
MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8 Gradient Clock Synchronization

Chapter Contents
8.1 Overview 50
8.2 Lower Bound on the Local Skew with Bounded

Clock Rates 53
8.3 Constant Local Skew with Halting Clocks 58
8.4 Lower Bound with Arbitrary Clock Rates 61
8.5 Upper Bound on the Local Skew 63

Learning Goals
todo



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

50 Chapter 8 Gradient Clock Synchronization

8.1 Overview

In Chapter 7, we have studied the clock synchronization problem. We have
see that a global skew of Θ(𝑢𝐷 + (𝜗 − 1)𝑑) is worst-case optimal, where 𝐷

is the diameter of the network graph (with crashed nodes removed). However,
if the logical clocks are intended to clock the system, the global skew is not
determining the clock frequency the system can sustain under synchronous
operation. Rather, the essential property is the clock skew between nodes (i.e.,
clock domains) that communicate with each other.

In this chapter, we will assume that the network graph corresponds to the
communication graph, i.e., if the clock domains corresponding to nodes 𝑣 ∈ 𝑉
and 𝑤 ∈ 𝑉 communicate directly, then there is also an edge {𝑣, 𝑤} ∈ 𝐸 in
the network graph 𝐺 = (𝑉, 𝐸) on which we solve the clock synchronization
problem. In this setting, a highly relevant quality measure for synchronization
is the local skew.

Definition 8.1 (Local Skew). Given an algorithm that computes logical clocks
𝐿𝑣 (𝑡), 𝑡 ∈ R≥0, at each node 𝑣 ∈ 𝑉 , define its local skew as

L B sup
𝑡 ∈R≥0

{L(𝑡)},

over all executions E, where

L(𝑡) B max
{𝑣,𝑤 }∈𝐸

{|𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) |}.

We study the local skew for clock synchronization algorithms in TMP.
One might hope that the local skew can be kept much smaller than the global

skew. In fact, since the lower bound on the global skew given in Theorem 7.12
is based on “hiding” a large clock skew between nodes in distance 𝐷 from each
other, one might venture the guess that a local skew of 𝑂 (𝑢 + (𝜗 − 1)𝑑) can
be guarenteed. Our first main result in this chapter shows that such an ideal
distribution of the global skew over the network cannot always be maintained
with bounded logical clock rates.

Theorem 8.4. Any clock synchronization algorithm satisfying that
𝑑𝐻𝑣

𝑑𝑡
(𝑡) ≤ 𝑑𝐿𝑣

𝑑𝑡
(𝑡) ≤ (1 + 𝜇) 𝑑𝐻𝑣

𝑑𝑡
(𝑡)

for all nodes 𝑣 and times 𝑡 has

L ≥
(𝑢
4
− (𝜗 − 1)𝑑

)
log d𝜎e 𝐷,

where 𝜎 B 𝜇/(𝜗 − 1).



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.1 Overview 51

This lower bound constraints clock rates from below by 𝑑𝐻𝑣

𝑑𝑡
(𝑡) ≥ 1 and from

above by (1 + 𝜇) 𝑑𝐻𝑣

𝑑𝑡
(𝑡) ≤ 𝜗(1 + 𝜇). Recall that the lower bound is motivated

by requiring that clocks make progress; however, as can be seen by analyzing a
variant of Algorithm 2 in TMP, allowing for an amortized logical clock rate10
of at least 1 enables us to keep the local skew constant.

Theorem 8.8. There is a clock synchronization algorithm achieving a local
skew of max{𝑑, 𝜗𝑢}, amortized 1-progress with 𝐶 = 0, and 𝑑𝐿𝑣

𝑑𝑡
(𝑡) ≤ 𝑑𝐻𝑣

𝑑𝑡
(𝑡)

for all times 𝑡 and nodes 𝑣 ∈ 𝑉 .

The algorithm providing these guarantees locally halts the logical clock for
up to 𝑢𝐷 time. Although a formal statement would be more convoluted,11 the
proof of Theorem 8.4 reveals that, roughly speaking, this is necessary to ensure
a local skew of 𝑂 (𝑢).

But what if halting or dramatically slowing down the clocks is a problem?
If the system is required to respond to local events as quickly as possible,
one would want the the logical clocks that drive the nodes’ computations are
guaranteed to make progress at all times. In this setting, the requirement that
𝑑𝐿𝑣

𝑑𝑡
(𝑡) ≥ 𝑑𝐻𝑣

𝑑𝑡
(𝑡) should be upheld. So what about the upper bound, i.e., that

𝑑𝐿𝑣

𝑑𝑡
(𝑡) ≤ (1 + 𝜇) 𝑑𝐻𝑣

𝑑𝑡
(𝑡)? It turns out that choosing 𝜇 ≥ log1/(𝜗−1) 𝐷 is of no

use, as an algorithm utilizing faster clocks will inadvertantely introduce a large
skew due to neighors’ not being able to keep track of each others clocks any
more.

Theorem 8.10. Any clock synchronization algorithm satisfying that 𝑑𝐻𝑣

𝑑𝑡
(𝑡) ≤

𝑑𝐿𝑣

𝑑𝑡
(𝑡) for all nodes 𝑣 and times 𝑡 has

L = Ω

((𝑢
4
− (𝜗 − 1)𝑑

)
log d𝜎e 𝐷

)
for 𝜎 = log1/(𝜗−1) 𝐷)/(𝜗 − 1).

A painfully more elaborate argument shows that the same holds for 𝜎 =

Θ(1/(𝜗 − 1)) [? ], but due to being executed in a different model, it does
not immediately provide a corresponding statement in our setting. In favor of
simplicity and intuition, we stick to the weaker bound.

Note that for (1 + 𝜇) ≤ 𝜗, it is impossible for logical clocks of nodes with
𝑑𝐻𝑣

𝑑𝑡
= 1 to catch up with the logical clocks of nodes with 𝑑𝐻𝑣

𝑑𝑡
= 𝜗. Thus, the

above results lead to the question whether for the range of 𝜇 > 𝜗 − 1 the lower

10 The theorem states amortized 1-progress for 𝐶 = 0, but recall that for notational convenience
we assume that all nodes wake up at time 0. If the last node wakes up at time 𝑡0, then 𝐶 = 𝑡0.
11 The clocks do not need to be halted, but they must progress sufficiently slow to prevent the
build-up of skew the lower bound accomplishes.



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

52 Chapter 8 Gradient Clock Synchronization

bound from Theorem 8.4 can be (up to constants) matched by a corresponding
algorithm. The second main result of this chapter is that this is indeed the case,
provided that nodes can estimate the logical clock values of their neighbors up
to an error of 𝛿 = 𝑂 (𝑢) at all times and G/𝛿 = 𝑂 (𝐷).
Theorem 8.28. Suppose that 𝜅 ≥ 𝛿 and 𝐻𝑣 (0) − 𝐻𝑤 (0) ≤ 𝜅 for all edges
{𝑣, 𝑤} ∈ 𝐸 . Then Algorithm 7 maintains a local skew of

L ≤ 2𝜅
⌈
log𝜎

G
𝜅

⌉
,

where 𝜎 B 𝜇/(𝜗 − 1).
This means that, while we are not able to guarantee a local skew that is entirely

independent of 𝐷, the dependence on 𝐷 is only logarithmic. Moreover, note
that the base of the logarithm can become very large, at the expense of a larger
“drift” of logical clocks than of hardware clocks.

With the technical machinery established for bounding the local skew we can
also bound the global skew.

Theorem 8.29. Assume that 𝜅 ≥ 𝛿 and 𝐻𝑣 (0) −𝐻𝑤 (0) ≤ 𝜅 for all {𝑣, 𝑤} ∈ 𝐸 .
Then Algorithm 7 satisfies G ≤ (1 + 1/(𝜎 − 1))𝜅𝐷, where 𝜎 = 𝜇/(𝜗 − 1).

We then proceed to show that 𝛿 = 𝑂 (𝑢) is easily achieved, provided that
𝜇 = 𝑂 (𝑢/𝑑). Together, under the mild constraint that 𝑢/4 − (𝜗 − 1)𝑑 = Ω(𝑢)
this implies that Algorithm 7 is, up to constant factors, simultaneously optimal
with respect to both local and global skew, for any choice of𝜗−1 < 𝜇 = 𝑂 (𝑢/𝑑).

Corollary 8.32. Suppose that
• 𝐻 := max{𝑣,𝑤 }∈𝐸 {𝐻𝑣 (0) − 𝐻𝑤 (0)} ∈ 𝑂 (𝑢),
• Algorithm 8 with 𝑇 = 𝑑 is used to compute clock estimates and is initialized

at all nodes by time −2𝑑,
• 2(𝜗 − 1) ≤ 𝜇 = 𝑂 (𝑢/𝑑), and
• 𝜅 = max{𝐻, 𝛿}, where 𝛿 is as in Lemma 8.31.

Then Algorithm 7 guarantees that
• 𝑑𝐻𝑣

𝑑𝑡
(𝑡) ≤ 𝑑𝐿𝑣

𝑑𝑡
(𝑡) ≤ (1 + 𝜇) 𝑑𝐻𝑣

𝑑𝑡
(𝑡) for all nodes 𝑣 and times 𝑡,

• G = 𝑂 (𝐷), and
• L = 𝑂 (𝑢 log𝜎 𝐷), where 𝜎 = 𝜇/(𝜗 − 1).
Remark 8.2. The constraints on 𝜇 cannot be met if (𝜗 − 1)𝑑 � 𝑢. For the
global skew, we could easily resolve this by constructing better hardware clocks
using the more accurate wire delays. However, as messages are under way for



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.2 Lower Bound on the Local Skew with Bounded Clock Rates 53

up to 𝑑 time, such clocks must suffer from an additive error term of (𝜗 − 1)𝑑.
Naturally, this is also a lower bound on the local skew and the quality of
estimates of neighbors’ clocks. Thus, it comes without surprise that this term
cannot be easily removed from the local skew bound, which it enters via 𝛿,
which bounds 𝜅 from below.

Remark 8.3. By detecting crashes using timeouts in a similar manner as
we used to derive Theorem 7.6, Algorithm 7 can handle crash faults without
changing skew bounds in a relevant manner: if a node crashes, this can be
recognized 𝑂 (𝑇 + 𝑑) time later by its neighbors due to missing clock updates.
By keeping the clock of the crash node running fictitiously for additional 𝑂 (𝑑)
time, this delay can be incorporated into 𝛿 without increasing it significantly.
Similarly, Theorem 8.8 can be adapted, where detecting crashes by timeouts
only changes that we need to choose a non-zero 𝐶 = 𝑂 (𝑑𝐷). Note that in both
cases, at each time 𝐷 then is to be replaced by the maximum diameter of the
network up to time 𝑡.

As assuming crash faults is too optimistic in low-level hardware implemen-
tations, we refrain from formalizing these results.

8.2 Lower Bound on the Local Skew with Bounded Clock Rates

In Chapter 7, we proved essentially matching upper and lower bounds on the
worst-case global skew for the clock synchronization problem. We saw that
during an execution of the Max algorithm (Algorithm 5), all logical clocks
in all executions eventually agree up to an additive term of 𝑂 (𝑢𝐷) (ignoring
other parameters). The lower bound we proved in Theorem 7.12 shows that a
global skew of Ω(𝑢𝐷) is unavoidable for any algorithm in which clocks run
at an amortized constant rate, at least in the worst case. In our lower bound
construction, the two nodes 𝑣 and 𝑤 that achieved the maximal skew were
distance 𝐷 apart. However, the lower bound did not preclude neighboring
nodes from remaining closely synchronized throughout an execution. As we
will see in Theorem 8.8, this is indeed possible if one is willing to slow down
clocks arbitrarily (or simply stop them), even if the amortized rate is constant.

We now look into what happens if one requires that clocks progress at a
constant rate at all times. That is, we constrain logical clocks to increase at
rates between 𝑑𝐻

𝑑𝑡
and (1 + 𝜇) 𝑑𝐻

𝑑𝑡
at all times.

Before proving Theorem 8.4, we provide some intuition. Assume that (𝜗 −
1)𝑑 � 𝑢, so we can ignore terms with (𝜗 − 1)𝑑 for the moment and drop them
from the notation. The basic strategy of the proof is to construct a sequence of
executions E0, E1, . . . , Eℓ and times 𝑡0 < 𝑡1 < · · · < 𝑡ℓ such that at each time
𝑡𝑖 , there exist nodes 𝑣𝑖 , 𝑤𝑖 satisfying 𝐿𝑣𝑖 (𝑡𝑖) − 𝐿𝑤𝑖

(𝑡𝑖) ≥ 𝑖𝛼𝑢 · dist(𝑣𝑖 , 𝑤𝑖), for



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

54 Chapter 8 Gradient Clock Synchronization

some suitable constant 𝛼. Our construction works up to ℓ = Ω(log𝜎 𝐷) with
dist(𝑣ℓ , 𝑤ℓ) = 1, which gives the desired result.

In more detail, the idea of the proof is to use the “shifting” technique
of Lemma 7.11 applied ℓ times to closer and closer pairs of nodes. By
Lemma 7.11, there is an execution E0 and a pair of nodes 𝑣0, 𝑤0 satisfying
dist(𝑣0, 𝑤0) = 𝐷 such that at time 𝑡0 = 𝑑 + (𝑢/(2(𝜗 − 1)) − 𝑑)𝐷, we have
𝐿𝑣0 (𝑡0) − 𝐿𝑤0 (𝑡0) ' 𝑢/2 · dist(𝑣0, 𝑤0). Fix a shortest path 𝑃 from 𝑣0 to 𝑤0. For
any pair of nodes 𝑣, 𝑤 along 𝑃, we define the average skew between 𝑣 and 𝑤 at
time 𝑡 to be |𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) |/dist(𝑣, 𝑤). In particular, the average skew between
𝑣0 and 𝑤0 is at least (roughly) 𝑢/2.

We extend the execution E0 for 𝑡 > 𝑡0 by setting all hardware clock rates
to 1 for 𝑡 > 𝑡0 and all message delays to 𝑑 − 𝑢/2 (as in the execution E in
Lemma 7.11). Thus, by assumption at times 𝑡 > 𝑡0 logical clock rates are
always between 𝑑𝐻

𝑑𝑡
= 1 and (1 + 𝜇) 𝑑𝐻

𝑑𝑡
= 1 + 𝜇. Hence, for every 𝑡 > 𝑡0 in the

extended execution, we have 𝐿𝑣0 (𝑡) − 𝐿𝑤0 (𝑡) ≥ 𝑢/2 · dist(𝑣0, 𝑤0) − 𝜇 · (𝑡 − 𝑡0).
That is, the average skew between 𝑣0 and 𝑤0 decreases at a rate of at most
𝜇/dist(𝑣0, 𝑤0). By taking

𝑡1 = 𝑡0 + 𝑑 +
(𝑢
2
· (𝜗 − 1) − 𝑑

)
· 𝑘 ≈ 𝑡0 +

𝑢

2
· (𝜗 − 1)

for some suitably chosen 𝑘 , there exists a pair of nodes 𝑣1, 𝑤1 on 𝑃 with
dist(𝑣1, 𝑤1) = 𝑘 such that the average skew between 𝑣1 and 𝑤1 at time 𝑡1 is
(roughly) at least

𝑢

2
− 𝜇

dist(𝑣0, 𝑤0)
· (𝑡1 − 𝑡0) =

𝑢

2
− 𝑢

2
· 𝜇

𝜗 − 1
· 𝑘

dist(𝑣0, 𝑤0)
in the execution E0. Recalling that 𝜎 = 𝜇/(𝜗 − 1) and choosing 𝑘 =

dist(𝑣0, 𝑤0)/d2𝜎e, this is at least 𝑢/4. We then apply the shifting technique
again to the nodes 𝑣1 and 𝑤1 on the interval [𝑡0, 𝑡1]. In this way we define
an execution E1 in which there is a time when the skew between 𝑣1 and 𝑤1 is
by roughly 𝑢𝑘/2 larger than the skew in E0 at time 𝑡1. Therefore, in E1, the
average skew bewtween 𝑣1 and 𝑤1 reaches about 3/4𝑢.

We then iterate the procedure above ℓblog d2𝜎e 𝐷c times. In the 𝑖-th iteration,
we obtain a pair of nodes 𝑣𝑖 , 𝑤𝑖 at distance 𝐷/b2𝜎c𝑖 such that the average skew
between 𝑣𝑖 and 𝑤𝑖 is at least (1/2 + 𝑖/4) · 𝑢. Thus, after ℓ iterations, the skew
between adjacent nodes 𝑣ℓ and 𝑤ℓ is roughly 𝑢/2 · log𝜎 𝐷, which gives the
desired result.

Theorem 8.4. Any clock synchronization algorithm satisfying that
𝑑𝐻𝑣

𝑑𝑡
(𝑡) ≤ 𝑑𝐿𝑣

𝑑𝑡
(𝑡) ≤ (1 + 𝜇) 𝑑𝐻𝑣

𝑑𝑡
(𝑡)



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.2 Lower Bound on the Local Skew with Bounded Clock Rates 55

for all nodes 𝑣 and times 𝑡 has

L ≥
(𝑢
4
− (𝜗 − 1)𝑑

)
log d𝜎e 𝐷,

where 𝜎 B 𝜇/(𝜗 − 1).

Proof. Note that the claim is vacuous if (𝜗− 1)𝑑 ≥ 𝑢/4, so we can assume the
opposite in the following. Set 𝑏 B d2𝜎e and 𝑖max B blog𝑏 𝐷c. By induction
over 𝑖 ∈ [𝑖max + 1], we show that we can build up a skew of (𝑖 + 2) (𝑢/4 − (𝜗 −
1)𝑑) dist(𝑣, 𝑤) between nodes 𝑣, 𝑤 ∈ 𝑉 in distance dist(𝑣, 𝑤) = 𝑏𝑖max−𝑖 at a time
𝑡𝑖 in execution E (𝑖) , such that after time 𝑡𝑖 all hardware clock rates are 1 and all
sent messages have delays of 𝑑 − 𝑢/2.

We anchor the induction at 𝑖 = 0 by applying Lemma 7.11, choosing 𝑡0 as
in the lemma. We pick two nodes 𝑣, 𝑤 ∈ 𝑉 in distance 𝑏𝑖max ≤ 𝐷 of each
other such that 𝐿

(E1)
𝑣 (𝑡0) ≥ 𝐿

(E1)
𝑤 (𝑡0). Now consider E𝑣 for this choice of

𝑣, 𝑤 ∈ 𝑉 , which satisfies 𝐻
(E𝑣 )
𝑣 (𝑡0) = 𝐻

(E1)
𝑣 (𝑡0) + (𝑢/2 − (𝜗 − 1)𝑑) dist(𝑣, 𝑤)

and 𝐻
(E𝑣 )
𝑤 (𝑡0) = 𝐻

(E1)
𝑤 (𝑡0). Denote by 𝑡 < 𝑡0 the time such that 𝐻 (E𝑣 )𝑣 (𝑡) =

𝐻
(E1)
𝑣 (𝑡0). We get that

𝐿
(E𝑣 )
𝑣 (𝑡0) = 𝐿

(E𝑣 )
𝑣 (𝑡) + 𝐿 (E𝑣 )𝑣 (𝑡0) − 𝐿

(E𝑣 )
𝑣 (𝑡)adding 0

≥ 𝐿
(E𝑣 )
𝑣 (𝑡) + 𝐻 (E𝑣 )𝑣 (𝑡0) − 𝐻

(E𝑣 )
𝑣 (𝑡)𝑑𝐿𝑣

𝑑𝑡
≥ 𝑑𝐻𝑣

𝑑𝑡

= 𝐿
(E𝑣 )
𝑣 (𝑡) +

(𝑢
2
− (𝜗 − 1)𝑑

)
dist(𝑣, 𝑤)by definition

= 𝐿
(E1)
𝑣 (𝑡0) +

(𝑢
2
− (𝜗 − 1)𝑑

)
dist(𝑣, 𝑤).by indist. (8.1)

We conclude that

𝐿
(E𝑣 )
𝑣 (𝑡0) − 𝐿

(E𝑣 )
𝑤 (𝑡0) = 𝐿

(E𝑣 )
𝑣 (𝑡0) − 𝐿

(E1)
𝑤 (𝑡0)by indist.

≥ 𝐿
(E1)
𝑣 (𝑡0) +

(𝑢
2
− (𝜗 − 1)𝑑

)
dist(𝑣, 𝑤) − 𝐿

(E1)
𝑤 (𝑡0)(8.1)

(8.2)

≥
(𝑢
2
− (𝜗 − 1)𝑑

)
dist(𝑣, 𝑤).choice of 𝑣, 𝑤

We obtain E (0) by changing all hardware clock rates in E𝑣 to 1 at time 𝑡0 and
all message delays of messages sent at or after time 𝑡0 to 𝑑 − 𝑢/2. As this does
not affect the logical clock values at time 𝑡0—E (0) is indistinguishable from E𝑣
at 𝑥 ∈ 𝑉 until local time 𝐻

(E (0) )
𝑥 (𝑡0)—this shows the claim for 𝑖 = 0.

For the induction step from 𝑖 to 𝑖 + 1, let 𝑣, 𝑤 ∈ 𝑉 , E (𝑖) , and 𝑡𝑖 be given by the
induction hypothesis, i.e.,

𝐿
(E (𝑖) )
𝑣 (𝑡𝑖) − 𝐿

(E (𝑖) )
𝑤 (𝑡𝑖) ≥ (𝑖 + 2)

(𝑢
4
− (𝜗 − 1)𝑑

)
dist(𝑣, 𝑤) ,



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

56 Chapter 8 Gradient Clock Synchronization

and from time 𝑡𝑖 on all hardware clock rates are 1 and sent messages have delay
𝑑 − 𝑢/2. Note that the latter conditions mean that E (𝑖) behaves exactly like E1
from Lemma 7.11 from time 𝑡𝑖 on, except that some messages sent at times
𝑡 < 𝑡𝑖 may arrive during [𝑡𝑖 , 𝑡𝑖 + 𝑑). Hence, if we apply the same modifications
to E (𝑖) as to E1, but starting from time 𝑡𝑖 + 𝑑 instead of time 0, analogously
to the lemma we show the following. For any 𝑣′, 𝑤′ ∈ 𝑉 , we can construct an
execution E𝑣′ indistinguishable from E (𝑖) , such that

• for all 𝑥 ∈ 𝑉 and 𝑡 ≥ 𝑡𝑖 , 𝐻 (E
(𝑖) )

𝑥 (𝑡) = 𝐻
(E (𝑖) )
𝑥 (𝑡𝑖) + 𝑡 − 𝑡𝑖 ,

• 𝐻
(E𝑣′ )
𝑣′ (𝑡) = 𝐻

(E (𝑖) )
𝑣′ (𝑡) + dist(𝑣′, 𝑤′) (𝑢/2− (𝜗− 1)𝑑) for all times 𝑡 ≥ 𝑡𝑖 + 𝑑 +

(𝑢/(2(𝜗 − 1)) − 𝑑) dist(𝑣′, 𝑤′), and
• 𝐻

(E𝑣′ )
𝑤′ (𝑡) = 𝐻

(E (𝑖) )
𝑤′ (𝑡𝑖) + 𝑡 − 𝑡𝑖 for all 𝑡 ≥ 𝑡𝑖 .

Consider the logical clock values of 𝑣 and 𝑤 in E (𝑖) at time

𝑡𝑖+1 B 𝑡𝑖 + 𝑑 +
(

𝑢

2(𝜗 − 1) − 𝑑

)
dist(𝑣, 𝑤)

𝑏
.

Recall that 𝑑𝐿𝑣

𝑑𝑡
(𝑡) ≥ 𝑑𝐻𝑣

𝑑𝑡
(𝑡) ≥ 1 and 𝑑𝐿𝑤

𝑑𝑡
(𝑡) ≤ (1 + 𝜇) 𝑑𝐻𝑤

𝑑𝑡
(𝑡) at all times 𝑡.

As 𝑑𝐻
(E (𝑖) )
𝑤

𝑑𝑡
(𝑡) = 1 at times 𝑡 ≥ 𝑡𝑖 , we obtain

𝐿
(E (𝑖) )
𝑣 (𝑡𝑖+1) − 𝐿

(E (𝑖) )
𝑤 (𝑡𝑖+1) ≥ 𝐿

(E (𝑖) )
𝑣 (𝑡𝑖) − 𝐿

(E (𝑖) )
𝑤 (𝑡𝑖) − 𝜇(𝑡𝑖+1 − 𝑡𝑖) . (8.3)

Recall that dist(𝑣, 𝑤) = 𝑏𝑖max−𝑖 and that 𝑏 = d2𝜎e. We split up a shortest path
from 𝑣 to 𝑤 in 𝑏 subpaths of length 𝑏𝑖max−(𝑖+1) . By the pidgeon hole principle, at
least one of these paths must exhibit at least a 1/𝑏 fraction of the skew between
𝑣 and 𝑤, i.e., there are 𝑣′, 𝑤′ ∈ 𝑉 with dist(𝑣′, 𝑤′) = 𝑏𝑖max−(𝑖+1) = dist(𝑣, 𝑤)/𝑏



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.2 Lower Bound on the Local Skew with Bounded Clock Rates 57

so that

𝐿
(E (𝑖) )
𝑣′ (𝑡𝑖+1) − 𝐿

(E (𝑖) )
𝑤′ (𝑡𝑖+1)

≥ 𝐿
(E (𝑖) )
𝑣 (𝑡𝑖+1) − 𝐿

(E (𝑖) )
𝑤 (𝑡𝑖+1)

𝑏
pidgeon hole

≥ 𝐿
(E (𝑖) )
𝑣 (𝑡𝑖) − 𝐿

(E (𝑖) )
𝑤 (𝑡𝑖) − 𝜇(𝑡𝑖+1 − 𝑡𝑖)

𝑏
(8.3)

=
𝐿
(E (𝑖) )
𝑣 (𝑡𝑖) − 𝐿

(E (𝑖) )
𝑤 (𝑡𝑖) − 𝜇(𝑑 + (𝑢/(2(𝜗 − 1)) − 𝑑) dist(𝑣′, 𝑤′))

𝑏
by definition

≥ 𝐿
(E (𝑖) )
𝑣 (𝑡𝑖) − 𝐿

(E (𝑖) )
𝑤 (𝑡𝑖) − 𝜇𝑢 dist(𝑣′, 𝑤′)/(2(𝜗 − 1))

𝑏
dist(𝑣′, 𝑤′) ≥ 1

≥ 𝐿
(E (𝑖) )
𝑣 (𝑡𝑖) − 𝐿

(E (𝑖) )
𝑤 (𝑡𝑖)

𝑏
− 𝜇

2𝜎(𝜗 − 1) ·
𝑢

2
· dist(𝑣′, 𝑤′)𝑏 = d2𝜎e

=
𝐿
(E (𝑖) )
𝑣 (𝑡𝑖) − 𝐿

(E (𝑖) )
𝑤 (𝑡𝑖)

𝑏
− 𝑢

4
· dist(𝑣′, 𝑤′)𝜎 = 𝜇/(𝜗 − 1)

≥ (𝑖 + 2) (𝑢/4 − (𝜗 − 1)𝑑) dist(𝑣, 𝑤)
𝑏

− 𝑢

4
· dist(𝑣′, 𝑤′)induction hyp.

=

(
(𝑖 + 2)

(𝑢
4
− (𝜗 − 1)𝑑

)
− 𝑢

4

)
dist(𝑣′, 𝑤′).dist(𝑣′, 𝑤′) =

dist(𝑣, 𝑤)/𝑏
(8.4)

In other words, as the average skew on a shortest path from 𝑣 to 𝑤 did not
decrease by more than 𝑢/4, there must be a subpath of length dist(𝑣, 𝑤)/𝑏 with
at least the same average skew. Now we sneak in additional skew by advancing
the (hardware and thus also logical) clock of 𝑣′ using the indistinguishable
execution E𝑣′ . By an analogous derivation to that of (8.2), we get that

𝐿
(E𝑣 )
𝑣′ (𝑡𝑖+1) − 𝐿

(E𝑣 )
𝑤′ (𝑡𝑖+1)

≥ 𝐿
(E (𝑖) )
𝑣′ (𝑡𝑖+1) +

(𝑢
2
− (𝜗 − 1)𝑑

)
dist(𝑣′, 𝑤′) − 𝐿

(E (𝑖) )
𝑤′ (𝑡𝑖+1)anal. to (8.2)

≥ (𝑖 + 3)
(𝑢
4
− (𝜗 − 1)𝑑

)
dist(𝑣′, 𝑤′).(8.4)

This completes the induction. Plugging in 𝑖 = 𝑖max and noting that log 𝑏 =

logd2𝜎e ≤ 1 + logd𝜎e, we get an execution in which two nodes at distance
𝑏0 = 1 exhibit a skew of at least

(𝑖max + 2)
(𝑢
4
− (𝜗 − 1)𝑑

)
≥

(𝑢
4
− (𝜗 − 1)𝑑

)
(1 + log𝑏 𝐷)𝑖max =

blog𝑏 𝐷c

≥
(𝑢
4
− (𝜗 − 1)𝑑

)
log d𝜎e 𝐷 . �

• It is somewhat “bad form” to adapt Lemma 7.11 on the fly, as we did in the
proof. However, the alternative of carefully defining partial executions, how



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

58 Chapter 8 Gradient Clock Synchronization

to stitch them together, and proving indistinguishability results in this setting
would mean to crack a nut with a sledgehammer.

• By making the base of the logarithm larger (i.e., making paths shorter more
quickly), we can reduce the “loss” of skew in each step. Thus, we get a skew
of 𝑢/2 − (𝜗 − 1)𝑑 − 𝜀 per iteration, at the cost of reducing the number of
iterations by a factor of log𝜎/(log𝜎 − log 𝜀−1). As typically 𝜎 � 1, this
means that we gain roughly a factor of 2.

• We can gain another factor of 2 by introducing skew more carefully. If we
construct E1 so that messages “in direction of 𝑤” have delay (roughly) 𝑑 − 𝑢
and messages “in direction of 𝑣” have delay 𝑑, we can hide 𝑢 skew per hop.
We favored the simpler construction to avoid additional bookkeeping.

• Overall, if (𝜗 − 1)𝑑 � 𝑢, 𝜎 � 1, and log𝜎 𝐷 � 1, we can show a lower
bound of (𝑢 − 𝜀) log𝜎 𝐷 for some small 𝜀 > 0.

• What if (𝜗 − 1)𝑑 is comparable to 𝑢 or even larger? As for a lower bound
construction we can always pretend that clock drifts are actually smaller,
e.g., 𝜗′ B min{𝜗, 1 + 𝑢/(4𝑑)}, the lower bound does not get weaker if the
hardware clocks get worse. On the other hand, we will see that larger 𝜗 is not
really an issue (up to a “one-time” additive term of 𝑂 ((𝜗 − 1)𝑑)), as we can
then bounce messages back and forth between nodes to keep track of time
with greater accuracy than the “base clocks” permit.

8.3 Constant Local Skew with Halting Clocks

From Theorem 8.4, we know that we cannot concurrently have
• 𝑑𝐿𝑣

𝑑𝑡
(𝑡) ≥ 𝑑𝐻𝑣

𝑑𝑡
(𝑡) for all 𝑣 and 𝑡,

• 𝑑𝐿𝑣

𝑑𝑡
(𝑡) ≤ (1 + 𝜇) 𝑑𝐻𝑣

𝑑𝑡
(𝑡) for all 𝑣 and 𝑡, and

• L ≤ 𝑓 (𝑑, 𝑢, 𝜇, 𝜗) for some function 𝑓 , i.e., a local skew that does not depend
on the network size.

In the next sections, we will address these points one by one.
In this section, we start with the first point. It entails that all logical clocks

increase at rate at least 1 at all times. We now show how the other two
requirements can be satisfied, by relaxing the first one to amortized 1-progress
(see Definition 7.10, i.e., we demand that for each execution there is some
𝐶 ∈ R≥0 such that for all 𝑡 ′ ≥ 𝑡 and all 𝑣 ∈ 𝑉 it holds that

𝐿𝑣 (𝑡 ′) − 𝐿𝑣 (𝑡) ≥ 𝑡 ′ − 𝑡 − 𝐶.

In order to prove this claim, we analyze Algorithm 6, which can be viewed
as a TMP version of Algorithm 2 that maintains logical clocks. First, we prove
amortized 1-progress.



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.3 Constant Local Skew with Halting Clocks 59

Algorithm 6 This clock synchronization algorithm can be viewed as a TMP
variant of Algorithm 2; replacing the “tick” messages by the messages of some
synchronous algorithm (labeled by round number), this algorithm could be
simulated.

1: if 𝑡 = 0 (i.e., 𝑣 just woke up) then
2: ℓ ← 0 ⊲ initialize 𝐿𝑣 (0) to 0
3: ℎ← getH()
4: 𝑟 ← 1 ⊲ logical clock is initially running
5: for each 𝑝 ∈ {1, . . . , deg(𝑣) do
6: count𝑝 ← 0
7: send “tick” to 𝑝

8: end for
9: end if

10: if 𝑟 = 1 and getH() − ℎ = 𝑑 then
11: ℓ ← ℓ + 𝑑 ⊲ memorize progress
12: ℎ← getH()
13: for 𝑝 ∈ {1, . . . , deg(𝑣)} do
14: send “tick” on 𝑝 ⊲ inform neighbors on progress
15: count𝑝 ← count𝑝 − 1 ⊲ consume neighbors’ ticks
16: if count𝑝 = −1 then ⊲ made 𝑑 progress since last tick on 𝑝

17: 𝑟 ← 0 ⊲ stop clock until tick on 𝑝 arrives
18: end if
19: end for
20: end if
21: if received “tick” on port 𝑝 then
22: count𝑝 ← count𝑝 + 1
23: if 𝑟 = 0 and count𝑞 ≥ 0 for all 𝑞 ∈ {1, . . . , deg(𝑣) then
24: ℎ← getH()
25: 𝑟 ← 1 ⊲ restart clock
26: end if
27: end if
28: procedure getL() ⊲ returns 𝐿𝑣 (𝑡)
29: if 𝑟 = 1 then
30: return ℓ + getH() − ℎ ⊲ logical clock increases at rate 𝑑𝐻𝑣

𝑑𝑡

31: else
32: return ℓ ⊲ logical clock is halted
33: end if
34: end procedure



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

60 Chapter 8 Gradient Clock Synchronization

Lemma 8.5. In graphs of diameter 𝐷, Algorithm 6 satisfies amortized 1-
progress with 𝐶 = 0.

E8.1 Prove the lemma. Hint: Review the proof of Theorem 6.18 and recall that we
assume that all nodes wake up at time 0.

Lemma 8.6. Algorithm 6 satisfies for each 𝑣 ∈ 𝑉 that 𝐿𝑣 is continuous and
that 𝑑𝐿𝑣

𝑑𝑡
(𝑡) ≤ 𝑑𝐻𝑣

𝑑𝑡
(𝑡) at all times 𝑡 when 𝑟𝑣 does not change.

E8.2 Prove the lemma.

Lemma 8.7. Algorithm 6 satisfies L ≤ max{𝑑, 𝜗𝑢}.

Proof. Fix neighbors 𝑣, 𝑤 ∈ 𝑉 and a time 𝑡. W.l.o.g., assume that 𝐿𝑣 (𝑡) ≥
𝐿𝑤 (𝑡) (otherwise, flip 𝑣 and 𝑤). Let 𝑖 be the number of tick messages 𝑣 has
sent by time 𝑡, and 𝑗 the number of tick messages from 𝑤 it has received. By a
simple induction, we have that 𝑗 ≥ 𝑖 − 1 (for every “tick” after its first, 𝑣 waits
for a “tick” from 𝑤), (𝑖 − 1)𝑑 ≤ 𝐿𝑣 (𝑡) ≤ 𝑖𝑑, and 𝐿𝑤 (𝑡) ≥ ( 𝑗 − 1)𝑑 (𝑤 must
reach this clock value to send 𝑗 “tick” messages). If 𝑗 ≥ 𝑖 or 𝑖 = 1, we have
that 𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) ≤ 𝑑.

Thus, it remains to consider the case that 𝑗 = 𝑖 − 1 for 𝑖 ≥ 2. Denonte by 𝑡𝑟

the time when 𝑣 received the 𝑗-th “tick” message from 𝑤 and by 𝑡𝑠 the time it
was sent. Observe that 𝐿𝑤 (𝑡𝑠) = ( 𝑗 − 1)𝑑 and 𝐿𝑣 (𝑡𝑟 ) ≤ (𝑖 − 𝑑). Because 𝑤

sets 𝑟 to 1 when sending the message and does not set 𝑟 back to 0 before 𝑑 time
has passed on its hardware clock, we have that

𝐿𝑤 (𝑡) ≥ 𝐿𝑤 (𝑡𝑠) +min{𝑑, 𝐻𝑤 (𝑡) − 𝐻𝑤 (𝑡𝑠)} Line 30

= ( 𝑗 − 1)𝑑 +min{𝑑, 𝐻𝑤 (𝑡) − 𝐻𝑤 (𝑡𝑠)}
= (𝑖 − 2)𝑑 +min{𝑑, 𝐻𝑤 (𝑡) − 𝐻𝑤 (𝑡𝑠)} 𝑗 = 𝑖 − 1

≥ (𝑖 − 2)𝑑 +min{𝑑, 𝑡 − 𝑡𝑠} 𝑑𝐻𝑤
𝑑𝑡
≥ 1(8.5)



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.4 Lower Bound with Arbitrary Clock Rates 61

If 𝑡 − 𝑡𝑠 ≥ 𝑑, we again get that 𝐿𝑤 (𝑡) ≥ (𝑖 − 1)𝑑 and hence 𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) ≤ 𝑑,
so assume that 𝑡 − 𝑡𝑠 < 𝑑. Then

𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) = 𝐿𝑣 (𝑡𝑟 ) + 𝐿𝑣 (𝑡) − 𝐿𝑣 (𝑡𝑟 ) − 𝐿𝑤 (𝑡)adding 0

≤ (𝑖 − 1)𝑑 + 𝐿𝑣 (𝑡) − 𝐿𝑣 (𝑡𝑟 ) − 𝐿𝑤 (𝑡)
≤ (𝑖 − 1)𝑑 + 𝐻𝑣 (𝑡) − 𝐻𝑣 (𝑡𝑟 ) − 𝐿𝑤 (𝑡)Lemma 8.6

≤ (𝑖 − 1)𝑑 + 𝜗(𝑡 − 𝑡𝑟 ) − 𝐿𝑤 (𝑡)𝑑𝐻𝑣
𝑑𝑡
≤ 𝜗

≤ 𝑑 + (𝜗 − 1) (𝑡 − 𝑡𝑟 ) − (𝑡𝑟 − 𝑡𝑠)𝑡 − 𝑡𝑠 < 𝑑, (8.5)

≤ 𝑑 + (𝜗 − 1) (𝑡 − 𝑡𝑠) − 𝜗(𝑑 − 𝑢)𝑡𝑟 − 𝑡𝑠 ≥ 𝑑 − 𝑢

< 𝜗𝑢.𝑡 − 𝑡𝑠 < 𝑑 �

Theorem 8.8. There is a clock synchronization algorithm achieving a local
skew of max{𝑑, 𝜗𝑢}, amortized 1-progress with 𝐶 = 0, and 𝑑𝐿𝑣

𝑑𝑡
(𝑡) ≤ 𝑑𝐻𝑣

𝑑𝑡
(𝑡)

for all times 𝑡 and nodes 𝑣 ∈ 𝑉 .

Proof. Follows from Lemmas 8.5 to 8.7. �

E8.3 Show that a node may stop its logical clock (i.e., continuously have 𝑟𝑣 = 0) for
𝑢𝐷 time. Hint: Maximize the global skew while all message delays are 𝑢 − 𝑑.
Then have a chain of messages starting at the node that is most behind all have
delay 𝑑.

E8.4 Show that this is the worst case, i.e., no node halts its logical clock for more
than 𝑢𝐷 time. Hint: Consider the time when some node halts its clock after
generating tick 𝑖 and argue that nodes in distance 𝑟 have generated their tick 𝑖 − 𝑟
at the latest 𝑟 (𝑑 − 𝑢) time earlier. This requires to use that all nodes wake up at
time 0 (otherwise it holds only for sufficiently large times).

8.4 Lower Bound with Arbitrary Clock Rates

We will now show that clock rates 𝑑𝐿𝑣

𝑑𝑡
(𝑡) ∈ 𝜔(log1/(𝜗−1) 𝐷) do not help. That

is, if (𝜗 − 1)𝑑 < 𝑢/4, we have that L ∈ Ω(𝑢 log(log1/(𝜗−1) 𝐷)/(𝜗−1) 𝐷).
To this end, we need a technical lemma stating that, provided that we leave

some slack in terms of clock drifts and message delays, we can introduce Ω(𝑢)
hardware clock skew between any pair of neighbors in an indistinguishable
manner. As this follows from repetition of previous arguments, we skip the
proof.

Lemma 8.9. Let E be any execution in which hardware clock rates are at most
1 + (𝜗 − 1)/2 and message delays are in the range (𝑑 − 3𝑢/4, 𝑑 − 𝑢/4). Then,
for any {𝑣, 𝑤} ∈ 𝐸 and sufficiently large times 𝑡, there is an indistinguishable
execution E𝑣 such that 𝐿 (E𝑣 )𝑣 (𝑡) = 𝐿

(E)
𝑣 (𝑡 + 𝑢/4) and 𝐿

(E𝑣 )
𝑤 (𝑡) = 𝐿

(E)
𝑤 (𝑡).



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

62 Chapter 8 Gradient Clock Synchronization

Proof Sketch. The general idea is to use the remaining slack of 𝑢/2 to hide the
additional skew, and the slack in the clock rates to introduce it. We can do this
as slowly as needed, just as in the proof of Lemma 7.11. Again, we can choose
the clock rates according to the function 𝑑 (𝑥) defined in Lemma 7.11; as 𝑣 and
𝑤 are neighbors here, it can only take on values of −1, 0, or 1. �

This is all we need to generalize our lower bound to arbitrarily large logical
clock rates.

Theorem 8.10. Any clock synchronization algorithm satisfying that 𝑑𝐻𝑣

𝑑𝑡
(𝑡) ≤

𝑑𝐿𝑣

𝑑𝑡
(𝑡) for all nodes 𝑣 and times 𝑡 has

L = Ω

((𝑢
4
− (𝜗 − 1)𝑑

)
log d𝜎e 𝐷

)
for 𝜎 = log1/(𝜗−1) 𝐷)/(𝜗 − 1).

Proof. Set 𝑢′ B 𝑢/2, 𝑑 ′ B 𝑑 − 𝑢/4, and 𝜗′ B 1 + (𝜗 − 1)/2. We perform the
exact same construction as in Theorem 8.4, with three modifications. First, 𝑢,
𝑑, and 𝜗 are replaced by 𝑢′, 𝑑 ′, and 𝜗′. Second, before starting the construction,
we wait for sufficiently long so that Lemma 8.9 is applicable to all times when
we actually “work,” i.e., we let the algorithm run for the required time with
hardware clock rates of 1 and message delays of 𝑑 ′ − 𝑢′/2. Third, we assume
that 𝜇 = log1/(𝜗−1) 𝐷 in the construction, resulting in the base of the logarithm
being 𝜎′ = 2𝜇/(𝜗−1) = Θ(𝜎); if we ever attempt to use this (assumed) bound
on the clock rates in an inequality and it does not hold, the construction fails.

Now two things can happen. The first is that the construction succeeds. Note
that we may assume that 𝑢′/4 > (𝜗′ − 1)𝑑 ′, as otherwise 𝑢/4 < (𝜗 − 1)𝑑, i.e.,
nothing is to show. Hence, the construction shows a lower bound of(

𝑢′

4
− (𝜗′ − 1)𝑑 ′

)
log d𝜎′e 𝐷 =

(
𝑢

8
− (𝜗 − 1)𝑑

2

)
log d2𝜎e 𝐷

= Ω

((𝑢
4
− (𝜗 − 1)𝑑

)
log d𝜎e 𝐷

)
,

i.e., the claim follows in this case.
On the other hand, if the construction fails, there is an index 𝑖 < 𝑖max for

which (8.3) does not hold—this is the only place where we make use of the fact
that logical clocks do not run faster than rate 𝜇. Thus,

𝐿
(E (𝑖) )
𝑤 (𝑡𝑖+1) − 𝐿

(E (𝑖) )
𝑤 (𝑡𝑖) > 𝜇(𝑡𝑖+1 − 𝑡𝑖)

for some 𝑖 < 𝑖max. Recall that in the construction, dist(𝑣, 𝑤) = 𝑏𝑖max−𝑖 ≥ 𝑏 and

𝑡𝑖+1 − 𝑡𝑖 = 𝑑 +
(

𝑢

2(𝜗 − 1) − 𝑑

)
dist(𝑣, 𝑤)

𝑏
>

𝑢

2(𝜗 − 1) − 𝑑 >
𝑢

4(𝜗 − 1) ≥
𝑢

4
.



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.5 Upper Bound on the Local Skew 63

Hence, there must be a time 𝑡 ≥ 𝑡𝑖 so that

𝐿
(E (𝑖) )
𝑤

(
𝑡 + 𝑢

4

)
− 𝐿

(E (𝑖) )
𝑤 (𝑡) > 𝜇𝑢

4
.

Let 𝑥 be an arbitrary neighbor of 𝑤. By Lemma 8.9, we can construct an
execution E𝑤 so that

𝐿
(E𝑤 )
𝑤 (𝑡) = 𝐿

(E (𝑖) )
𝑤

(
𝑡 + 𝑢

4

)
> 𝐿

(E (𝑖) )
𝑤 (𝑡) + 𝜇𝑢

4

and 𝐿
(E𝑤 )
𝑥 (𝑡) = 𝐿

(E (𝑖) )
𝑥 (𝑡). Thus, in at least one of the executions, the local

skew exceeds
𝜇𝑢

8
=
𝑢

8
log1/(𝜗−1) 𝐷 >

𝑢

8
log𝜇/(𝜗−1) 𝐷 = Ω

((𝑢
4
− (𝜗 − 1)𝑑

)
log d𝜎e 𝐷

)
. �

8.5 Upper Bound on the Local Skew

We now turn to proving the upper bound given in Theorem 8.28. Before
presenting the algorithm, we provide some intuition by discussing why naive
approaches fail.

8.5.1 Averaging Protocols
In this section, we consider a natural strategy for achieving gradient clock
synchronization: trying to bring the own logical clock to the average value
between the neighbors whose clocks are furthest ahead and behind, respectively.
Specifically, each node can be in either fast mode or slow mode. If a node 𝑣

detects that its clock is behind the average of its neighbors, it will run in fast
mode, and increase its logical clock at a rate faster than its hardware clock by
a factor of 1 + 𝜇, for some 𝜇 > 𝜗 − 1. On the other hand, if 𝑣’s clock is at least
the average of the maximum and minimum clock value of its neighbors, it will
run in slow mode, increasing its logical clock only as quickly as its hardware
clock. Note that this strategy results in logical clocks that behave like “real”
clocks of maximum rate 𝜗′ = 1 + 𝜇 + (𝜗 − 1) (1 + 𝜇). If max{𝜇, 𝜗 − 1} ≤ 1, we
have that 𝜗′ < 1 + 3𝜇. Note that for 𝜇 ∈ 𝑂 (𝜗 − 1), these clocks are roughly as
good as the original hardware clocks.

The idea of switching between fast and slow modes gives a well-defined pro-
tocol if neighboring clock values are known precisely.12 However, ambiguity
arises in the presence of uncertainty.

12 There is one issue of pathological behavior in which nodes could switch infinitely quickly
between fast and slow modes. This can be avoided by introducing a small threshold 𝜀 so that a
node only changes, say, from slow to fast mode if it detects that its clock is 𝜀 time units behind the
average.



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

64 Chapter 8 Gradient Clock Synchronization

To simplify our presentation of the considered synchronization algorithms, we
abstract away from the individual messages and message delays for the moment.
Instead, we assume that throughout an execution, each node 𝑣 maintains an
estimate of its neighbors’ logical clocks. Specifically, for each neighbor 𝑤,
𝑣 maintains a variable 𝐿̃𝑣

𝑤 (𝑡). The parameter 𝛿 represents the error in the
estimates: for all {𝑣, 𝑤} ∈ 𝐸 and 𝑡 ∈ R≥0, we have

𝐿𝑤 (𝑡) − 𝛿 < 𝐿̃𝑣
𝑤 (𝑡) ≤ 𝐿𝑤 (𝑡)

When the node 𝑣 is clear from context, we will omit the superscript 𝑣, and
simply write 𝐿̃𝑤 . Assuming that 𝜇, 𝜗 − 1 = 𝑂 (1), in Section 8.5.4 we discuss
how to obtain such estimates satisfying that 𝛿 = 𝑂 (𝑢 + 𝜇𝑑).

We consider two natural ways of dealing with the uncertainty. Set 𝐿max
𝑣 (𝑡) :=

max{𝑣,𝑤 }∈𝐸 {𝐿𝑤 (𝑡)} and 𝐿min
𝑣 (𝑡) := min{𝑣,𝑤 }∈𝐸 {𝐿𝑤 (𝑡)}.

Aggresive strategy: each 𝑣 computes an upper bound on the average between
𝐿max
𝑣 and 𝐿min

𝑣 , and determines whether to run in fast or slow mode based
on this upper bound;

Conservative strategy: each 𝑣 computes a lower bound on the average be-
tween 𝐿max

𝑣 and 𝐿min
𝑣 and determines the mode accordingly.

We will see that both strategies give bad results, but for opposite reasons.

Aggressive Averaging Here we analyze the aggressive averaging protocol
described above. Specifically, each node 𝑣 ∈ 𝑉 computes an upper bound on
the average of its neighbors’ logical clock values:

𝐿̃
up
𝑣 (𝑡) :=

max{𝑣,𝑤 }∈𝐸 {𝐿̃𝑤} +min𝑤∈𝑁𝑣
{𝐿̃𝑤}

2
+ 𝛿 ≥ 𝐿max

𝑣 + 𝐿min
𝑣

2
.

The algorithm then increases the logical clock of 𝑣 at a rate of 𝑑𝐻𝑣

𝑑𝑡
(𝑡) if

𝐿𝑣 (𝑡) > 𝐿̃
up
𝑣 (𝑡), and a rate of (1 + 𝜇) 𝑑𝐻𝑣

𝑑𝑡
(𝑡) otherwise. We show that the

algorithm performs poorly for any choice of 𝜇 ≥ 0.

Lemma 8.11. Consider the aggressive averaging protocol on a path network
of diameter 𝐷, i.e., 𝑉 = [𝐷 + 1] and 𝐸 = {{𝑖, 𝑖 + 1} | 𝑖 ∈ [𝐷]}. Then L ≥
(2𝐷 − 1)𝛿, even if 𝐻𝑣 (0) = 𝐿𝑣 (0) = 0 for all 𝑣 ∈ 𝑉 .

Proof. Throughout the execution, we will assume that all clock estimates are
correct: for all 𝑣 ∈ 𝑉 and {𝑣, 𝑤} ∈ 𝐸 , we have 𝐿̃𝑤 (𝑡) = 𝐿𝑤 (𝑡). This means
that for all 𝑖 ∈ {1, 2, . . . , 𝐷 − 1}, 𝐿̃up

𝑣𝑖 (𝑡) = (𝐿𝑖−1 (𝑡) + 𝐿𝑖+1 (𝑡))/2 + 𝛿, whereas
𝐿̃

up
0 (𝑡) = 𝐿1 (𝑡) + 𝛿 and 𝐿̃

up
𝐷

= 𝐿𝐷−1 (𝑡) + 𝛿. Thus, all nodes immediately go
into fast mode in order to catch up in case they underestimate their neighbors’
clock values.



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.5 Upper Bound on the Local Skew 65

Initially, the hardware clock rate of node 𝑖 is 1 + 𝑖 (𝜗−1)
𝐷

. Let us see what
this means for the logical clocks. While nodes are running fast, skew keeps
building up, but the property that 𝐿𝑣𝑖 (𝑡) = (𝐿𝑣𝑖+1 (𝑡) − 𝐿𝑣𝑖−1 (𝑡)) is maintained at
nodes 𝑖 ∈ {1, . . . , 𝐷}. In this state, node 0—despite running fast—has no way
of catching up to node 1. However, at time 𝜏0 B

𝛿𝐷
(1+𝜇) (𝜗−1) we would have that

𝐿𝐷 (𝜏0) = 𝐿𝐷−1 (𝜏0) + 𝛿 = 𝐿̃
up
𝐷
(𝜏0) and node 𝐷 would stop running fast. We

set 𝑡0 B 𝜏0 − 𝜀 for some arbitrarily small 𝜀 > 0 and set 𝑑𝐻𝐷

𝑑𝑡
(𝑡) B 𝑑𝐻𝐷−1

𝑑𝑡
(𝑡)

for all 𝑡 ≥ 𝑡0. Thus, all nodes would remain in fast mode until the time
𝜏1 B 𝑡0 + 2𝛿𝐷

(1+𝜇) (𝜗−1) when we had 𝐿𝐷−1 (𝜏1) = 𝐿̃
up
𝐷−1 (𝜏1). We set 𝑡1 B 𝜏1 − 𝜀

and proceed with this construction inductively. Note that, with every hop, the
local skew increases by (almost) 2𝛿, as this is the additional skew that 𝐿𝑖 must
build up to 𝐿𝑖−1 when 𝐿𝑖+1 − 𝐿𝑖 = 𝐿𝑖 − 𝐿𝑖−1 in order to increase 𝐿̃

up
𝑖
− 𝐿𝑖 by

𝛿, i.e., for node 𝑖 to stop running fast. As 𝜀 is arbitrarily small, we build up a
local skew that is arbitrarily close to (2𝐷 − 1)𝛿. �

This lemma can be generalized to arbitrary graphs, by taking two nodes
𝑣, 𝑤 ∈ 𝑉 in distance 𝐷 and using the function 𝑑 (𝑥) = dist(𝑥, 𝑣) − dist(𝑥, 𝑤),
just as in Lemma 7.11.

Note that the algorithm is also bad in that the above execution results in a
global skew of Ω(𝛿𝐷2). Slight modifications of the algorithm can guarantee
better global skew, but similar algorithms will still have large local skew.

Conservative Averaging Let us be more careful now. Each node 𝑣 ∈ 𝑉

computes a lower bound on the average of its neighbors’ logical clock values:

𝐿̃
up
𝑣 (𝑡) =

max𝑤∈𝑁𝑣
{𝐿̃𝑤} +min𝑤∈𝑁𝑣

{𝐿̃𝑤}
2

≤
𝐿max
𝑁𝑣
+ 𝐿min

𝑁𝑣

2
.

The algorithm then increases the logical clock of 𝑣 at a rate of 𝑑𝐻𝑣

𝑑𝑡
(𝑡) if

𝐿𝑣 (𝑡) > 𝐿̃
up
𝑣 (𝑡), and a rate of (1 + 𝜇) 𝑑𝐻𝑣

𝑑𝑡
(𝑡) otherwise. Again, the algorithm

fails to achieve a small local skew.

Lemma 8.12. Consider the conservative averaging protocol on a path network
of diameter 𝐷, i.e., 𝑉 = [𝐷 + 1] and 𝐸 = {{𝑖, 𝑖 + 1} | 𝑖 ∈ [𝐷]}. Then L ≥
(2𝐷 − 1)𝛿, even if 𝐻𝑣 (0) = 𝐿𝑣 (0) = 0 for all 𝑣 ∈ 𝑉 .

Proof Sketch. We use the same initial hardware clock rates as for the aggressive
strategy, but now for each 𝑣 ∈ 𝑉 , {𝑣, 𝑤} ∈ 𝐸 , and time 𝑡, we rule that 𝐿̃𝑤 (𝑡) =
𝐿𝑤 (𝑡) − 𝛿 + 𝜀 for some arbitrarily small 𝜀 > 0. Thus, all nodes are initially
in slow mode. We inductively change hardware clock speeds just before nodes
would switch to fast mode, building up the exact same skews (up to terms in 𝜀)
between logical clocks as in the previous execution. The only difference is that
now it does not depend on 𝜇 how long this takes! �



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

66 Chapter 8 Gradient Clock Synchronization

8.5.2 GCS Algorithm
We have seen that both the aggressive and the conservative strategy do not
result in a proper response to the gobal distribution of clock values. The main
issue is that these approaches ignore the measurement error encapsulated in
𝛿. The underlying idea of distributing skews evenly over paths is sound, but
requires to discretize “skew levels.”

The high-level strategy of the (functional) GCS algorithm is as follows. As
with the naive algorithms from Section 8.5.1, at each time a node can be either in
slow mode or fast mode. In slow mode, a node 𝑣 will increase its logical clock at
rate 𝑑𝐻𝑣

𝑑𝑡
(𝑡). In fast mode, 𝑣 will increase its logical clock at rate (1+ 𝜇) 𝑑𝐻𝑣

𝑑𝑡
(𝑡).

The parameter 𝜇 must be chosen large enough for nodes whose logical clocks
are behind to be able to catch up to other nodes, i.e., 𝜇 > 𝜗− 1. The conditions
for a node to switch from slow to fast or vice versa are simple, though perhaps
unintuititve. In what follows, we first describe “ideal” conditions to switch
between modes. In the ideal behavior, each node knows exactly the logical
clock values of its neighbors. Since the actual algorithm only has access to
estimates of neighboring clocks, we then describe fast and slow triggers for
switching between modes that can be implemented in our model for GCS.
We conclude the section by proving that the triggers do indeed implement the
conditions.

Fast and Slow Conditions. Here we define conditions under which a node
should be in fast mode and slow mode. The two conditions are mutually
exclusive (i.e., a node cannot simulatenously satisfy both), but it could be that
a node satisfies neither condition. The conditions are defined in terms of a
parameter 𝜅, whose value will be determined later.

Definition 8.13 (FC: Fast Mode Condition). We say that a node 𝑣 ∈ 𝑉 satisfies
the fast mode condition (FC) at time 𝑡 ∈ R≥0 if there exists 𝑠 ∈ N>0 such that:

FC-1 ∃{𝑣, 𝑥} ∈ 𝐸 : 𝐿𝑥 (𝑡) − 𝐿𝑣 (𝑡) ≥ 2𝑠𝜅,
FC-2 ∀{𝑣, 𝑦} ∈ 𝐸 : 𝐿𝑣 (𝑡) − 𝐿𝑦 (𝑡) ≤ 2𝑠𝜅.

Informally, FC-1 says that 𝑣 has a neighbor 𝑥 whose logical clock is sig-
nificantly ahead of 𝐿𝑣 (𝑡), while FC-2 stipulates that none of 𝑣’s neighbors’
clocks is too far behind 𝐿𝑣 (𝑡). In particular, if FC is satisfied with neighbor
𝑥 fulfilling FC-1, then the local skew across {𝑣, 𝑥} is at least 2𝑠𝜅, where 𝐿𝑥

is at least 2𝑠𝜅 time units ahead of 𝐿𝑣 . On the other hand, FC-2 implies that
none of 𝑣’s neighbors are more than 2𝑠𝜅 behind 𝑣. Therefore, 𝑣 can decrease
the maximum skew across its incident edges by increasing its logical clock.



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.5 Upper Bound on the Local Skew 67

The slow mode condition below is dual to FC. It gives sufficient conditions
under which 𝑣 could decrease the maximum skew across its incedent edges by
decreasing its logical clock.

Definition 8.14 (SC: Slow Mode Condition). We say that a node 𝑣 ∈ 𝑉 satisfies
the slow mode condition SC) at time 𝑡 ∈ R≥0 if there exists 𝑠 ∈ N>0 such that:

SC-1 ∃{𝑣, 𝑥} ∈ 𝐸 : 𝐿𝑣 (𝑡) − 𝐿𝑥 (𝑡) ≥ (2𝑠 − 1)𝜅,
SC-2 ∀{𝑣, 𝑦} ∈ 𝐸 : 𝐿𝑦 (𝑡) − 𝐿𝑣 (𝑡) ≤ (2𝑠 − 1)𝜅.

There is a slight asymmetry in the definitions of FC and SC in the coefficient
of 𝜅 appearing on the right hand side of the expressions above. The FC
conditions bound the differences in logical clocks by 2𝑠𝜅—an even multiple of
𝑠—while the SC conditions give odd multiples of 𝑠. This discrepancy between
the definitions of FC and SC ensures that a node cannot simultaneously satisfy
both conditions.

We say that an algorithm implements the F/S conditions if for every execution,
every node 𝑣, and every time 𝑡 we have:
• if 𝑣 satisfies FC at time 𝑡, then 𝑣 is in fast mode at time 𝑡,
• if 𝑣 satisfies SC at time 𝑡, then 𝑣 is in slow mode at time 𝑡.

At this point we have not shown that any algorithm can implement the F/S
conditions. Indeed, in our model 𝑣 does not know its neighbors’ logical clock
values precisely at any time, so it cannot directly check if FC or SC is satisfied.
However, we will show that for an appropriate choice of 𝜅, there is a simple
algorithm that implements the F/S conditions. Interestingly, the analysis we
give applies to any algorithm implementing the F/S conditions, and not just for
the particular implementation we describe.

Fast and Slow Triggers. While the fast and slow mode conditions described
in the previous section are well-defined (and mutually exclusive), uncertainty
on neighbors’ clock values prevents an algorithm from checking the conditions
directly. Here we define corresponding triggers that our computational model
does allow us to check. As before, we assume that for each node 𝑣 and neighbor
𝑤 ∈ 𝑁𝑣 , 𝑣 maintains a clock estimate 𝐿̃𝑣

𝑤 satisfying

𝐿𝑤 (𝑡) ≥ 𝐿̃𝑣
𝑤 (𝑡) < 𝐿𝑤 (𝑡) − 𝛿. (8.6)

For convenience, we omit the superscript when 𝑣 is clear from context.
Fix a node 𝑣, and suppose that 𝑣 satisfies FC at time 𝑡. Let 𝑥 be a node for

which 𝑣 satisfies FC-1, i.e., 𝐿𝑥 (𝑡) − 𝐿𝑣 (𝑡) ≥ 2𝑠𝜅. Since 𝑣’s estimate of 𝐿𝑥 (𝑡) is
generally smaller than 𝐿𝑥 (𝑡), it could be the case that 𝐿̃𝑥 (𝑡) − 𝐿𝑣 (𝑡) < 2𝑠𝜅, so
that 𝑣 does see that FC-1 is satisfied. Since 𝐿̃𝑤 (𝑡) ≥ 𝐿𝑤 (𝑡) − 𝛿, 𝑣 might satisfy



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

68 Chapter 8 Gradient Clock Synchronization

FC-1 if 𝐿̃𝑤 (𝑡) −𝐿𝑣 (𝑡) ≥ 2𝑠𝜅−𝛿. Thus, in order to ensure that 𝑣 switches to fast
mode whenever FC is satisfied, we should relax the conditions FC to ensure
that 𝑣 switches to fast mode whenever its estimates indicate that FC could be
satisfied. Thus we define the following triggers.

Definition 8.15 (FT: Fast Mode Trigger). We say that 𝑣 ∈ 𝑉 satisfies the fast
mode trigger (FT) at time 𝑡 ∈ R≥0 if there exists an integer 𝑠 ∈ N>0 such that:

FT-1 ∃{𝑣, 𝑥} ∈ 𝐸 : 𝐿̃𝑥 (𝑡) − 𝐿𝑣 (𝑡) > 2𝑠𝜅 − 𝛿,
FT-2 ∀{𝑣, 𝑦} ∈ 𝐸 : 𝐿𝑣 (𝑡) − 𝐿̃𝑦 (𝑡) < 2𝑠𝜅 + 𝛿.

Definition 8.16 (ST: Slow Mode Trigger). We say that a node 𝑣 ∈ 𝑉 satisfies
the slow mode trigger (ST) at time 𝑡 ∈ R≥0 if there exists 𝑠 ∈ N>0 such that:

ST-1 ∃{𝑣, 𝑥} ∈ 𝐸 : 𝐿𝑣 (𝑡) − 𝐿̃𝑥 (𝑡) ≥ (2𝑠 − 1)𝜅,
ST-2 ∀{𝑣, 𝑦} ∈ 𝐸 : 𝐿̃𝑦 (𝑡) − 𝐿𝑣 (𝑡) ≤ (2𝑠 − 1)𝜅.

Note that we do not add the extra 𝛿 slack in the definition of ST, as we did
in FT. This is because we assume that the uncertainty in neighboring clock
estimates is one-sided: for all {𝑣, 𝑤} ∈ 𝐸 and times 𝑡 we have 𝐿̃𝑣

𝑤 (𝑡) ≤ 𝐿𝑤 (𝑡).
Thus, if a node satisfies SC, its neighboring clock estimates automatically
satisfy ST.

Before we formally describe the GCS algorithm, we give two preliminary
results about the fast and slow mode triggers. The first result asserts that for a
suitable choice of 𝜅, FT and ST cannot simultaneously be satisfied by the same
node. The second shows that for the same choice of 𝜅, FT and ST implement
FC and SC, respectively. That is, if the fast (resp. slow) mode condition is
satisfied, then the fast (resp. slow) mode trigger is also satisfied.

Lemma 8.17. Suppose 𝜅 ≥ 𝛿. Then no node 𝑣 ∈ 𝑉 can simultaneously satisfy
FT and ST.

Proof. Suppose 𝑣 satisfies FT. That is, there is some 𝑠 ∈ N>0 and {𝑣, 𝑥} ∈ 𝐸

such that 𝐿̃𝑥 (𝑡)−𝐿𝑣 (𝑡) ≥ 2𝑠𝜅−𝛿, and for all {𝑣, 𝑦} ∈ 𝐸 we have 𝐿𝑣 (𝑡)− 𝐿̃𝑦 (𝑡) <
2𝑠𝜅 + 𝛿. Consider 𝑠′ ∈ N>0. If 𝑠′ > 𝑠, then for all {𝑣, 𝑥} ∈ 𝐸 we have

𝐿𝑣 (𝑡) − 𝐿̃𝑥 (𝑡) < 2𝑠𝜅 − 𝛿 ≤ (2𝑠′ − 1)𝜅, (8.6)

so ST-1 is not satisfied for 𝑠′. If 𝑠′ ≤ 𝑠, then there is some {𝑣, 𝑦} ∈ 𝐸 satisfying

𝐿̃𝑦 (𝑡) − 𝐿𝑣 (𝑡) > 2𝑠𝜅 − 𝛿 ≥ (2𝑠′ − 1)𝜅,

so ST-2 is not satisfied for 𝑠′. Hence, ST is not satisfied. �

For the remainder of our analysis, we assume that the condition that 𝜅 > 𝛿 is
met



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.5 Upper Bound on the Local Skew 69

Lemma 8.18. Suppose 𝑣 ∈ 𝑉 satisfies FC (resp. SC) at time 𝑡. Then 𝑣 satisfies
FT (resp. SC) at time 𝑡.

Proof. Suppose FC holds (at time 𝑡). Then, by (8.6), there is some 𝑠 ∈ N>0
such that

∃{𝑣, 𝑥} ∈ 𝐸 : 𝐿̃𝑥 (𝑡) − 𝐿𝑣 (𝑡) ≥ 𝐿𝑥 (𝑡) − 𝛿 − 𝐿𝑣 (𝑡) ≥ 2𝑠𝜅 − 𝛿,

and
∀{𝑣, 𝑦} ∈ 𝐸 : 𝐿𝑣 (𝑡) − 𝐿̃𝑦 (𝑡) ≤ 𝐿𝑣 (𝑡) − 𝐿𝑦 (𝑡) + 𝛿 ≤ 2𝑠𝜅 + 𝛿.

Thus FT holds. Similarly, if SC holds, (8.6) yields

∃{𝑣, 𝑥} ∈ 𝐸 : 𝐿𝑣 (𝑡) − 𝐿̃𝑥 (𝑡) ≥ 𝐿𝑣 (𝑡) − 𝐿𝑥 (𝑡) ≥ (2𝑠 − 1)𝜅

and
∀{𝑣, 𝑦} ∈ 𝐸 : 𝐿̃𝑦 (𝑡) − 𝐿𝑥 (𝑡) ≤ 𝐿𝑦 (𝑡) − 𝐿𝑣 (𝑡) ≤ (2𝑠 − 1)𝜅,

for some 𝑠 ∈ N>0, establishing ST. �

The Algorithm. We now describe the GCS algorithm, whose pseudocode
is given in Algorithm 7. To focus on the key ideas of the analysis, we make
another simplifying assumption: Instead of analyzing the global skew, for now
we assume that it is bounded by some parameter G. We will prove a bound on
G later, in Section 8.5.3. Each node 𝑣 initializes its logical clock to its hardware
clock value. It keeps checking the slow mode trigger is satisfied. During such
times, it increases its logical clock at the hardware clock rate. By Lemma 8.17,
only when the slow mode trigger is not satisfied, the fast mode trigger might
hold. By Lemma 8.18, switching to fast mode whenever the slow mode trigger
does not hold is hence sufficient to implement the fast and slow conditions. In
fast mode, 𝑣 increases its logical clock at a rate of (1 + 𝜇) 𝑑𝐻𝑣

𝑑𝑡
(𝑡). Despite the

algorithm’s simplicity, its analysis (presented in the following section) is rather
delicate.

8.5.3 Analysis of the GCS Algorithm
We now show that the GCS algorithm (Algorithm 7) indeed achieves a small
local skew. To this end, we analyze the average skew over paths in 𝐺 of
various lengths. For long paths of Ω(𝐷) hops, we will simply exploit that G
bounds the skew between any pair of nodes. For successively shorter paths, we
inductively show that the average skew between endpoints cannot increase too
quickly: reducing the length of a path by factor 𝜎 can only increase the skew
between endpoints by an additive constant term. Thus, paths of constant length



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

70 Chapter 8 Gradient Clock Synchronization

Algorithm 7 GCS algorithm
if 𝑣 just woke up, i.e., 𝑡 = 0 then

ℓ ← getH()
ℎ← getH()
if ST then

𝑟 ← 1 ⊲ 𝑣 is in slow mode
else

𝑟 ← 1 + 𝜇 ⊲ 𝑣 is in fast mode
end if

end if
if ST stops to hold then

ℓ ← getL() ⊲ always keep track of clock progress
ℎ← getH()
𝑟 ← 1 + 𝜇 ⊲ 𝑣 is in fast mode

end if
if ST starts to hold then

ℓ ← getL() ⊲ always keep track of clock progress
ℎ← getH()
𝑟 ← 1 ⊲ 𝑣 is in slow mode

end if
procedure getL() ⊲ returns 𝐿𝑣 (𝑡)

return ℓ + 𝑟 (getH() − ℎ) ⊲ logical clock increases at rate 𝑟 𝑑𝐻𝑣

𝑑𝑡

end procedure

(in particular edges) can only have a(n average) skew that is logarithmic in the
network diameter.

To simplify the analysis, we will assume that the logical clocks are differen-
tiable. Note that this is not the case at times when 𝑟 changes. However, they can
be approximated arbitrarily well by differentiable functions whose derivative
is bounded from below by 𝑑𝐻𝑣

𝑑𝑡
and from above by (1 + 𝜇) 𝑑𝐻𝑣

𝑑𝑡
. Even with this

simplification, our analysis requires a technical lemma formalizing an intuitive
statement: If the maximum of a finite set of functions satisfies that whenever
one of the functions attains the maximum, its derivative is bounded by 𝑟 , then
the growth of the maximum is also bounded by 𝑟. For completeness, we prove
this lemma at the end of the chapter.

Leading Nodes We start by showing that skew cannot build up too quickly.
This is captured by the following functions.



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.5 Upper Bound on the Local Skew 71

Definition 8.19 (Ψ and Leading Nodes). For each 𝑣 ∈ 𝑉 , 𝑠 ∈ N>0, and 𝑡 ∈ R≥0,
we define

Ψ𝑠
𝑣 (𝑡) = max

𝑤∈𝑉
{𝐿𝑤 (𝑡) − 𝐿𝑣 (𝑡) − (2𝑠 − 1)𝜅 dist(𝑣, 𝑤)},

where dist(𝑣, 𝑤) denotes the distance between 𝑣 and 𝑤 in 𝐺. Moreover, set

Ψ𝑠 (𝑡) = max
𝑤∈𝑉
{Ψ𝑠

𝑤 (𝑡)}.

Finally, we say that 𝑤 ∈ 𝑉 is a leading node if there is some 𝑣 ∈ 𝑉 satisfying

Ψ𝑠
𝑣 (𝑡) = 𝐿𝑤 (𝑡) − 𝐿𝑣 (𝑡) − (2𝑠 − 1)𝜅 dist(𝑣, 𝑤) > 0.

Observe that any bound on Ψ𝑠 implies a corresponding bound on L: if
Ψ𝑠 (𝑡) ≤ 𝛼, then in particular, for any adjacent nodes 𝑣, 𝑤 we have 𝐿𝑤 (𝑡) −
𝐿𝑣 (𝑡) − (2𝑠−1)𝜅 ≤ Ψ𝑠 (𝑡) ≤ 𝛼. Therefore, Ψ𝑠 (𝑡) ≤ 𝛼 =⇒ L ≤ (2𝑠−1)𝜅+𝛼.
Our analysis will show that in general, Ψ𝑠 (𝑡) ≤ G/𝜎𝑠 for every 𝑠 ∈ N>0 and all
times 𝑡. In particular, Theorem 8.28 will follow by considering 𝑠 = dlog𝜎 G/𝛿e.

Note that the definition of Ψ𝑠
𝑣 is closely related to the definition of SC. In

fact, the following lemma shows that if 𝑤 is a leading node, then 𝑤 satisfies SC.
As a result Ψ𝑠 cannot increase quickly, because leading nodes are always in
slow mode for any algorithm implementing the F/S conditions. This behavior
allows nodes in fast mode to catch up to leading nodes.

Lemma 8.20 (Leading Lemma). Suppose 𝑤 ∈ 𝑉 is a leading node at time 𝑡.
Then 𝑤 satisfies SC and ST.

Proof. By Lemma 8.18, if 𝑤 satisfies SC, then 𝑤 also satisfies ST. Thus, it
suffices to prove that 𝑤 satisfies SC. As 𝑤 is a leading node at time 𝑡, there are
𝑠 ∈ N>0 and 𝑣 ∈ 𝑉 satisfying

Ψ𝑠
𝑣 (𝑡) = 𝐿𝑤 (𝑡) − 𝐿𝑣 (𝑡) − (2𝑠 − 1)𝜅 dist(𝑣, 𝑤) > 0.

In particular, 𝐿𝑤 (𝑡) > 𝐿𝑣 (𝑡), so 𝑤 ≠ 𝑣. For any 𝑦 ∈ 𝑉 , we have

𝐿𝑤 (𝑡) − 𝐿𝑣 (𝑡) − (2𝑠 − 1)𝜅 dist(𝑣, 𝑤) = Ψ𝑠
𝑣 (𝑡)

≥ 𝐿𝑦 (𝑡) − 𝐿𝑣 (𝑡) − (2𝑠 − 1)𝜅 dist(𝑦, 𝑤).

Rearranging this yields

𝐿𝑤 (𝑡) − 𝐿𝑦 (𝑡) ≥ (2𝑠 − 1)𝜅(dist(𝑣, 𝑤) − dist(𝑦, 𝑤)).

In particular, for any {𝑣, 𝑦} ∈ 𝐸 , dist(𝑣, 𝑤) ≥ dist(𝑦, 𝑤) − 1 and hence

𝐿𝑦 (𝑡) − 𝐿𝑤 (𝑡) ≤ (2𝑠 − 1)𝜅,

i.e., SC-2 holds at 𝑤.



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

72 Chapter 8 Gradient Clock Synchronization

Now consider {𝑣, 𝑥} ∈ 𝐸 so that dist(𝑥, 𝑤) = dist(𝑣, 𝑤) − 1. Such a node
exists because 𝑣 ≠ 𝑤. We obtain

𝐿𝑤 (𝑡) − 𝐿𝑦 (𝑡) ≥ (2𝑠 − 1)𝜅,

showing SC-1. By Lemma 8.18, 𝑤 then also satisfies ST at time 𝑡. �

This can readily be translated into a bound on the growth of Ψ𝑠
𝑤 whenever

it is positive. It states that Ψ𝑠
𝑤 can never grow faster than at rate 𝜗 − 𝑑𝐿𝑤

𝑑𝑡
.

Note that this means that Ψ𝑠
𝑤 is actually guaranteed to decrease whenever it is

positive and 𝑤 is in fast mode, because then 𝑑𝐿𝑤

𝑑𝑡
= (1 + 𝜇) 𝑑𝐻𝑤

𝑑𝑡
≥ 1 + 𝜇 > 𝜗.

Lemma 8.21 (Wait-up Lemma). Suppose 𝑤 ∈ 𝑉 satisfies Ψ𝑠
𝑤 (𝑡) > 0 for all

𝑡 ∈ (𝑡0, 𝑡1]. Then

Ψ𝑠
𝑤 (𝑡1) ≤ Ψ𝑠

𝑤 (𝑡0) − (𝐿𝑤 (𝑡1) − 𝐿𝑤 (𝑡0)) + 𝜗(𝑡1 − 𝑡0).

Proof. Fix 𝑤 ∈ 𝑉 , 𝑠 ∈ N>0 and (𝑡0, 𝑡1] as in the hypothesis of the lemma. For
𝑣 ∈ 𝑉 and 𝑡 ∈ (𝑡0, 𝑡1], define the function 𝑓𝑣 (𝑡) = 𝐿𝑣 (𝑡) − (2𝑠 − 1)𝛿 dist(𝑣, 𝑤).
Observe that

max
𝑣∈𝑉
{ 𝑓𝑣 (𝑡)} − 𝐿𝑤 (𝑡) = Ψ𝑠

𝑤 (𝑡).

Moreover, for any 𝑣 for which 𝑓𝑣 (𝑡) attains this maximum, i.e., 𝑓𝑣 (𝑡) = 𝐿𝑤 (𝑡) +
Ψ𝑠

𝑤 (𝑡), we have that 𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) − (2𝑠 − 1)𝜅 dist(𝑣, 𝑤) = Ψ𝑠
𝑤 (𝑡) > 0. Thus,

𝑣 is a leading node and Lemma 8.20 shows that 𝑣 is in slow mode at time 𝑡.
As (we assume that) logical clocks are differentiable, so is 𝑓𝑣 , and it follows
that 𝑑 𝑓𝑣

𝑑𝑡
(𝑡) = 𝑑𝐿𝑣

𝑑𝑡
(𝑡) = 𝑑𝐻𝑣

𝑑𝑡
≤ 𝜗 for each 𝑣 ∈ 𝑉 and time 𝑡 ∈ (𝑡0, 𝑡1] satisfying

𝑓𝑣 (𝑡) = max𝑥∈𝑉 { 𝑓𝑥 (𝑡)}. Therefore, we can apply Lemma 8.33 to show that

Ψ𝑠
𝑤 (𝑡1) −Ψ𝑠

𝑤 (𝑡0) = max
𝑣∈𝑉
{ 𝑓𝑣 (𝑡1)} −max

𝑣∈𝑉
{ 𝑓𝑣 (𝑡0)} − (𝐿𝑤 (𝑡1) − 𝐿𝑤 (𝑡0)) adding 0

≤ 𝜗(𝑡1 − 𝑡0) − (𝐿𝑤 (𝑡1) − 𝐿𝑤 (𝑡0)), Lemma 8.33

which gives the desired result. �

As logical clocks increase at least as fast as hardware clocks, this means that
Ψ𝑠 can never increase faster than at rate 𝜗 − 1.

Corollary 8.22. For all 𝑤 ∈ 𝑉 and 𝑠 ∈ N>0 it holds that

Ψ𝑠
𝑤 (𝑡1) ≤ Ψ𝑠

𝑤 (𝑡0) + (𝜗 − 1) (𝑡1 − 𝑡0).



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.5 Upper Bound on the Local Skew 73

Proof.

Ψ𝑠
𝑤 (𝑡1) ≤ Ψ𝑠

𝑤 (𝑡0) − (𝐿𝑤 (𝑡1) − 𝐿𝑤 (𝑡0)) + 𝜗(𝑡1 − 𝑡0)Lemma 8.21

≤ Ψ𝑠
𝑤 (𝑡0) − (𝐻𝑤 (𝑡1) − 𝐻𝑤 (𝑡0)) + 𝜗(𝑡1 − 𝑡0)𝑑𝐿𝑤

𝑑𝑡
≥ 𝑑𝐻𝑤

𝑑𝑡

≤ Ψ𝑠
𝑤 (𝑡0) + (𝜗 − 1) (𝑡1 − 𝑡0).𝑑𝐻𝑤

𝑑𝑡
≥ 1 �

Trailing Nodes As 𝐿𝑤 (𝑡1)−𝐿𝑤 (𝑡0) ≥ 𝑡1−𝑡0 at all times, Lemma 8.25 implies
that Ψ𝑠 cannot grow faster than at rate 𝜗 − 1 when Ψ𝑠 (𝑡) > 0. This means
that nodes whose clocks are far behind leading nodes can catch up, so long as
the slow nodes are in fast mode. Our next task is to show that “trailing nodes”
always run in fast mode so that they are never too far behind leading nodes.
The approach to showing this is similar to the one for Lemma 8.21, where now
we need to exploit the fast mode condition FC.

Definition 8.23 (Trailing Nodes). We say that 𝑤 ∈ 𝑉 is a trailing node at time
𝑡, if there exists 𝑠 ∈ N>0 and a node 𝑣 ∈ 𝑉 such that

𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) − 2𝑠𝜅 dist(𝑣, 𝑤) = max
𝑥∈𝑉
{𝐿𝑣 (𝑡) − 𝐿𝑥 (𝑡) − 2𝑠𝜅 dist(𝑣, 𝑥)} > 0 .

Lemma 8.24 (Trailing Lemma). Suppose 𝑤 ∈ 𝑉 is a trailing node at time 𝑡.
Then 𝑤 satisfies FC and FT.

Proof. By Lemma 8.18, if 𝑤 satisfies FC, then 𝑤 also satisfies FT. Thus, it
suffices to prove that 𝑤 satisfies FC. Let 𝑠 and 𝑣 satisfy

𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) − 2𝑠𝜅 dist(𝑣, 𝑤) = max
𝑥∈𝑉
{𝐿𝑣 (𝑡) − 𝐿𝑥 (𝑡) − 2𝑠𝜅 dist(𝑣, 𝑥)} > 0.

In particular, 𝐿𝑣 (𝑡) > 𝐿𝑤 (𝑡), implying that 𝑣 ≠ 𝑤. For 𝑦 ∈ 𝑉 , we have

𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) − 2𝑠𝜅 dist(𝑣, 𝑤) ≥ 𝐿𝑣 (𝑡) − 𝐿𝑦 (𝑡) − 2𝑠𝜅 dist(𝑣, 𝑦).

Thus, for all {𝑤, 𝑦} ∈ 𝐸 ,

𝐿𝑦 (𝑡) − 𝐿𝑤 (𝑡) + 2𝑠𝜅(dist(𝑣, 𝑦) − dist(𝑣, 𝑤)) ≥ 0.

It follows that
∀{𝑣, 𝑦} ∈ 𝐸 : 𝐿𝑤 (𝑡) − 𝐿𝑦 (𝑡) ≤ 2𝑠𝜅,

i.e., FC-2 holds. As 𝑣 ≠ 𝑤, there is some {𝑣, 𝑥} ∈ 𝐸 with dist(𝑣, 𝑥) =

dist(𝑣, 𝑤) − 1. We obtain that

∃{𝑣, 𝑥} ∈ 𝐸 : 𝐿𝑦 (𝑡) − 𝐿𝑤 (𝑡) ≥ 2𝑠𝜅,

showing FC-1. �



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

74 Chapter 8 Gradient Clock Synchronization

Using Lemma 8.24, we can show that if Ψ𝑠
𝑤 (𝑡0) > 0, 𝑤 will eventually catch

up. How long this takes can be expressed in terms of Ψ𝑠−1 (𝑡0), or, if 𝑠 = 1, G.

Lemma 8.25 (Catch-up Lemma). Let 𝑠 ∈ N>0 and 𝑡0, 𝑡1 be times. Suppose
that

𝑡1 ≥
{
𝑡0 + G(𝑡0)𝜇

if 𝑠 = 1
𝑡0 + Ψ𝑠−1 (𝑡0)

𝜇
otherwise.

Then, for any 𝑤 ∈ 𝑉 ,

𝐿𝑤 (𝑡1) − 𝐿𝑤 (𝑡0) ≥ 𝑡1 − 𝑡0 +Ψ𝑠
𝑤 (𝑡0).

Proof. Choose 𝑣 ∈ 𝑉 such that

Ψ𝑠
𝑤 (𝑡0) = 𝐿𝑣 (𝑡0) − 𝐿𝑤 (𝑡0) − (2𝑠 − 1)𝜅 dist(𝑣, 𝑤) > 0.

Define 𝑓𝑥 (𝑡) B 𝐿𝑣 (𝑡0) + (𝑡 − 𝑡0) − 𝐿𝑥 (𝑡) − (2𝑠 − 2)𝜅 dist(𝑣, 𝑥) for 𝑥 ∈ 𝑉 and
observe that

Ψ𝑠
𝑤 (𝑡0) = 𝐿𝑣 (𝑡0) − 𝐿𝑤 (𝑡0) − (2𝑠 − 1)𝜅 dist(𝑣, 𝑤) choice of 𝑣

≤ 𝐿𝑣 (𝑡0) − 𝐿𝑤 (𝑡0) − (2𝑠 − 2)𝜅 dist(𝑣, 𝑤) 𝜅 dist(𝑣, 𝑤) ≥ 0

= 𝐿𝑣 (𝑡0) + (𝑡0 − 𝑡0) − 𝐿𝑤 (𝑡0) − (2𝑠 − 2)𝜅 dist(𝑣, 𝑤) adding 0

= 𝑓𝑤 (𝑡0). def. of 𝑓𝑤 (𝑡0)(8.7)

Hence, if max𝑥∈𝑉 { 𝑓𝑥 (𝑡)} ≤ 0 for some 𝑡 ∈ [𝑡0, 𝑡1], then

𝐿𝑤 (𝑡1) − 𝐿𝑤 (𝑡) − (𝑡1 − 𝑡) ≥ 0 ≥ 𝑓𝑤 (𝑡)
= 𝐿𝑣 (𝑡0) + (𝑡 − 𝑡0) − 𝐿𝑤 (𝑡) − (2𝑠 − 2)𝜅 dist(𝑣, 𝑤) def. of 𝑓𝑤 (𝑡)

= 𝑓𝑤 (𝑡0) + (𝑡 − 𝑡0) − (𝐿𝑤 (𝑡) − 𝐿𝑤 (𝑡0)) def. of 𝑓𝑤 (𝑡0)

≥ Ψ𝑠
𝑤 (𝑡0) + (𝑡 − 𝑡0) − (𝐿𝑤 (𝑡) − 𝐿𝑤 (𝑡0)), (8.7)

which can be rearranged into the conclusion of the lemma.
To show this, consider any time 𝑡 ∈ [𝑡0, 𝑡1] when max𝑥∈𝑉 { 𝑓𝑥 (𝑡)} > 0 and

let 𝑦 ∈ 𝑉 be any node such that max𝑥∈𝑉 { 𝑓𝑥 (𝑡)} = 𝑓𝑦 (𝑡). Then 𝑦 is trailing, as

max
𝑥∈𝑉
{𝐿𝑣 (𝑡) − 𝐿𝑥 (𝑡) − (2𝑠 − 2)𝜅 dist(𝑣, 𝑥)}

= 𝐿𝑣 (𝑡) − 𝐿𝑣 (𝑡0) − (𝑡 − 𝑡0) +max
𝑥∈𝑉
{ 𝑓𝑥 (𝑡)} def. of 𝑓𝑥 (𝑡)

= 𝐿𝑣 (𝑡) − 𝐿𝑣 (𝑡0) − (𝑡 − 𝑡0) + 𝑓𝑦 (𝑡) choice of 𝑦

= 𝐿𝑣 (𝑡) − 𝐿𝑦 (𝑡) − (2𝑠 − 2)𝜅 dist(𝑣, 𝑦) def. of 𝑓𝑦 (𝑡),



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.5 Upper Bound on the Local Skew 75

which is positive because

𝐿𝑣 (𝑡) − 𝐿𝑣 (𝑡0) − (𝑡 − 𝑡0) +max
𝑥∈𝑉
{ 𝑓𝑥 (𝑡)} > 𝐿𝑣 (𝑡) − 𝐿𝑣 (𝑡0) − (𝑡 − 𝑡0)max > 0

≥ 𝐻𝑣 (𝑡) − 𝐻𝑣 (𝑡0) − (𝑡 − 𝑡0)𝑑𝐿𝑣
𝑑𝑡
≥ 𝑑𝐻𝑣

𝑑𝑡

≥ 0.𝑑𝐻𝑣
𝑑𝑡
≥ 1

Thus, by Lemma 8.24 𝑦 satisfies FT, which by Lemma 8.17 entails that 𝑦 does
not satisfy ST. Accordingly, 𝑦 is in fast mode, which by our assumption that
logical clocks are differentiable implies that

𝑑𝑓𝑦

𝑑𝑡
(𝑡) = 1 −

𝑑𝐿𝑦

𝑑𝑡
(𝑡) = 1 − (1 + 𝜇)

𝑑𝐻𝑦

𝑑𝑡
(𝑡) ≤ −𝜇.𝑑𝐻𝑦

𝑑𝑡
≥ 1

Now assume for contradiction that max𝑥∈𝑉 { 𝑓𝑥 (𝑡)} > 0 for all 𝑡 ∈ [𝑡0, 𝑡1].
Then

max
𝑥∈𝑉
{ 𝑓𝑥 (𝑡0)} > −

(
max
𝑥∈𝑉
{ 𝑓𝑥 (𝑡1)} −max

𝑥∈𝑉
{ 𝑓𝑥 (𝑡0)}

)
max > 0

≥ 𝜇(𝑡1 − 𝑡0).Lemma 8.33 (8.8)

If 𝑠 = 1,

max
𝑥∈𝑉
{ 𝑓𝑥 (𝑡0)} = max

𝑥∈𝑉
{𝐿𝑣 (𝑡0) − 𝐿𝑥 (𝑡0)} ≤ G(𝑡0) ≤ 𝜇(𝑡1 − 𝑡0),precondition of

lemma

contradicting (8.8). If 𝑠 > 1,

max
𝑥∈𝑉
{ 𝑓𝑥 (𝑡0)} = max

𝑥∈𝑉
{𝐿𝑣 (𝑡0) − 𝐿𝑥 (𝑡0) − (2𝑠 − 2)𝜅 dist(𝑣, 𝑥)}def. of 𝑓𝑥 (𝑡0)

≤ max
𝑥∈𝑉
{𝐿𝑣 (𝑡0) − 𝐿𝑥 (𝑡0) − (2𝑠 − 3)𝜅 dist(𝑣, 𝑥)}𝜅 dist(𝑣, 𝑥) ≥ 0

≤ Ψ𝑠−1 (𝑡0)def. of Ψ𝑠−1

≤ 𝜇(𝑡1 − 𝑡0).precondition of
lemma

As this contradicts (8.8) as well, the claim of the lemma follows. �

Bound on the Local Skew As in Chapter 7, we need to assume that there is
some initial degree of synchronization to show bounds on the skew that hold at
all times.

Lemma 8.26. Assume that 𝐻𝑣 (0) − 𝐻𝑤 (0) ≤ 𝜅 for all {𝑣, 𝑤} ∈ 𝐸 . Then
Ψ𝑠 (0) = 0 for all 𝑠 ∈ N>0.



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

76 Chapter 8 Gradient Clock Synchronization

Proof. We have that

Ψ𝑠 (0) = max
𝑣,𝑤∈𝑉

{𝐿𝑤 (0) − 𝐿𝑣 (0) − (2𝑠 − 1)𝜅 dist(𝑣, 𝑤)} def. of Ψ𝑠

≤ max
𝑣,𝑤∈𝑉

{𝐿𝑤 (0) − 𝐿𝑣 (0) − 𝜅 dist(𝑣, 𝑤)} 𝑠 ∈ N>0,
𝜅 dist(𝑣, 𝑤) ≥ 0

= max
𝑣,𝑤∈𝑉

{𝐻𝑤 (0) − 𝐻𝑣 (0) − 𝜅 dist(𝑣, 𝑤)} 𝐿𝑥 (0) = 𝐻𝑥 (0)
for all 𝑥 ∈ 𝑉

= 0,

where the last step uses that 𝐻𝑣 (0) − 𝐻𝑤 (0) ≤ 𝜅 dist(𝑣, 𝑤) by applying the
precondition that 𝐻𝑥 (0) − 𝐻𝑦 (0) ≤ 𝜅 for all {𝑥, 𝑦} ∈ 𝐸 to the edges of a
shortest path from 𝑣 to 𝑤. �

We now can link Lemmas 8.21 and 8.25 together to show that Ψ𝑠 is bounded:
Lemma 8.21 tells us that Ψ𝑠 cannot grow too fast, and Lemma 8.25 shows that
after a certain time we are guaranteed that the trailing nodes catch up, putting
a stop to this growth. As the time that Ψ𝑠 might grow depends on how large
Ψ𝑠−1 (or G for 𝑠 = 1) is, we get an exponential decrease of the bounds on Ψ𝑠

as function of 𝑠, with base 𝜎.

Lemma 8.27. Assume that 𝐻𝑣 (0) − 𝐻𝑤 (0) ≤ 𝜅 for all {𝑣, 𝑤} ∈ 𝐸 . Then, for
all 𝑠 ∈ N>0, Algorithm 7 guarantees Ψ𝑠 (𝑡) ≤ G/𝜎𝑠 , where 𝜎 = 𝜇/(𝜗 − 1).

Proof. Suppose for contradiction that the statement of the theorem is false. Let
𝑠 ∈ N>0 be minimal such that there is a time 𝑡1 for which Ψ𝑠 (𝑡1) = G/𝜎𝑠 + 𝜀
for some sufficiently small 𝜀 > 0 (because Ψ𝑠 (0) = 0 by Lemma 8.26 and Ψ𝑠

is continuous, such a time exists). Thus, there is some 𝑤 ∈ 𝑉 such that

Ψ𝑠
𝑤 (𝑡1) = Ψ𝑠 (𝑡1) =

G
𝜎𝑠
+ 𝜀. (8.9)

Set 𝑡0 B max{𝑡1 − G/(𝜇𝜎𝑠−1), 0}. Consider the time 𝑡 ′ ∈ [𝑡0, 𝑡1] that is
minimal with the property that Ψ𝑠

𝑤 (𝑡) > 0 for all 𝑡 ∈ (𝑡 ′, 𝑡1] (by continuity of
Ψ𝑠

𝑤 such a time exists). Ψ𝑠
𝑤 (𝑡 ′) cannot be 0, as otherwise
G
𝜎𝑠
+ 𝜀 = Ψ𝑠

𝑤 (𝑡1) (8.9)

≤ (𝜗 − 1) (𝑡1 − 𝑡 ′) Corollary 8.22

≤ (𝜗 − 1) (𝑡1 − 𝑡0) def. of 𝑡′

≤ 𝜗 − 1
𝜇
· G
𝜎𝑠−1

def. of 𝑡0

=
G
𝜎𝑠

. 𝜎 = 𝜇/(𝜗 − 1)



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.5 Upper Bound on the Local Skew 77

Thus, Ψ𝑠
𝑤 (𝑡 ′) > 0, and we must have that 𝑡 ′ = 𝑡0 from the definition of 𝑡 ′

and continuity of Ψ𝑠
𝑤 . As Ψ𝑠 (0) = 0 by Lemma 8.26, this entails that 𝑡0 ≠ 0.

Hence, 𝑡 ′ = 𝑡0 = 𝑡1 − G/(𝜇𝜎𝑠−1). If 𝑠 > 1, the minimality of 𝑠 yields that
Ψ𝑠 (𝑡0) ≤ G/𝜎𝑠−1. We apply Lemma 8.25 to level 𝑠, node 𝑤, and time 𝑡 ′ = 𝑡0,
yielding the contradiction

G
𝜎𝑠
+ 𝜀 = Ψ𝑠

𝑤 (𝑡1)(8.9)

≤ Ψ𝑠
𝑤 (𝑡0) + 𝜗(𝑡1 − 𝑡0) − (𝐿𝑤 (𝑡1) − 𝐿𝑤 (𝑡0))Lemma 8.21

≤ (𝜗 − 1) (𝑡1 − 𝑡0)Lemma 8.25

=
𝜗 − 1
𝜇
· G
𝜎𝑠−1

𝑡0 =

𝑡1− G/(𝜇𝜎𝑠−1)

=
G
𝜎𝑠

.𝜎 = 𝜇/(𝜗 − 1)

Reaching a contradiction in all cases, we conclude that the statement of the
theorem must indeed hold. �

The main result of our analysis readily follows.

Theorem 8.28. Suppose that 𝜅 ≥ 𝛿 and 𝐻𝑣 (0) − 𝐻𝑤 (0) ≤ 𝜅 for all edges
{𝑣, 𝑤} ∈ 𝐸 . Then Algorithm 7 maintains a local skew of

L ≤ 2𝜅
⌈
log𝜎

G
𝜅

⌉
,

where 𝜎 B 𝜇/(𝜗 − 1).

Proof. We apply Lemma 8.27 for 𝑠 B dlog𝜎 (G/𝜅)e. For any {𝑣, 𝑤} ∈ 𝐸 and
any time 𝑡, we thus have that

𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) − (2𝑠 − 1)𝜅 = 𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) − (2𝑠 − 1)𝜅 dist(𝑣, 𝑤){𝑣, 𝑤 } ∈ 𝐸

≤ Ψ𝑠 (𝑡)def. of Ψ𝑠

≤ G
𝜎𝑠

Lemma 8.27

≤ 𝜅.𝑠 ≥ log𝜎 (G/𝜅)

By exchanging the roles of 𝑣 and 𝑤, we analogously obtain that 𝐿𝑤 (𝑡) − 𝐿𝑣 (𝑡) −
(2𝑠 − 1)𝜅 ≤ 𝜅. Rearranging these inequalities, we conclude

L(𝑡) = max
{𝑣,𝑤 }∈𝐸

{|𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) |} ≤ 2𝑠𝜅 = 2𝜅dlog𝜎 (G/𝜅)e . �

Bound on the Global Skew Theorem 8.28 bounds the local skew as function
of the global skew. Since the theorem bounds the local skew for any algorithm
implementing FC and SC, we have a lot of freedom regarding how to achieve



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

78 Chapter 8 Gradient Clock Synchronization

a good global skew. For instance, we could follow the same strategy as in
Algorithm 4 or Algorithm 5, but amortize clock jumps (i.e., run at rate 1 + 𝜇
until the desired correction is accounted for) and give precedence to ST. Since
ST prevents the logical clock from running fast only if a neighbor’s clock is
lagging behind even further, this is sufficient to maintain a small global skew.

Instead, we will bound the global skew solely based on FC and SC, estab-
lishing that any algorithm implementing these rules will perform well. Note,
however, that more elaborate solutions like the one above can guarantee tighter
bounds on the global skew.

Theorem 8.29. Assume that 𝜅 ≥ 𝛿 and 𝐻𝑣 (0) −𝐻𝑤 (0) ≤ 𝜅 for all {𝑣, 𝑤} ∈ 𝐸 .
Then Algorithm 7 satisfies G ≤ (1 + 1/(𝜎 − 1))𝜅𝐷, where 𝜎 = 𝜇/(𝜗 − 1).

Proof. Assume for contradiction that

G(𝑡1) =
(
1 + 1

𝜎 − 1

)
𝜅𝐷 + 𝜀 =

𝜎

𝜎 − 1
· 𝜅𝐷 + 𝜀 (8.10)

for some (arbitrarily small) 𝜀 > 0 and a minimal time 𝑡1. Such a time must
exist, because G is continuous and

G(0) = max
𝑣,𝑤∈𝑉

{𝐿𝑣 (0) − 𝐿𝑤 (0)} def. of G(0)

≤ max
𝑣,𝑤∈𝑉

{𝐿𝑣 (0) − 𝐿𝑤 (0) − 𝜅 dist(𝑣, 𝑤)} + 𝜅𝐷 dist(𝑣, 𝑤) ≤ 𝐷

= Ψ1 (0) + 𝜅𝐷 def. of Ψ1

= 𝜅𝐷. Lemma 8.26

Set 𝑡0 := max{𝑡1 − G(𝑡1)/𝜇, 0} and choose some 𝑤 such that Ψ1
𝑤 (𝑡1) = Ψ1 (𝑡1).

If 𝑡0 = 0, it holds that

Ψ1
𝑤 (𝑡1) ≤ Ψ1

𝑤 (0) + (𝜗 − 1) (𝑡1 − 𝑡0) Corollary 8.22

= (𝜗 − 1) (𝑡1 − 𝑡0). Lemma 8.26(8.11)

Otherwise, Lemma 8.25 is applicable, because 𝑡1 − 𝑡0 = G(𝑡1)/𝜇 > G(𝑡0)/𝜇
by the minimality of 𝑡1. Therefore, we get that

Ψ1
𝑤 (𝑡1) ≤ Ψ1

𝑤 (𝑡0) − (𝐿𝑤 (𝑡1) − 𝐿𝑤 (𝑡0)) + 𝜗(𝑡1 − 𝑡0) Lemma 8.21

= (𝜗 − 1) (𝑡1 − 𝑡0) Lemma 8.25(8.12)



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.5 Upper Bound on the Local Skew 79

as well. Thus, in both cases, we have that
G(𝑡1)
𝜎

=
𝜅𝐷

𝜎 − 1
+ 𝜀

𝜎
(8.10)

<
𝜅𝐷

𝜎 − 1
+ 𝜀𝜀 > 0, 𝜎 =

𝜇/(𝜗 − 1) > 1
= G(𝑡1) − 𝜅𝐷(8.10)

≤ max
𝑥,𝑦∈𝑉

{𝐿𝑥 (𝑡1) − 𝐿𝑦 (𝑡1) − 𝜅 dist(𝑥, 𝑦)}dist(𝑥, 𝑦) ≤ 𝐷

= Ψ1 (𝑡1)def. of Ψ1

= Ψ1
𝑤 (𝑡1)choice of 𝑤

≤ (𝜗 − 1) (𝑡1 − 𝑡0)(8.11), (8.12)

≤ (𝜗 − 1)G(𝑡1)
𝜇

def. of 𝑡0

=
G(𝑡1)
𝜎

.𝜎 = 𝜇/(𝜗 − 1)

This is a contradiction, implying that the claim of the theorem must hold
true. �

Corollary 8.30. Suppose that 𝜅 ≥ 𝛿 and 𝐻𝑣 (0) − 𝐻𝑤 (0) ≤ 𝜅 for all edges
{𝑣, 𝑤} ∈ 𝐸 . Then Algorithm 7 maintains a local skew of

L ≤ 2𝜅
⌈
log𝜎

𝜎𝐷

𝜎 − 1

⌉
,

where 𝜎 B 𝜇/(𝜗 − 1).

8.5.4 Computing Clock Estimates
The remaining piece of the puzzle is how to generate the clock estimates 𝐿̃𝑣

𝑤 (𝑡).
A simple strategy is for each node 𝑤 to periodically broadcast its logical clock
value to its neighbors. Each neighbor 𝑣 then computes 𝐿̃𝑣

𝑤 (𝑡) using the known
bounds on message delays, and increases 𝐿̃𝑣

𝑤 at rate 𝑑𝐻𝑣

𝑑𝑡
/𝜗 between messages

from 𝑤. See Algorithm 8 for the pseudocode of this approach.
An upper bound on the error parameter 𝛿 can now be computed as a function

of the period between broadcasts 𝑇 , 𝑢, 𝜗, and 𝜇.

Lemma 8.31. At times 𝑡 ≥ 𝑇 + 𝑑, Algorithm 8 computes estimates satisfying
(8.6) for

𝛿 =

(
𝜗(1 + 𝜇) − 1

𝜗

)
(𝑇 + 𝑢) + 𝜗(𝑢 + 𝜇𝑑).

Assuming that 𝜇 ∈ 𝑂 (1), this implies that 𝛿 = 𝑂 (𝑢 + 𝜇(𝑇 + 𝑑)).



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

80 Chapter 8 Gradient Clock Synchronization

Algorithm 8 Pseudocode for neighbors 𝑣, 𝑤 ∈ 𝑉 keeping track of each other’s
logical clock based on regular updates. In order to generate all estimates needed
for Algorithm 7, each node executes this code for each of its incident edges.

if 𝑣 just woke up, i.e., 𝑡 = 0 then
ℎ← getH()
ℓ̃𝑤 ← getL() ⊲ default to own clock value

end if
if getH() = 𝑘𝑇 for some 𝑘 ∈ N then

send 〈getL()〉 to 𝑤

end if
if received 〈ℓ〉 from 𝑤 then

ℓ̃𝑤 ← ℓ + 𝑑 − 𝑢 ⊲ take message delay into account
ℎ← getH()

end if
procedure getL(𝑤) ⊲ returns 𝐿̃𝑤

𝑣 (𝑡)
return ℓ̃𝑤 + (getH() − ℎ)/𝜗 ⊲ own clock might be faster than 𝑤’s

end procedure

Proof. Fix {𝑣, 𝑤} ∈ 𝐸 and consider time 𝑡 ≥ 𝑇 +𝑑. As messages are sent every
𝑇 local time, 𝑑𝐻𝑤

𝑑𝑡
≥ 1, and all messages are received within 𝑑 time, 𝑣 received

a message from 𝑤 by time 𝑇 + 𝑑. Denote by 𝑡𝑠 the time it was sent and by 𝑡𝑟 ≤ 𝑡

the time it was received. We have that 𝑡𝑠 + 𝑑 − 𝑢 ≤ 𝑡𝑟 ≤ 𝑡𝑠 + 𝑑. Hence,

𝐿̃𝑤 (𝑡) ≤ 𝐿̃𝑤 (𝑡𝑟 ) +
𝐻𝑣 (𝑡) − 𝐻𝑣 (𝑡𝑟 )

𝜗
𝑑𝐿̃𝑤
𝑑𝑡
≥ 1

𝜗
· 𝑑𝐻𝑣

𝑑𝑡

≤ 𝐿̃𝑤 (𝑡𝑟 ) + 𝑡 − 𝑡𝑟 𝑑𝐻𝑣
𝑑𝑡
≤ 𝜗

= 𝐿𝑤 (𝑡𝑠) + 𝑑 − 𝑢 + 𝑡 − 𝑡𝑟 𝑑 − 𝑢 added
on reception

≤ 𝐿𝑤 (𝑡𝑠) + 𝑡𝑟 − 𝑡𝑠 + 𝑡 − 𝑡𝑟 𝑑 − 𝑢 ≤ 𝑡𝑟 − 𝑡𝑠

= 𝐿𝑤 (𝑡𝑠) + 𝑡 − 𝑡𝑠
≤ 𝐿𝑤 (𝑡𝑠) + 𝐻𝑤 (𝑡) − 𝐻𝑤 (𝑡𝑠) 𝑑𝐻𝑤

𝑑𝑡
≥ 1

≤ 𝐿𝑤 (𝑡𝑠) + 𝐿𝑤 (𝑡) − 𝐿𝑤 (𝑡𝑠) = 𝐿𝑤 (𝑡) 𝑑𝐿𝑤
𝑑𝑡
≥ 𝑑𝐻𝑤

𝑑𝑡(8.13)



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.5 Upper Bound on the Local Skew 81

and

𝐿𝑤 (𝑡) = 𝐿𝑤 (𝑡𝑠) + 𝐿𝑤 (𝑡) − 𝐿𝑤 (𝑡𝑠)adding 0

≤ 𝐿𝑤 (𝑡𝑠) + (1 + 𝜇) (𝐻𝑤 (𝑡) − 𝐻𝑤 (𝑡𝑠))𝑑𝐿
𝑑𝑡
≤ (1+𝜇)𝑑𝐻

𝑑𝑡

≤ 𝐿𝑤 (𝑡𝑠) + (1 + 𝜇)𝜗(𝑡 − 𝑡𝑠)𝑑𝐻𝑤
𝑑𝑡
≤ 𝜗

= 𝐿̃𝑤 (𝑡𝑟 ) − (𝑑 − 𝑢) + (1 + 𝜇)𝜗(𝑡 − 𝑡𝑠)𝑑 − 𝑢 added
on reception

= 𝐿̃𝑤 (𝑡𝑟 ) − (𝑑 − 𝑢) + (1 + 𝜇)𝜗(𝑡 − 𝑡𝑟 + 𝑡𝑟 − 𝑡𝑠)adding 0

= 𝐿̃𝑤 (𝑡𝑟 ) + (1 + 𝜇)𝜗(𝑡 − 𝑡𝑟 ) + 𝜗(𝑢 + 𝜇𝑑)𝑡𝑟 − 𝑡𝑠 ≤ 𝑑

= 𝐿̃𝑤 (𝑡) − ( 𝐿̃𝑤 (𝑡) − 𝐿̃𝑤 (𝑡𝑟 )) + (1 + 𝜇)𝜗(𝑡 − 𝑡𝑟 ) + 𝜗(𝑢 + 𝜇𝑑)adding 0

≤ 𝐿̃𝑤 (𝑡) −
𝐻𝑤 (𝑡) − 𝐻𝑤 (𝑡𝑟 )

𝜗
+ (1 + 𝜇)𝜗(𝑡 − 𝑡𝑟 ) + 𝜗(𝑢 + 𝜇𝑑)𝑑𝐿𝑤

𝑑𝑡
≥ 𝑑𝐻𝑤

𝑑𝑡

≤ 𝐿̃𝑤 (𝑡) −
𝑡 − 𝑡𝑟
𝜗
+ (1 + 𝜇)𝜗(𝑡 − 𝑡𝑟 ) + 𝜗(𝑢 + 𝜇𝑑)𝑑𝐻𝑤

𝑑𝑡
≥ 1

= 𝐿̃𝑤 (𝑡) +
(
𝜗(1 + 𝜇) − 1

𝜗

)
(𝑡 − 𝑡𝑟 ) + 𝜗(𝑢 + 𝜇𝑑). (8.14)

In order to bound 𝑡 − 𝑡𝑟 , recall that 𝑡𝑠 is the time the latest message from 𝑤

that 𝑣 received was sent. Hence, if 𝑡 ′𝑠 is the next time after 𝑡𝑠 when 𝑤 sends a
message, we have that 𝑡 − 𝑡 ′𝑠 < 𝑑. We get that

𝑡 − 𝑡𝑟 = 𝑡 − 𝑡 ′𝑠 + 𝑡 ′𝑠 − 𝑡𝑠 − (𝑡𝑟 − 𝑡𝑠)adding 0

< 𝑡 ′𝑠 − 𝑡𝑠 + 𝑢𝑡 − 𝑡′𝑠 < 𝑑

𝑡𝑟 − 𝑡𝑠 ≥ 𝑑 − 𝑢
≤ 𝐻𝑤 (𝑡 ′𝑠) − 𝐻𝑤 (𝑡𝑠) + 𝑢𝑑𝐻𝑤

𝑑𝑡
≥ 1

= 𝑇 + 𝑢.mess. sent every
𝑇 local time

(8.15)

We conclude that

𝐿𝑤 (𝑡) ≥ 𝐿̃𝑤 (𝑡)(8.13)

≥ 𝐿̃𝑤 (𝑡) −
(
𝜗(1 + 𝜇) − 1

𝜗

)
(𝑡 − 𝑡𝑟 ) + 𝜗(𝑢 + 𝜇𝑑)(8.14)

> 𝐿̃𝑤 (𝑡) −
(
𝜗(1 + 𝜇) − 1

𝜗

)
(𝑇 + 𝑢) + 𝜗(𝑢 + 𝜇𝑑)(8.15)

= 𝐿̃𝑤 (𝑡) − 𝛿,

as claimed.



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

82 Chapter 8 Gradient Clock Synchronization

To establish the asymptotic bound on 𝛿, note that 𝜗 = 1 + 𝜗 − 1 < 1 + 𝜇.
Thus,

𝜗(1 + 𝜇) − 1
𝜗

< (1 + 𝜇)2 − 1
1 + 𝜇

𝜗 < 1 + 𝜇

< (1 + 𝜇)3 − 1 1 + 𝜇 > 1

= 𝑂 (𝜇), 𝜇 = 𝑂 (1)(8.16)

leading to(
𝜗(1 + 𝜇) − 1

𝜗

)
(𝑇 + 𝑢) + 𝜗(𝑢 + 𝜇𝑑) = 𝑂 (𝜇(𝑇 + 𝑢) + (1 + 𝜇) (𝑢 + 𝜇𝑑) (8.16)

= 𝑂 (𝜇(𝑇 + 𝑢) + 𝑢 + 𝜇𝑑) 𝜇 = 𝑂 (1)

= 𝑂 (𝑢 + 𝜇(𝑇 + 𝑑)). 𝑢 ≤ 𝑑�

Finally, we can put all pieces together to arrive at Corollary 8.32.

Corollary 8.32. Suppose that
• 𝐻 := max{𝑣,𝑤 }∈𝐸 {𝐻𝑣 (0) − 𝐻𝑤 (0)} ∈ 𝑂 (𝑢),
• Algorithm 8 with 𝑇 = 𝑑 is used to compute clock estimates and is initialized

at all nodes by time −2𝑑,
• 2(𝜗 − 1) ≤ 𝜇 = 𝑂 (𝑢/𝑑), and
• 𝜅 = max{𝐻, 𝛿}, where 𝛿 is as in Lemma 8.31.

Then Algorithm 7 guarantees that
• 𝑑𝐻𝑣

𝑑𝑡
(𝑡) ≤ 𝑑𝐿𝑣

𝑑𝑡
(𝑡) ≤ (1 + 𝜇) 𝑑𝐻𝑣

𝑑𝑡
(𝑡) for all nodes 𝑣 and times 𝑡,

• G = 𝑂 (𝐷), and
• L = 𝑂 (𝑢 log𝜎 𝐷), where 𝜎 = 𝜇/(𝜗 − 1).

Proof. The bounds on the logical clock rates are immediate from Algorithm 7.
By Lemma 8.31, the choice of 𝑇 = 𝑑, and the assumption that Algorithm 8 is
initialized at all nodes by time −2𝑑, at times 𝑡 ≥ 0 all nodes maintain estimates
of their neighbors’ logical clocks satisfying (8.6) for the 𝛿 specified in the
lemma. Because 𝜇 = 𝑂 (𝑢/𝑑) and 𝑢 ≤ 𝑑, 𝑢 ∈ 𝑂 (1). Thus,

𝛿 = 𝑂 (𝑢 + 𝜇(𝑇 + 𝑑)) 𝜇 = 𝑂 (1) ,
Lemma 8.31

= 𝑂 (𝑢 + 𝜇𝑑) 𝑇 = 𝑑

= 𝑂 (𝑢), 𝜇 = 𝑂 (𝑢/𝑑)

implying that 𝜅 = 𝑂 (𝑢). Moreover, 𝜎 = 𝜇/(𝜗 − 1) ≥ 2. The choice of 𝜅

satisfies the prerequisites of Theorem 8.29 and Corollary 8.30. Thus, we get



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.5 Upper Bound on the Local Skew 83

that

G ≤
(
1 + 1

𝜎 − 1

)
𝜅𝐷Theorem 8.29

= 𝑂 (𝑢𝐷)𝜎 ≥ 2,
𝜅 = 𝑂 (𝑢)

and

L ≤ 2𝜅
⌈
log𝜎

𝜎𝐷

𝜎 − 1

⌉
Corollary 8.30

≤ 2𝜅
⌈
log𝜎

𝜎

𝜎 − 1
+ log𝜎 𝐷

⌉
log(𝑎𝑏) =

log 𝑎 + log 𝑏
≤ 2𝜅

⌈
1 + log𝜎 𝐷

⌉
𝜎 ≥ 2

= 𝑂 (𝑢 log𝜎 𝐷).𝜅 = 𝑂 (𝑢) �

A Technical Lemma

If the maximum of a finite set of functions satisfies that whenever one of the
functions attains the maximum, its derivative is bounded by 𝑟 , then the growth
of the maximum is also bounded by 𝑟 . This intuitive statement is surprisingly
hard to prove.

Lemma 8.33. For 𝑘 ∈ N, let F = { 𝑓𝑖 | 𝑖 ∈ [𝑘]}, where each 𝑓𝑖 : [𝑡0, 𝑡1] →
R is differentiable, and [𝑡0, 𝑡1] ⊂ R. Define 𝐹 : [𝑡0, 𝑡1] → R by 𝐹 (𝑡) B
max𝑖∈[𝑘 ] { 𝑓𝑖 (𝑡)}. Suppose F has the property that for every 𝑖 and 𝑡, if 𝑓𝑖 (𝑡) =
𝐹 (𝑡), then 𝑑 𝑓𝑖

𝑑𝑡
(𝑡) ≤ 𝑟 . Then for all 𝑡 ∈ [𝑡0, 𝑡1], we have 𝐹 (𝑡) ≤ 𝐹 (𝑡0) +𝑟 (𝑡− 𝑡0).

Proof. We prove the stronger claim that for all 𝑎, 𝑏 satisfying 𝑡0 ≤ 𝑎 < 𝑏 ≤ 𝑡1,
we have

𝐹 (𝑏) − 𝐹 (𝑎)
𝑏 − 𝑎 ≤ 𝑟. (8.17)

To this end, suppose to the contrary that there exist 𝑎0 < 𝑏0 satisfying (𝐹 (𝑏0) −
𝐹 (𝑎0))/(𝑏0 − 𝑎0) ≥ 𝑟 + 𝜀 for some 𝜀 > 0. We define a sequence of nested
intervals [𝑎0, 𝑏0] ⊃ [𝑎1, 𝑏1] ⊃ · · · as follows. Given [𝑎 𝑗 , 𝑏 𝑗 ], let 𝑐 𝑗 =

(𝑏 𝑗 + 𝑎 𝑗 )/2 be the midpoint of 𝑎 𝑗 and 𝑏 𝑗 . Observe that
𝐹 (𝑏 𝑗 ) − 𝐹 (𝑎 𝑗 )

𝑏 𝑗 − 𝑎 𝑗

=
1
2
𝐹 (𝑏 𝑗 ) − 𝐹 (𝑐 𝑗 )

𝑏 𝑗 − 𝑐 𝑗

+ 1
2
𝐹 (𝑐 𝑗 ) − 𝐹 (𝑎 𝑗 )

𝑐 𝑗 − 𝑎 𝑗

≥ 𝑟 + 𝜀,

so that
𝐹 (𝑏 𝑗 ) − 𝐹 (𝑐 𝑗 )

𝑏 𝑗 − 𝑐 𝑗

≥ 𝑟 + 𝜀 or
𝐹 (𝑐 𝑗 ) − 𝐹 (𝑎 𝑗 )

𝑐 𝑗 − 𝑎 𝑗

≥ 𝑟 + 𝜀.

If the first inequality holds, define 𝑎 𝑗+1 = 𝑐 𝑗 , 𝑏 𝑗+1 = 𝑏 𝑗 , and otherwise define
𝑎 𝑗+1 = 𝑎 𝑗 , 𝑏 𝑗 = 𝑐 𝑗 . From the construction of the sequence, it is clear that for



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

84 Chapter 8 Gradient Clock Synchronization

all 𝑗 we have
𝐹 (𝑏 𝑗 ) − 𝐹 (𝑎 𝑗 )

𝑏 𝑗 − 𝑎 𝑗

≥ 𝑟 + 𝜀. (8.18)

Observe that the sequences
{
𝑎 𝑗

}∞
𝑗=0 and

{
𝑏 𝑗

}∞
𝑗=0 ar both bounded and mono-

tonic, hence convergent. Further, since 𝑏 𝑗−𝑎 𝑗 =
1
2 𝑗 (𝑏0−𝑎0), the two sequences

share the same limit.
Define

𝑐 B lim
𝑗→∞

𝑎 𝑗 = lim
𝑗→∞

𝑏 𝑗 ,

and let 𝑓 ∈ F be a function satisfying 𝑓 (𝑐) = 𝐹 (𝑐). By the hypothesis of the
lemma, we have 𝑓 ′(𝑐) ≤ 𝑟, so that

lim
ℎ→0

𝑓 (𝑐 + ℎ) − 𝑓 (ℎ)
ℎ

≤ 𝑟.

Therefore, there exists some ℎ > 0 such that for all 𝑡 ∈ [𝑐 − ℎ, 𝑐 + ℎ], 𝑡 ≠ 𝑐, we
have

𝑓 (𝑡) − 𝑓 (𝑐)
𝑡 − 𝑐 ≤ 𝑟 + 1

2
𝜀.

Further, from the definition of 𝑐, there exists 𝑁 ∈ N such that for all 𝑗 ≥ 𝑁 , we
have 𝑎 𝑗 , 𝑏 𝑗 ∈ [𝑐 − ℎ, 𝑐 + ℎ]. In particular this implies that for all sufficiently
large 𝑗 , we have

𝑓 (𝑐) − 𝑓 (𝑎 𝑗 )
𝑐 − 𝑎 𝑗

≤ 𝑟 + 1
2
𝜀, (8.19)

𝑓 (𝑏 𝑗 ) − 𝑓 (𝑐)
𝑏 𝑗 − 𝑐

≤ 𝑟 + 1
2
𝜀. (8.20)

Since 𝑓 (𝑎 𝑗 ) ≤ 𝐹 (𝑎 𝑗 ) and 𝑓 (𝑐) = 𝐹 (𝑐), (8.19) implies that for all 𝑗 ≥ 𝑁 ,
𝐹 (𝑐) − 𝐹 (𝑎 𝑗 )

𝑐 − 𝑎 𝑗

≤ 𝑟 + 1
2
𝜀.

However, this expression combined with with (8.18) implies that for all 𝑗 ≥ 𝑁

𝐹 (𝑏 𝑗 ) − 𝐹 (𝑐)
𝑏 𝑗 − 𝑐

≥ 𝑟 + 𝜀. (8.21)

Since 𝐹 (𝑐) = 𝑓 (𝑐), the previous expression together with (8.20) implies that
for all 𝑗 ≥ 𝑁 we have 𝑓 (𝑏 𝑗 ) < 𝐹 (𝑏 𝑗 ).

For each 𝑗 ≥ 𝑁 , let 𝑔 𝑗 ∈ F be a function such that 𝑔 𝑗 (𝑏 𝑗 ) = 𝐹 (𝑏 𝑗 ). Since
F is finite, there exists some 𝑔 ∈ F such that 𝑔 = 𝑔 𝑗 for infinitely many values
𝑗 . Let 𝑗0 < 𝑗1 < · · · be the subsequence such that 𝑔 = 𝑔 𝑗𝑘 for all 𝑘 ∈ N. Then
for all 𝑗𝑘 , we have 𝐹 (𝑏 𝑗𝑘 ) = 𝑔(𝑏 𝑗𝑘 ). Further, since 𝐹 and 𝑔 are continuous, we



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 22, 2021 6:42pm

8.5 Upper Bound on the Local Skew 85

have
𝑔(𝑐) = lim

𝑘→∞
𝑔(𝑏 𝑗𝑘 ) = lim

𝑘→∞
𝐹 (𝑏 𝑗𝑘 ) = 𝐹 (𝑐) = 𝑓 (𝑐).

By (8.21), we therefore have that for all 𝑘
𝑔(𝑏 𝑗𝑘 ) − 𝑔(𝑐)

𝑏 𝑗𝑘 − 𝑐
=

𝐹 (𝑏 𝑗 ) − 𝐹 (𝑐)
𝑏 𝑗 − 𝑐

≥ 𝑟 + 𝜀.

However, this final expression contradicts the assumption that 𝑔′(𝑐) ≤ 𝑟. There-
fore, (8.17) holds, as desired. �


