xi .
For given i , this YES-NO decision is a (randomized)
function of:

Total number of elements m.
Elements x1, . . . , xi−1.
Weights wx1 , . . . ,wxi−1 .
The order (x1, . . . , xi).

Last aspect is usually irrelevant.
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Worst-case ordering

Remark (Worst-case ordering)
If we would (again) drop the assumption of a uniform random arrival
order,

the performance guarantee of A can be defined w.r.t.
worst-case ordering. Then A is called α-approximation if

minσ w(A(σ)) ≥ α ·OPT,

again with OPT = maxX∈F w(X ) the offline optimum.

In worst-case arrival setting, no constant-factor algorithm exists.
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Online selection problems
Uniform random arrivals: Secretary problem

18 / 31



Secretary problem (selecting best element)

Elements (secretaries) E = {e1, . . . ,en} arrive one by one.

Uniform random arrival order σ = (σ(1), . . . , σ(m))
σ is permutation of elements {e1, . . . ,en}.

Weight wσ(i) revealed upon arrival of σ(i).
Irrevocably decide whether to select or reject σ(i).

Goal: Select a secretary with maximum weight w∗ = maxi wi .

Formally speaking, we have F = {{e1}, {e2}, . . . , {em}}.

Theorem (Lindley (1961) and Dynkin (1963))

There is a (1
e −

1
m )-approximation algorithm for the (weight

maximization) secretary problem.

Side note: Original version of secretary problem asks for
maximizing probability with which best element is selected.

If one picks maximum weight element with prob. ≥ 1
e , then

expected weight of chosen element is ≥ 1
e w∗.
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Secretary algorithm for ordering (σ(1), . . . , σ(m))

Phase I (Observation):
For i = 1, . . . , bm

e c: Do not select σ(i).
Phase II (Selection):

Set threshold t = maxj=1,...,bm
e c

wσ(j).

For i = bm
e c+ 1, . . . ,n: If wσ(i) ≥ t , select σ(i) and STOP.

If in future statements we write m
e , we mean bm

e c.
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Analysis (sketch)

Consider w∗ = maxi wi (assume w.l.o.g. that weights are distinct).

For readability, we assume (wrongfully) that r = m/e is integer.
Simple adjustments to analysis suffice to deal with this issue.

Claim: Secretary algorithm is ≈ 1
e -approximation for w∗.

We show that with prob. 1
e , element with weight w∗ is selected.
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For fixed position k ≥ r + 1, we select weight w∗ at k if

Best secretary in {1, . . . , r} is same as best in {1, . . . , k − 1}. (Z)
For given k ≥ r + 1, using uniform random order assumption, this
happens with probability

P(w∗ appears at k and (Z ) holds) = P(w∗ appears at k)P((Z ) holds)

=
1
m

r
k − 1

.

Exercise: Convince yourself that these events are indeed independent!
It follows that

P(w∗ is selected) =
m∑

k=r+1

r
k − 1

1
m

=
r
m

m−1∑
k=r

1
k
.
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P(w∗ is selected) =
m∑

k=r+1

r
k − 1

1
m

=
r
m

m−1∑
k=r

1
k
.

At this point, it becomes a matter of calculus.

Roughly speaking, for m
large,

r
m

m−1∑
k=r

1
k
≈ − r

m
ln
( r

m

)
≈ 1

e
for r =

m
e
.

This completes the analysis.

Theorem (Lindley (1961) and Dynkin (1963))

There is a (1
e −

1
m )-approximation algorithm for the (weight

maximization) secretary problem.

Factor 1/e is also best possible.
Secretary algorithm is polynomial time algorithm.
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Online selection problems
Prophet Inequalities
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Bayesian setting (for selecting one element)

Instead of making assumption on arrival order (uniform random), we make
assumption on the (unknown) weights of the elements.

In Bayesian setting, we have for every element i a probability
distribution Xi : R≥0 → [0,1].

You may also think of Xi as discrete distribution Xi : N→ [0,1].
Weight wi of element ei is sample from Xi .

That is, we have wj ∼ Xj

Online selection problem
Elements arrive one by one in unknown order σ = (σ(1), . . . , σ(m)).

Permutation of elements e.g., (e4,e2,e1,e3).
Upon arrival of element σ(i):

Weight wσ(i) is revealed.
Decide (irrevocably) whether to select or reject σ(i).

Goal: Select element with weight w∗ = maxe∈E w(e).
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Formal procedure defining the problem:

For every i , a realization wi ∼ Xi is generated.
Elements are presented by adversary in unknown order σ.

Adversary has seen all realizations.

In step i , algorithm decides whether to select/reject σ(i).

Algorithm has access to same information as on Slide 17, and, in
addition, it knows the distributions Xi .

(But not realizations of not yet arrived elements.)

About the adversary
In general, we assume to have an all-knowing, adaptive adversary

Can choose which element to present in step i , based on
Choices of online algorithm in steps 1, . . . , i − 1.
Realizations of all elements (including those that have not arrived).

Adversary is non-adaptive if order is fixed after seeing all realizations.
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Example
E = {e1,e2} with following distributions.

Let 1 > ε, δ > 0, and assume
that 1

ε > 1 + δ. Let

w1 ∼ X1 =

{ 1
ε with probability ε
0 with probability 1− ε (1)

w2 ∼ X2 =
{

1 + δ with probability 1. (2)

Note that E[X1] =
1
ε × ε+ 0× (1− ε) = 1 and E[X2] = 1 + δ.

If arrival order would be (e1,e2), simply observe realization w1.
If w1 = 1/ε, then select e1 (as 1

ε > 1 + δ).
If w1 = 0, reject e1 and select e2.

Worst-case arrival order is (e2,e1).
We don’t know realization w1, when deciding on element e2.
Nevertheless, it is (intuitively) optimal to select e2.
Why? Deterministic value w2 = 1 + δ > E[X1].

In expectation (of X1), we cannot do better if we reject e2.

Performance objective is formalized next.
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Performance of online algorithm

Performance is measured against that of the prophet.

Prophet gets to see all realizations wi ∼ Xi after they are sampled.
Independent of ordering, she simply selects w∗ = maxi wi .

Expected weight of chosen element for prophet is

OPT = E(y1,...,ym)∼X1×···×Xm [maxi yi ] .

Expected weight of algorithm A (under worst-case arrival order) is

ALG = E(y1,...,ym)∼X1×···×Xm [minσ w(A(σ, y1, . . . , ym))] .

With w(A(σ, y1, . . . , ym)) (expected) weight of set outputted by A.

For 0 < α < 1, algorithm A is α-approximation if

ALG ≥ αOPT

This is called a prophet inequality.
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Example (Cont’d)
E = {e1,e2} with following distributions.

Let 1 > ε, δ > 0, and assume
that 1

ε > 1 + δ. Let

w1 ∼ X1 =

{ 1
ε with probability ε
0 with probability 1− ε (3)

w2 ∼ X2 =
{

1 + δ with probability 1. (4)

What can prophet get?

max{w1,w2} =
{ 1

ε with probability ε
1 + δ with probability 1− ε .

Then
E(x1,x2)[maxi xi ] =

1
ε × ε+ (1 + δ)× (1− ε)→ 2 as ε, δ → 0.

Optimal algorithm A is to select e2 (again, think about it).
In worst-case order (e2,e1).

Then E(x1,x2)[w(A(x1, x2))] = 1.

I.e., optimal algorithm only half as bad as prophet (α = 1
2 ).
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Outline for remaining lectures
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Rough outline of upcoming lectures

Related to this lecture, we will see:
Algorithms for combinatorial settings where more than one
element can be selected (in uniform random arrival model).

Online bipartite matching.
1
e -approximation (significant generalization of secretary problem).

Matroid secretary problems.
Still mayor open problem to find constant-factor approximation.

Algorithm for single element prophet inequality (with α = 1
2 ).

Problems can also be turned into (online) auction problems.
Will see some (offline) mechanism design basics next week.
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