
MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

2 Centralized Clocking

Chapter Contents
2.1 Overview 20
2.2 Revisiting State Machines 20

2.3 Clock Tree Synthesis Problem 28

2.4 Improvements 33
2.5 Clock Sources 33
2.6 Fundamental Limitations 34
2.7 Beyond a Single Clock 36

Learning Goals
This chapter revisits some of the simplifications made in the previous chapter.
In particular it discusses the timed nature of components. The chapter then
summarizes classical approaches to build state machines with an emphasis on
building clock trees.



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

20 Chapter 2 Centralized Clocking

2.1 Overview

A major advantage of the abstractions if circuit components that have been
discussed in Chapter 1 is that they abstract from the timed, analog behavior
of physical components. Rather, the binary steady state of all components
together is considered. Depending on the design paradigm, timing has to be
reintroduced into this view to a certain degree to guarantee correct circuit
behavior. In the following we focus on state-machine implementations to
discuss such assumptions.
Chapter 1 discussed the standard state-machine implementation within the

synchronous design paradigm. With the abstractions made in the chapter there
was a single timing constraint to be introduced: the worst-case delay of the
combinational logic, that is, the duration from application of inputs to the
outputs reaching their steady-state, must be smaller than the duration between
two active clock transitions at the flip-flops.
We will revisit this scheme of implementing state-machines in Section 2.2.

In particular, we will revisit the previously introduced circuit components,
flip-flops and Boolean gates, with respect to timed, non-steady-state, behavior.
In Section 2.3 we will discuss timing that has to be reintroduced into the

model to arrive at correct and also permanent solutions to the state-machine
implementation problem.
Additional improvements to increase performance are discussed in Sec-

tion 2.4.
While having detailed on the logic components and the clock distribution

network in the previous sections, we have still assumed the clock source to be
an (almost) perfect periodic pulse generator. Section 2.5 briefly discusses this
assumption and its limitation.
Section 2.6 discusses fundamental limitations of a single clock source. In

particular we will show that the clock skew within a grid network is necessarily
linear in the length of the grid:

Theorem 2.4. For k ∈ N, consider a k × k grid in R2 in which adjacent grid
nodes have distance 1. For any tree spanning the grid points, there are adjacent
grid nodes that are in distance Ω(k) in the tree.

The chapter finally discusses state-machine implementations that lift the
single-clock restriction to multiple clock sources in Section 2.7.

2.2 Revisiting State Machines

Let us revisit the implementation of a state machine in synchronous logic from
Chapter 1. However, in contrast to the introduced Mealy machine, we will



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

2.2 Revisiting State Machines 21

state

reg

next state

combinational


logic

output

combinational


logic

reg

clk

outin

regin

Figure 2.1
Implementation of a Moore state machine in the synchronous design paradigm.

discuss the implementation of a simpler Moore machines where the output
function o only depends on the current state and not the presented input. We
thus have o : S → Λ. All other components of the state machine, including
the transition function t : S × Σ → S are as in the Mealy machine. Our choice
for Moore machines has two reasons: (i) first they are simpler and thus well
suited as a running example. (ii) Moore machines are typically preferred when
implementing state machines as potentially unstable inputs do not directly drive
outputs, leading to unstable outputs. If stable inputs can be guaranteed, Mealy
implementations may lead to more efficient implementations, however. We
leave a generalization of the following discussion to Mealy machines as an
exercise to the reader.
Figure 2.1 shows an implementation within the widely adapted synchronous

design paradigm. Its current state and previously captured inputs are stored
in flip-flops–denoted as state and input registers in the figure. The next state
transition function t as well as the output function o are implemented by
combinational logic. In the following we will identify the state and its binary
encoding, as well as assume that t and o are functions on binary tuples rather
than the state space, for simplicity of notation.
On occurrence of an active (say, rising) clock transition on the clock signal

clk the result of applying the next state transition function t to the previous
state s ∈ S and the previously captured input i ∈ Λ is written to the state
register. Likewise the input register is updated to the current state of the input
signals in. The result o(s) is then propagated to the output out, and t(s, i) is



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

22 Chapter 2 Centralized Clocking

propagated towards in inputs of the state flip-flops; ready for the next active
clock transition to occur.
Clearly the above implementation has to meet certain timing constraints in

order to work. For this purpose, let us take a closer look at the components
used within the circuit.

2.2.1 Boolean Gate
Exemplary for Boolean gates let us consider a buffer element Buf. The Boolean
function of a buffer element is the identity, i.e., Buf(i) = i for i ∈ {0, 1}.
A physical implementationwithin standardCMOS logic encodes these logical

values by two disjoint voltage ranges within the low voltage 0V and the high
voltage of Vdd > 0. The value of Vdd varies depending on the used technology
and power considerations and may even be modified during operation. When
not specified otherwise, we will assume a normalized Vdd = 1.
The Boolean value 0 of the buffer input or output is then encoded by the buffer

input or output voltage being within [0,Vdd], and Boolean value 1 is encoded
by its voltage being within [Vhi,Vdd]. From the assumption that both ranges are
disjoint, Vlo < Vhi.

Stead-state behavior. Figure 2.2 shows two buffers Buf1 and Buf2 in series
as well as signals a and b being the first buffer input and output, respectively.

a b
Buf1 Buf2

Figure 2.2
Two buffer elements in series with signals a and b shown.

Given the Boolean specification of a buffer element, as well as its encoding
of Boolean values within a low and high voltage range, a feasible steady state
behavior that fulfills these constraints is shown in Figure 2.3: low inputs are
mapped to low outputs and high inputs to high outputs. While this S-shaped
curve is typical, steady-state behavior of buffers may vary widely though, e.g.,
with different slopes in the middle of the curve between low and high values.

Dynamic behavior. By definition the steady-state behavior does not include
any information on the timing of the gate. Before discussing how timing can
be added to this picture, let us look at the timed behavior of a buffer gate.



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

2.2 Revisiting State Machines 23

a

Vdd

b

Vdd0 Vlo Vhi

Vlo

Vhi

Figure 2.3
Steady-state behavior of a buffer.

Figure 2.4 shows a detailed analog Spice simulation of the two buffer setup
from Figure 2.2. The figure show the signals over time during 40 ps. In the
setup Vdd = 0.8V as can be seen from the buffer signals reaching steady-state
for high inputs at times around 20 ps. Additionally, red dots indicate when the
signals cross Vdd/2 = 0.4V.

0 5 10 15 20 25 30 35 40
time [ps]

0.0

0.2

0.4

0.6

0.8

[V
]

a

b

Figure 2.4
Dynamic behavior of a buffer.

A natural, simple timed model of a buffer gate is by adding a constant delay
d ≥ 0 between the time an input change occurs and the time the outputs settle
at the newly induced steady-state. Inspecting Figure 2.4, one notes that the
time the steady state is reached varies significantly depending on the precise



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

24 Chapter 2 Centralized Clocking

definition: (i) the analog steady state may not even be reached in finite time
or may depend on small fluctuations from environmental factors difficult to
control, and (ii) the time until the Boolean steady-state depends on the Vlo and
Vhi . Two conventions are typically used here: Vlo = 0.3Vdd and Vhi = 0.7Vdd ,
or Vlo = Vhi = 0.5Vdd .2 We will stick to the latter convention, here, and thus
observe d ≈ 2.5 ps from the simulation. One, however, already observes a
small difference between the delay for low inputs and high inputs in the figure
that can be more pronounced for other Boolean gates. This leaves us with one
delay for each input and its corresponding steady-state output.
Environmental factors like temperature, supply voltage provided to the gate,

as well as load and state of the successor gate, etc., further influence the delay
of the gate. One thus, typically provides delay ranges rather instead of constant
delays per input and its corresponding output.
Finally, if it cannot be assumed that the outputs have already reached the state-

statewhen the input is applied, statefull delaymodels have to be considered. The
simplest such, is a first order approximation, assuming that the current output
charges or discharges by input changes according to first-order dynamics. For
the input buffer with input a and output b we thus have,

db(t)
dt
= −

1
τ
· (b(t) − Buf(a(t))) = τ · (b(t) − a(t)) , (2.1)

where τ > 0 is the time-constant of the first-order dynamics and we used the
fact that Buf is the identity function. The larger the difference of the current
output b(t) to the intended output Buf(a(t)), the stronger the output b will
decrease. Solving this ordinary differential equation for y(0) = y0 ≥ 0 and an
input switching to x(t) = x ≥ 0 at time t = 0, gives

b(t) = x + e−
1
τ ·t (y0 − x) . (2.2)

From the solution we see that the output b will exponentially diminish the
initial difference between the current output y0 and the intended output x (see
the second term) and settle at the indented steady-state output x (first term).
From (2.2) one derives the delay as specified before. For example, given that

the output resides at y0 = 0, and the input switches to x = 1, we obtain

b(t) = 1 − e−
1
τ ·t . (2.3)

Setting it equal to Vdd/2 = 0.5, one gets

t = τ loge(2) ≈ τ · 0.69 (2.4)

2 Formally, we would have to choose to both values slightly apart from 0.5Vdd .



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

2.2 Revisiting State Machines 25

as the delay for rising transitions from an output initially resting at 0.

E2.1 Derive the delay for falling transitions and compare it to the delay for rising
transitions. You can assume that the output is initially resting at 1. How would
you adapt the model to explain different delays for rising and falling transitions?
Can you also explain delay ranges with different initializations of the output?

Equivalent circuit for wires. We have previously concentrated on gate delay
and assumed that first-order dynamics is valid approximation for the voltage at
a gate output. Let us take a closer look on wires in the following.
A wire segment, or interconnect, within an IC is a geometric piece of con-

ducting material on a chip. As such it has a resistance R and a capacitance
to all other conducting elements on the chip. For simplification, one typically
assumes for delay considerations, that there is only a capacitance C to ground.
A, sufficiently small, wire segment with input a and output b thus behaves
approximately like the equivalent circuits depicted in Figure 2.5.

Figure 2.5
Dynamic behavior of a small wire segment. The left wire model is called L model in
literature, the one on the right Π model.

Note that the circuit on the right in Figure 2.5 was simply obtained by splitting
the capacitance C into two parts and adding one at the input and one at the
output instead of both at the output. The obtained model is called the Π model
as opposed to the one-sided model which is called the L model. Intuitively, this
accounts better for symmetry of a wire segment where input and output should
behave identically if switched. Indeed, the Π model outperforms the L model
in terms of accuracy for a wire segment of the same length, in practice.
In general a gate drives other gates with their inputs connected to the driving

output via a tree of wire segments. For the tree we thus obtainΠ segments with
their R and C parameters. Depending on the granularity of the segments, the
same wiring may results in trees of different size. In Figure 2.6 a coarse tree is
shown with only 3 segments.



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

26 Chapter 2 Centralized Clocking

Figure 2.6
A tree of wire segments, each modeled by a Π model and its simplification.

The equivalent circuit may be immediately simplified by adding up all par-
allel capacitances without resistances inbetween into a single capacitance; see
Figure 2.6. Solving for the voltage response at a leaf of this tree, given that
the input of the tree makes a sudden rise to 1 or falls to 0, will give a higher-
order solution in general. However, a natural question is to approximate the
circuit by its dominant first order response. This approach is called the Elmore
delay approximation. It states that if the output at leaf j is approximated by
a first-order dynamics as in (2.3), then the term τ is obtained as follows: Let
0, i1, i2, . . . , iN be nodes in the tree along a path from the root 0 to leaf iN = j.
Let R(`) be the resistance that is just upstream of node `. Let Cdown(`) be the
sum of all capacitance that are downstream of node `. Then,

τ =
∑

`∈{0,i1,i2,...,iN }

R(`)Cdown(`) .

In fact this behavior is also obtained by an equivalent circuit that comprises
that of a single L model circuit with RC = τ. One thus calls the Elmore delay
model a lumped delay model, since it lumps all Rs and Cs of the tree into a
single R and C.

E2.2 Bonus exercise: Difficult andmust not be prepared for pre-reading (requires basic
circuit knowledge). Show that an L model circuit behaves as (2.3) with τ = RC.

Together with (2.4), the delay thus is roughly τ · 0.69.

E2.3 Not for pre-reading but for class: derive the Elmore delay for the tree in Figure 2.6.



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

2.2 Revisiting State Machines 27

2.2.2 Flip-flops
Chapter 1 has introduced flip-flops as state-holding circuit components that
copy the data input D to the output Q at the occurrence of a rising transition at
the clock input clk.
A physical implementation is necessarily timed and needs time to copy the

input to the output. The delay is called the clk-to-Q delay d > 0. Additionally,
correct copying of the input to the output requires the input to be stable during
the process of being copied. This range is given by the setup time Tsetup and
the hold time Thold with the requirement that the digital input signal is stable
during

t + [−Tsetup,Thold] ,

where t is the time the active, rising clock transition occurs at the clock input.
While typically positive, Tsetup and Thold may be negative in principle for some
flip-flop implementations; the interval in (2.5) always has strictly positive
length, however. Figure 2.7 depicts a scenario of a flip-flop copying its input
with the delay annotated.

Figure 2.7
Flip-flop copying its input D to the outputQ at the occurrence of a rising clock transition
at clock input clk.



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

28 Chapter 2 Centralized Clocking

2.3 Clock Tree Synthesis Problem

We are now in the position to discuss a clocked Moore state machine imple-
mentation within a model with timing. We start by introducing clock trees.

2.3.1 Clock Tree
In a classical synchronous setting all flip-flops are driven by clock signals
that are derived from a single clock source. The clock signal thus has to
be distributed from the source to the clock inputs of the flip-flops. This is
done by the so called clock distribution network; a circuit that is dedicated
to the distribution of the clock signal. While such a circuit is typically built
hierarchically and may comprise non-trivial circuitry in general, we will start
our considerationswith the simplest network: a directed treewhose components
are interconnect, clock buffers, and inverters. Figure 2.8 depicts such a tree.

Figure 2.8
Clock tree. The root node 0 drives each downstream clock node i ∈ {1, 2, . . . , N} for
N ∈ N.

A node in the tree, called clock node, is from {0, 1, 2, . . . , N} with N ∈ N.
Clock node 0 is the clock source. Clock nodes i other than 0 represent signals
in the clock distribution tree. The signal corresponding to clock node i is either
directly the output of a clock buffer or an inverter or after being propagated
along a wire segment. Edges in the clock tree are labeled by propagation
delays; for simplicity, we assume constant delays that are identical for rising
and falling transitions. Without loss of generality the clock tree is assumed



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

2.3 Clock Tree Synthesis Problem 29

to be binary: whenever a driver, drives multiple outputs that fork at the same
geometric position, we choose an arbitrary binary splitting and delays of 0.

2.3.2 Source to Sink Constraints
We start by identifying constraints that arise from the timed behavior of the
components. For that purpose, consider the path along a source flip-flop and a
sink flip-flop, both of which are potentially identical. Figure 2.9 shows such a
path for the synchronous implementation of a Moore state machine.

Figure 2.9
Source to sink constraints in a synchronous implementation of a Moore state machine.

The launching register ` is triggered via the launch clock path and the capture
register c via the capture clock path. For the combinational logic path from
register ` to register c, we done its range of delays with dcmb(`, c). The register-
to-register path additionally includes the clk-to-Q delay of the launching register
and its delay range is denoted by dr2r(`, c) for the path from register ` to register
c.
Before stating the timing constraints that guarantee a correct operation of the

synchronous implementation, we introduce some definitions. Let tk(i), with
k ≥ 1 and i being a node in the clock network, be the time of the k th transition
at node i. We then define:
• The k th clock cycle length at the clock node i,

Tk
cyc(i) = tk+1

clk (i) − tkclk(i) . (2.5)



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

30 Chapter 2 Centralized Clocking

• The local skew tkskew(i, j) of the k th active clock transition from clock node i
to j is defined as

tkskew(i, j) = tkclk(i) − tkclk( j) . (2.6)

Further, let

tskew(i, j) = max
k≥1

tkskew(i, j) . (2.7)

• The insertion delay tins(i) of the k th active clock transition at clock node i is

tkins(i) = tk(i) − tk(0) . (2.8)

Correct operation of the synchronous circuit is then guaranteed if and only
if all of the following constraints hold: For all register-to-register paths from
a launching register clocked by clock node ` to a capture register clocked by
clock node c, and all rising clock transitions k ≥ 1:
• The setup constraint has to hold, with

tk(`) + dr2r(`, c) ≤ tk+1(c) − Tsetup .

• The hold constraint has to hold, with

tk(`) + dr2r(`, c) ≥ tk(c) + Thold .

We may rewrite both constraints in terms for the clock cycle, the local skew,
and the insertion delay, obtaining:
• For the setup constraint:

dr2r(`, c) + tkskew(`, c) + Tsetup ≤ Tk
cyc(c) .

• For the hold constraint:

dr2r(`, c) + tkskew(`, c) ≥ Thold .

E2.4 Show that the above rewriting is correct.

From the two constraints, we observe that, in general, a small absolute skew
is preferred: Larger absolute skews between ` and c may help to fulfill one
constraint, but make it more difficult to fulfill the other. More importantly,
however, larger absolute skews are prohibitive for the case c acts also as a
launching register, even, perhaps for register `. One approach, while more
coarse than trying to fulfill the system of inequalities, is thus to minimize the
local skew between all clock nodes driving registers.



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

2.3 Clock Tree Synthesis Problem 31

A clock source and a clock tree that together fulfill the above inequalities
for a state machine implementation are called correct for this implementation.
Indeed the following holds:

Theorem 2.1. If a clock source and a clock tree are correct for a state machine
implementation, then the implementation behaves as the untimed state machine
from Chapter 1.

E2.5 Argue why Theorem 2.1 holds.

2.3.3 Optimization Problem
While a correct clock source and tree guarantees correct circuit behavior, one
is usually interested in optimal solutions with respect to some performance
measure. Major measures are power, local skew, injection delay, and of course,
frequency of the clock source. While the motivation to minimize power and
frequency are clear, the goal to minimize local skew stems from the simplifying
assumption that a smaller local skew makes it easier to fulfill the constraints
we discussed in the previous section. The motivation to minimize the insertion
delay has several reasons, one of them being the worst-case delay jitter, i.e.,
differences in delay, along th path from the clock root to a clock node. Another
reason is the latency from changing the clock node frequency to it actually
happening at the clock leaves.
The clock synthesis problem has thus been formulated as different optimiza-

tion problems, depending on which of these properties are bounded and which
ones to optimize.
A centralmeasure is the power consumed by the clock network. For a periodic

digital signal with frequency f occurring at a gate, we have

P = Pdynamic + Pstatic (2.9)
=

(
Pswitching + Pshort-circuit

)
+ Pstatic (2.10)

≈ CV2
dd f + α + 0 , (2.11)

where C is the capacitance that the gate drives, and α is a constant that ac-
counts for the short-circuit power per gate. The short-circuit component is
mainly dependent on the switching delay of the clock signal and thus its slew
rate. Typically the gate slew rate is constrained during clock tree synthesis
and the component thus upper bounded by some α ≥ 0. The static power,
determined by the leakage, is often neglected since it is small in comparison to
the dynamic term for current technologies. This may change depending on the
used technology, however.



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

32 Chapter 2 Centralized Clocking

Wemay again use the Elmore approximation of a lumped Lmodel to arrive at
a single R and C. Following the Elmore approximation we proceed as follows:
The capacitance Cdown(g) seen from a gate g is composed of the output gate
capacitance of the gate, its output wires, and the input capacitances of the
downstream gates. Roughly, the output and input gate capacitances of a gate g
are proportional to the gate width w(g), and the wire capacitance of a segment
s is proportional to its length l(s) and its cross sectional area A(s). Thus, for a
gate g with downstream gates g′ in Gg and downstream wire segments s in Sg,

Cdown(g) ≈
∑

g′∈Gg

w(g′) · Cgate +
∑
s∈Sg

A(s) · l(s) · Cwire . (2.12)

The propagation delay from node i to a child node j is then obtained from
first computing the lumped RC derived from the Elmore approximation of the
RC-tree including the gate capacitances. Using, (2.4) one then finally obtains
the propagation delay.

Clock tree optimization. We are now in the position to state the optimization
problems to obtain optimal clock tree designs. The simplest formulation uses
a fixed local skew budget tmax,skew > 0 and optimizes for power P.

Definition 2.2 (Clock synthesis, local skew budget). Given tmax,skew, find an
optimal solution to the problem:

min P , such that
∀ j, j : tskew(i, j) ≤ tmax,skew .

As previously discussed, minimizing the skew, ormaintaining it within a skew
budget as in the previous optimization problem, is a simplification. Although
often followed, a more refined optimization problem is:

Definition 2.3 (Clock synthesis, skew constraints). Find an optimal solution
to the problem:

min P , such that
∀i, j : the setup and hold constraints for i, j are fulfilled .

E2.6 The insertion delay does not appear as a minimization target in this optimization
problem. Or does it? And if so, how? Think of delay variations over time.

E2.7 For class, not pre-reading: Can you come up with a simple heuristic that creates
clock trees that has lock skew 0 (given that there are no delay variation per gate



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

2.4 Improvements 33

and wire)? Think of a binary, bottom-up, merging approach. How does the
Elmore delay help here?

2.4 Improvements

MF: NOTE. This section is in progress and covers two advanced techniques
of how to obtain higher frequencies for synchronous circuits. It will not be
covered in the course (or only if you wish to briefly, but no pre-reading is
required).

2.4.1 Retiming
MF: tbd

2.4.2 Clock Skew Scheduling
MF: tbd

2.5 Clock Sources

We have assumed a root clock source with perfect clock period Tcyc > 0.
In the following, we summarize implementations of such clock sources and
limitations and extensions to the clock source model.

2.5.1 Uncontrolled Clock Source
Typically the clock source driving the clock tree is a Phase locked loop (PLL)
driven by a quartz oscillator. We will discuss PLLs in greater detail in Chap-
ter ??. At this point we just view the quartz oscillator together with the PLL as
a single clock source.
Clearly, for physical implementations, the perfect period of Tcyc > 0 is over-

simplified. Noise on clock transitions exists at different timescales, induced by
environmental factors such as temperature, power supply variations, mechanic
forces, wear-out, etc. While detailed models on clock noise exist, character-
izing noise according to the spectral domain it belongs to, we will stick to a
simplified, but conservative, bound on clock transitions. We assume, that for
all positive clock transitions k ≥ 1, and all ` ≥ 1,

` · Tcyc · (1 − ρ) ≤ tk+`(0) − tk+1(0) ≤ ` · Tcyc · (1 + ρ) ,

where ρ ≥ 0 is the two-sided clock drift. To simplify the analysis of such
systems, one sometimes uses the one-sided clock drift representation,

` · Tcyc ≤ tk+`(0) − tk+1(0) ≤ ` · Tcyc · (1 + ρ′) .



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

34 Chapter 2 Centralized Clocking

Both are interchangeable. Given a two-sided drift ρ′, one obtains the one-sided
drift as ρ′ = 1 − 1+ρ

1−ρ .
While the two-sided drift ρ appears as non-determinism, and thus potential

instability of the clock signal, the fact that clock periods change with environ-
mental conditions may also have beneficial effects. Indeed, e.g., the work by
Cortadella [? ] observed that the fact that the frequency of a ring oscillator,
formed by a ring of inverters as shown in Figure 2.10, decreases with lower
voltages can be used to automatically tune the clock source frequency in ac-
cordance to power supply variations. We will revisit such control circuits in
Chapter ??.

Figure 2.10
Ring oscillator implemented by an odd number of inverters driving a clock signals clk.

2.5.2 Controlled Clock Source
Adapting the frequency, including stopping the clock completely, has become
an integral part of chips. While the clock signal for some clock subtrees may
be masked with And-gate based solutions, a technique called clock gating,
adapting the frequency requires more complex circuitry. We will discuss such
circuits in Chapters ??, ??, and ??.

2.6 Fundamental Limitations

So far we have discussed how to obtain valid and optimized implementations
of clock trees. But how good can we do in principle with clock trees? Are
there limitations that no technique whatsoever can break?
We start this discussion by observing that a typical chip is 2 dimensional and

a clock tree needs to provide the clock signal to a roughly quadratic area, where
we can expect that at the very least physically close-by parts of the chip need



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

2.6 Fundamental Limitations 35

the signals provided to them to be well-synchronized. The following result
shows that at least for some nodes, a tree must fail to do so. The result is due
to Fisher and Kung [5] where it is stated without proof; a proof can be found in
Boksberger et al. [1].

Theorem 2.4. For k ∈ N, consider a k × k grid in R2 in which adjacent grid
nodes have distance 1. For any tree spanning the grid points, there are adjacent
grid nodes that are in distance Ω(k) in the tree.

Proof. Observe that if a tree node v has degree larger than 3, we can reduce
its degree by inserting an additional node arbitrarily close to it and attaching
2 or more of the children of v to the new node instead, like we did when
introducing clock trees. This changes tree distances by an arbitrarily small
amount. Accordingly, we can w.l.o.g. assume that the tree is binary.
In any tree T of maximum degree 3 (of at least 4 nodes), there is some edge

so that the two components resulting from removing this edge have size at least
(n − 1)/3 ∈ Ω(n). To see this, pick an arbitrary edge, delete it, and look at the
resulting componentsT1 andT2. If |T1 |, |T2 | ≥ (n−1)/3, we’re done. Otherwise,
assume w.l.o.g. that |T1 | < (n− 1)/3, i.e., |T2 | ≥ n− (n− 1)/3 = 2(n− 1)/3+ 1.
Let w be the endpoint of the deleted edge that lies in T2. Deleting w from T2
results in (at most) two components of T2, as w has degree 3 (and thus at most 2
inT2). One of these components must have size at least (|T2 | −1)/2 ≥ (n−1)/3.
Consider the edge connectingw to this component and delete it fromT , resulting
in components T ′1 and T ′2 ; let’s say w ∈ T ′1 . By the previous considerations, we
have that |T ′1 | > |T1 |, while |T ′2 | ≥ (n − 1)/3. Now either |T ′1 | ≥ (n − 1)/3 and
we’re done, or we can repeat the argument, resulting in an edge for which one
component is even larger thanT ′1 and the other remains of size at least (n−1)/3.
Thus, repeating this argument inductively, we must eventually reach an edge
satisfying the claim.
From the above claim, we can infer that we can partition the nodes into two

sets such that (i) each set contains Ω(k2) nodes and (ii) each set induces a
subtree. We call a node a boundary node if it has a neighbor in the other set.
From (i) we can infer that the boundary must contain nodes in distance Ω(k)
from each other, as any area of size Ω(k2) cannot be confined within a square
or side length o(k) (note that this argument is resilient to the fact that nodes at
the boundary of the grid can also serve as boundary of the respective area). Fix
two such nodes v and w in the same subtree. As they are in distance Ω(k), the
path in the subtree connecting them is of that length. This in turn means that
at least one of them is in distance Ω(k) of the root of its subtree. Finally, we
conclude that this node is in distance Ω(k) from its neighbor(s) in the other set
within the tree. �



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

36 Chapter 2 Centralized Clocking

E2.8 The statement for the grid shows that there’s a problem no matter how gates are
placed on the chip. Can you see why? Could you cast this into a formal statement
with proof?

• If uncertainties are proportional to the length of a link, we can immediately
conclude that the worst-case skew between adjacent nodes is Ω(uk), where u
is the uncertainty of a link of unit length, cf. ??.

• The above bound is tight up to constants, which is shown by an H-tree. For
k + 1 (the “width” of the grid) being a power of 2, an H-tree is constructed
recursively as follows. Place the root in the center of the grid. Then connect
it to two children by going k/2 to the right and left, respectively. Each of
these children also has two children, which are in distance k/4 going up and
down, respectively. The four nodes in depth two of the tree are now exactly in
the center of four disjoint subgrids of k/2 × k/2 nodes, and the construction
is applied recursively for log k steps. In the end, each grid point with both x-
and y-index being odd (or even, depending on indexation) is occupied by a
leaf.CL: Depiction of an H-tree.

• The construction from the lemma actually shows that there must be Ω(k)
adjacent grid nodes that are in distance Ω(k) in the tree. More generally, one
can show that Ω(2ik) adjacent grid nodes are in distance Ω(k/2i) in the tree.

• An H-tree matches this bound, too: Cutting the square in half horizontally
and vertically, one gets four subsquares, each of which hosts a smaller H-tree.
Where we cut the grid, we have 2k adjacent node pairs that end up being in
distance (almost) 2k in the tree. All other adjacent node pairs are in the same
of one of the four sub-H-trees, so they are by factor 2 closer to each other.

2.7 Beyond a Single Clock

For some applications a single clock source, driving a clock tree with balanced
nodes is too costly in terms of design effort or required resources, or simply
not possible because of the limitations we saw in the last section. In this case,
a possible strategy is to give up on a single clock source and replicate the clock
source. The replication may be analytically rather than physically, though:
the independent clock trees may be fed by the same clock source, but be two
subtrees that are not balanced with respect to each other. Figure 2.11 shows the
step from a single clock domain to two clock domains, each running its own
finite state machine, but state machine FSM1 communicating its output to state
machine FSM2.
While the figure shows one-directional communication for simplicity, the

following principles are easily translated to two-direction communication. First



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

2.7 Beyond a Single Clock 37

Figure 2.11
Communicating state machines: (a) within a single clock domain, (b) within two
different clock domains.

observe that unrelated clocks, potentially of different nominal frequencies,
necessitates a feedback mechanism for flow control from FSM2 back to FSM1
in order to acknowledge when the data has been readily processed. Clearly,
though, certain scenarios of two clock domains, may not require such feedback
control.

E2.9 When don’t you need feedback? Think of an example. What if clocks are derived
from the same source but with unbalanced / unknown skew?

E2.10 For class and not for pre-reading: What flow control signals would you use?
Explain and draw a timing diagram of a typical communication from FSM1 to
FSM2. What are critical scenarios? Think of setup/hold time constraints.

Flow control is not the sole problem that has to be solved, though: remember
the setup and hold time constraints that had to hold for flip-flops. We will
discuss this in the following Chapter ??.



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am



MITPress NewMath.cls LATEX Book Style Size: 6x9 November 15, 2020 10:17am

Bibliography

[1] Boksberger, Philipp, Fabian Kuhn, and Roger Wattenhofer. 203. On the Approxima-
tion of the Minimum Maximum Stretch Tree Problem, Technical Report 409, ETH
Zurich.

[2] Even, Guy. 2006. On teaching fast adder designs: Revisiting Ladner & Fischer. In
Theoretical computer science, 313–347. Springer.

[3] Even, Guy, and Moti Medina. 2012. Digital logic design: a rigorous approach.
Cambridge University Press. http://hyde.eng.tau.ac.il/Even-Medina/index.html.

[4] Even, Shimon. 2011. Graph algorithms. Cambridge University Press.

[5] Fisher, AllanL., andHsiang-TsungKung. 1985. SynchronizingLargeVLSI Processor
Arrays. IEEE Transactions on Computers C-34 (8): 734–740.

[6] Mealy, George H. 1955. A method for synthesizing sequential circuits. The Bell
System Technical Journal 34 (5): 1045–1079.


