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50 Chapter 8 Gradient Clock Synchronization

8.1 Overview

In Chapter 7, we have studied the clock synchronization problem. We have
see that a global skew of ⇥(D⇡ + (o � 1)3) is worst-case optimal, where ⇡

is the diameter of the network graph (with crashed nodes removed). However,
if the logical clocks are intended to clock the system, the global skew is not
determining the clock frequency the system can sustain under synchronous
operation. Rather, the essential property is the clock skew between nodes (i.e.,
clock domains) that communicate with each other.

In this chapter, we will assume that the network graph corresponds to the
communication graph, i.e., if the clock domains corresponding to nodes { 2 +
and | 2 + communicate directly, then there is also an edge {{,|} 2 ⇢ in
the network graph ⌧ = (+ , ⇢) on which we solve the clock synchronization
problem. In this setting, a highly relevant quality measure for synchronization
is the local skew.

Definition 8.1 (Local Skew). Given an algorithm that computes logical clocks
!{ (C), C 2 R�0, at each node { 2 + , define its local skew as

L B sup
C 2R�0

{L(C)},

over all executions E, where

L(C) B max
{{,| }2⇢

{|!{ (C) � !| (C) |}.

We study the local skew for clock synchronization algorithms in TMP.
One might hope that the local skew can be kept much smaller than the global

skew. In fact, since the lower bound on the global skew given in Theorem 7.12
is based on “hiding” a large clock skew between nodes in distance ⇡ from each
other, one might venture the guess that a local skew of $ (D + (o � 1)3) can
be guarenteed. Our first main result in this chapter shows that such an ideal
distribution of the global skew over the network cannot always be maintained
with bounded logical clock rates.

Theorem 8.3. Any clock synchronization algorithm satisfying that

3�{

3C

(C)  3!{

3C

(C)  (1 + `) 3�{

3C

(C)

for all nodes { and times C has

L �
⇣
D

4
� (o � 1)3

⌘
log dfe ⇡,

where f B `/(o � 1).
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This lower bound constraints clock rates from below by 3�{
3C

(C) � 1 and from
above by (1 + `) 3�{

3C
(C)  o(1 + `). Recall that the lower bound is motivated

by requiring that clocks make progress; however, as can be seen by analyzing a
variant of Algorithm 2 in TMP, allowing for an amortized logical clock rate10
of at least 1 enables us to keep the local skew constant.

Theorem 8.7. There is a clock synchronization algorithm achieving a local
skew of max{3, oD}, amortized 1-progress with ⇠ = 0, and 3!{

3C
(C)  3�{

3C
(C)

for all times C and nodes { 2 + .

The algorithm providing these guarantees locally halts the logical clock for
up to D⇡ time. Although a formal statement would be more convoluted,11 the
proof of Theorem 8.3 reveals that, roughly speaking, this is necessary to ensure
a local skew of $ (D).

But what if halting or dramatically slowing down the clocks is a problem?
If the system is required to respond to local events as quickly as possible,
one would want the the logical clocks that drive the nodes’ computations are
guaranteed to make progress at all times. In this setting, the requirement that
3!{
3C

(C) � 3�{
3C

(C) should be upheld. So what about the upper bound, i.e., that
3!{
3C

(C)  (1 + `) 3�{
3C

(C)? It turns out that choosing ` � log1/(o�1) ⇡ is of no
use, as an algorithm utilizing faster clocks will inadvertantely introduce a large
skew due to neighors’ not being able to keep track of each others clocks any
more.

Theorem 8.9. Any clock synchronization algorithm satisfying that 3�{
3C

(C) 
3!{
3C

(C) for all nodes { and times C has

L = ⌦
⇣⇣
D

4
� (o � 1)3

⌘
log dfe ⇡

⌘

for f = log1/(o�1) ⇡)/(o � 1).
A painfully more elaborate argument shows that the same holds for f =

⇥(1/(o � 1)) [? ], but due to being executed in a di�erent model, it does
not immediately provide a corresponding statement in our setting. In favor of
simplicity and intuition, we stick to the weaker bound.

Note that for (1 + `)  o, it is impossible for logical clocks of nodes with
3�{
3C

= 1 to catch up with the logical clocks of nodes with 3�{
3C

= o. Thus, the
above results lead to the question whether for the range of ` > o � 1 the lower

10 The theorem states amortized 1-progress for ⇠ = 0, but recall that for notational convenience
we assume that all nodes wake up at time 0. If the last node wakes up at time C0, then ⇠ = C0.

11 The clocks do not need to be halted, but they must progress su�ciently slow to prevent the
build-up of skew the lower bound accomplishes.



MITPress NewMath.cls LATEX Book Style Size: 6x9 January 18, 2021 6:19pm

52 Chapter 8 Gradient Clock Synchronization

bound from Theorem 8.3 can be (up to constants) matched by a corresponding
algorithm. The second main result of this chapter is that this is indeed the case,
provided that nodes can estimate the logical clock values of their neighbors up
to an error of X = $ (D) at all times and G/X = $ (⇡).
Theorem ??. Suppose that ^ > X and �{ (0) � �| (0)  ^ for all edges
{{, |} 2 ⇢ . Then ?? maintains a local skew of

L  2^
⇠
log

f

G
^

⇡
,

where f B `/(o � 1).
This means that, while we are not able to guarantee a local skew that is entirely

independent of ⇡, the dependence on ⇡ is only logarithmic. Moreover, not
that the base of the logarithm can become very large, at the expense of a larger
“drift” of logical clocks than of hardware clocks.

We then proceed to show that X = $ (D) is easily achieved, provided that
(o � 1)3 = $ (D), ` = $ (D/3), and that ?? guarantees a global skew of ?^⇡.
Together, under the mild constraint that D/4 � (o � 1)3 = ⌦(D) this implies
that ?? is, up to constant factors, simultaneously optimal with respect to both
local and global skew, for any choice of o � 1 < ` = $ (D/3).
Corollary 8.2. Suppose that (o � 1)3 = $ (D), o � 1 < ` = $ (D/3), and
�{ (0) � �| (0) 2 $ (D) for all edges {{, |} 2 ⇢ . Then we can guarantee that

• 3�{
3C

(C)  3!{
3C

(C)  (1 + `) 3�{
3C

(C) for all nodes { and times C,
• G = $ (D⇡), and
• L = $ (D log

f
⇡), where f = `/(o � 1).

8.2 Lower Bound on the Local Skew with Bounded Clock Rates

In Chapter 7, we proved essentially matching upper and lower bounds on the
worst-case global skew for the clock synchronization problem. We saw that
during an execution of the Max algorithm (Algorithm 5), all logical clocks
in all executions eventually agree up to an additive term of $ (D⇡) (ignoring
other parameters). The lower bound we proved in Theorem 7.12 shows that a
global skew of ⌦(D⇡) is unavoidable for any algorithm in which clocks run
at an amortized constant rate, at least in the worst case. In our lower bound
construction, the two nodes { and | that achieved the maximal skew were
distance ⇡ apart. However, the lower bound did not preclude neighboring
nodes from remaining closely synchronized throughout an execution. As we
will see in Theorem 8.7, this is indeed possible if one is willing to slow down
clocks arbitrarily (or simply stop them), even if the amortized rate is constant.
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We now look into what happens if one requires that clocks progress at a
constant rate at all times. That is, we constrain logical clocks to increase at
rates between 3�

3C
and (1 + `) 3�

3C
at all times.

Before proving Theorem 8.3, we provide some intuition. Assume that (o �
1)3 ⌧ D, so we can ignore terms with (o � 1)3 for the moment and drop them
from the notation. The basic strategy of the proof is to construct a sequence of
executions E0, E1, . . . , E✓ and times C0 < C1 < · · · < C✓ such that at each time
C8 , there exist nodes {8 , |8 satisfying !{8 (C8) � !|8 (C8) � 8UD · dist({8 , |8), for
some suitable constant U. Our construction works up to ✓ = ⌦(log

f
⇡) with

dist({✓ , |✓) = 1, which gives the desired result.
In more detail, the idea of the proof is to use the “shifting” technique of

Theorem 7.12 applied ✓ times to closer and closer pairs of nodes. By The-
orem 7.12, there is an execution E0 and a pair of nodes {0, |0 satisfying
dist({0, |0) = ⇡ such that at time C0 = 3 + (D/(2(o � 1)) � 3)⇡, we have
!{0 (C0) � !|0 (C0) ' D/2 · dist({0, |0). Fix a shortest path % from {0 to |0. For
any pair of nodes {,| along %, we define the average skew between { and | at
time C to be |!{ (C) � !| (C) |/dist({,|). In particular, the average skew between
{0 and |0 is at least (roughly) D/2.

We extend the execution E0 for C > C0 by setting all hardware clock rates
to 1 for C > C0 and all message delays to 3 � D/2 (as in the execution E in
Theorem 7.12). Thus, by assumption at times C > C0 logical clock rates are
always between 3�

3C
= 1 and (1 + `) 3�

3C
= 1 + `. Hence, for every C > C0 in the

extended execution, we have !{0 (C) � !|0 (C) � D/2 · dist({0, |0) � ` · (C � C0).
That is, the average skew between {0 and |0 decreases at a rate of at most
`/dist({0, |0). By taking

C1 = C0 + 3 +
⇣
D

2
· (o � 1) � 3

⌘
· : ⇡ C0 +

D

2
· (o � 1)

for some suitably chosen : , there exists a pair of nodes {1, |1 on % with
dist({1, |1) = : such that the average skew between {1 and |1 at time C1 is
(roughly) at least

D

2
� `

dist({0, |0)
· (C1 � C0) =

D

2
� D

2
· `

o � 1
· :

dist({0, |0)
in the execution E0. Recalling that f = `/(o � 1) and choosing : =
dist({0, |0)/d2fe, this is at least D/4. We then apply the shifting technique
again to the nodes {1 and |1 on the interval [C0, C1]. In this way we define
an execution E1 in which there is a time when the skew between {1 and |1 is
by roughly D:/2 larger than the skew in E0 at time C1. Therefore, in E1, the
average skew bewtween {1 and |1 reaches about 3/4D.
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We then iterate the procedure above ✓blog d2fe ⇡c times. In the 8-th iteration,
we obtain a pair of nodes {8 , |8 at distance ⇡/b2fc8 such that the average skew
between {8 and |8 is at least (1/2 + 8/4) · D. Thus, after ✓ iterations, the skew
between adjacent nodes {✓ and |✓ is roughly D/2 · log

f
⇡, which gives the

desired result.

Theorem 8.3. Any clock synchronization algorithm satisfying that

3�{

3C

(C)  3!{

3C

(C)  (1 + `) 3�{

3C

(C)

for all nodes { and times C has

L �
⇣
D

4
� (o � 1)3

⌘
log dfe ⇡,

where f B `/(o � 1).

Proof. Note that the claim is vacuous if (o� 1)3 � D/4, so we can assume the
opposite in the following. Set 1 B d2fe and 8max B blog

1
⇡c. By induction

over 8 2 [8max + 1], we show that we can build up a skew of (8 + 2) (D/4 � (o �
1)3) dist({,|) between nodes {, | 2 + in distance dist({, |) = 1

8max�8 at a time
C8 in execution E(8) , such that after time C8 all hardware clock rates are 1 and all
sent messages have delays of 3 � D/2.

We anchor the induction at 8 = 0 by applying Lemma ??, choosing C0 as in the
lemma. We pick two nodes {, | 2 + in distance 1

8max  ⇡ of each other such
that ! (E1)

{
(C0) � !

(E1)
|

(C0). Now consider E{ for this choice of {,| 2 + , which
satisfies � (E{ )

{
(C0) = �

(E1)
{

(C0) + (D/2 � (o � 1)3) dist({,|) and �
(E{ )
|

(C0) =
�

(E1)
|

(C0). Denote by C < C0 the time such that � (E{ )
{

(C) = �
(E1)
{

(C0). We get
that

!
(E{ )
{

(C0) = !
(E{ )
{

(C) + !
(E{ )
{

(C0) � !
(E{ )
{

(C) adding 0

� !
(E{ )
{

(C) + �
(E{ )
{

(C0) � �
(E{ )
{

(C) 3!{
3C �

3�{
3C

= !
(E{ )
{

(C) +
⇣
D

2
� (o � 1)3

⌘
dist({, |) by definition

= !
(E1)
{

(C0) +
⇣
D

2
� (o � 1)3

⌘
dist({,|). by indist.(8.1)

We conclude that

!
(E{ )
{

(C0) � !
(E{ )
|

(C0) = !
(E{ )
{

(C0) � !
(E1)
|

(C0) by indist.

� !
(E1)
{

(C0) +
⇣
D

2
� (o � 1)3

⌘
dist({,|) � !

(E1)
|

(C0) (8.1)

(8.2)

�
⇣
D

2
� (o � 1)3

⌘
dist({,|). choice of {, |
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We obtain E(0) by changing all hardware clock rates in E{ to 1 at time C0 and
all message delays of messages sent at or after time C0 to 3 � D/2. As this does
not a�ect the logical clock values at time C0—E(0) is indistinguishable from E{

at G 2 + until local time �
(E (0) )
G

(C0)—this shows the claim for 8 = 0.
For the induction step from 8 to 8 + 1, let {,| 2 + , E(8) , and C8 be given by the

induction hypothesis, i.e.,

!
(E (8) )
{

(C8) � !
(E (8) )
|

(C8) � (8 + 2)
⇣
D

4
� (o � 1)3

⌘
dist({,|) ,

and from time C8 on all hardware clock rates are 1 and sent messages have delay
3 � D/2. Note that the latter conditions mean that E(8) behaves exactly like
E1 from Lemma ?? from time C8 on, except that some messages sent at times
C < C8 may arrive during [C8 , C8 + 3). Hence, if we apply the same modifications
to E(8) as to E1, but starting from time C8 + 3 instead of time 0, analogously
to the lemma we show the following. For any {

0
, |
0 2 + , we can construct an

execution E{
0 indistinguishable from E(8) , such that

• for all G 2 + and C � C8 , �
(E (8) )
G

(C) = �
(E (8) )
G

(C8) + C � C8 ,
• �

(E{0 )
{
0 (C) = �

(E (8) )
{
0 (C) + dist({0, |0) (D/2� (o� 1)3) for all times C � C8 + 3 +

(D/(2(o � 1)) � 3) dist({0, |0), and
• �

(E{0 )
|
0 (C) = �

(E (8) )
|
0 (C8) + C � C8 for all C � C8 .

Consider the logical clock values of { and | in E(8) at time

C8+1 B C8 + 3 +
✓

D

2(o � 1) � 3

◆
dist({,|)

1

.

Recall that 3!{
3C

(C) � 3�{
3C

(C) � 1 and 3!|
3C

(C)  (1 + `) 3�|
3C

(C) at all times C.

As 3�
(E (8) )
|
3C

(C) = 1 at times C � C8 , we obtain

!
(E (8) )
{

(C8+1) � !
(E (8) )
|

(C8+1) � !
(E (8) )
{

(C8) � !
(E (8) )
|

(C8) � `(C8+1 � C8) . (8.3)

Recall that dist({,|) = 1
8max�8 and that 1 = d2fe. We split up a shortest path

from { to | in 1 subpaths of length 1
8max�(8+1) . By the pidgeon hole principle, at

least one of these paths must exhibit at least a 1/1 fraction of the skew between
{ and |, i.e., there are {

0
, |
0 2 + with dist({0, |0) = 1

8max�(8+1) = dist({, |)/1
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so that

!
(E (8) )
{
0 (C8+1) � !

(E (8) )
|
0 (C8+1)

� !
(E (8) )
{

(C8+1) � !
(E (8) )
|

(C8+1)
1

pidgeon hole

� !
(E (8) )
{

(C8) � !
(E (8) )
|

(C8) � `(C8+1 � C8)
1

(8.3)

=
!
(E (8) )
{

(C8) � !
(E (8) )
|

(C8) � `(3 + (D/(2(o � 1)) � 3) dist({0, |0))
1

by definition

� !
(E (8) )
{

(C8) � !
(E (8) )
|

(C8) � `D dist({0, |0)/(2(o � 1))
1

dist({0, |0) � 1

� !
(E (8) )
{

(C8) � !
(E (8) )
|

(C8)
1

� `

2f(o � 1) ·
D

2
· dist({0, |0) 1 = d2fe

=
!
(E (8) )
{

(C8) � !
(E (8) )
|

(C8)
1

� D

4
· dist({0, |0) f = `/(o � 1)

� (8 + 2) (D/4 � (o � 1)3) dist({, |)
1

� D

4
· dist({0, |0) induction hyp.

=
⇣
(8 + 2)

⇣
D

4
� (o � 1)3

⌘
� D

4

⌘
dist({0, |0). dist({0, |0) =

dist({, |)/1
(8.4)

In other words, as the average skew on a shortest path from { to | did not
decrease by more than D/4, there must be a subpath of length dist({, |)/1 with
at least the same average skew. Now we sneak in additional skew by advancing
the (hardware and thus also logical) clock of {

0 using the indistinguishable
execution E{

0 . By an analogous derivation to that of (8.2), we get that

!
(E{ )
{
0 (C8+1) � !

(E{ )
|
0 (C8+1)

� !
(E (8) )
{
0 (C8+1) +

⇣
D

2
� (o � 1)3

⌘
dist({0, |0) � !

(E (8) )
|
0 (C8+1) anal. to (8.2)

� (8 + 3)
⇣
D

4
� (o � 1)3

⌘
dist({0, |0). (8.4)

This completes the induction. Plugging in 8 = 8max and noting that log 1 =
logd2fe  1 + logdfe, we get an execution in which two nodes at distance
1

0 = 1 exhibit a skew of at least

(8max + 2)
⇣
D

4
� (o � 1)3

⌘
�

⇣
D

4
� (o � 1)3

⌘
(1 + log

1
⇡) 8max =

blog1 ⇡c
�

⇣
D

4
� (o � 1)3

⌘
log dfe ⇡ . ⇤

• It is somewhat “bad form” to adapt Lemma ?? on the fly, as we did in the
proof. However, the alternative of carefully defining partial executions, how
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to stitch them together, and proving indistinguishability results in this setting
would mean to crack a nut with a sledgehammer.

• By making the base of the logarithm larger (i.e., making paths shorter more
quickly), we can reduce the “loss” of skew in each step. Thus, we get a skew
of D/2 � (o � 1)3 � Y per iteration, at the cost of reducing the number of
iterations by a factor of logf/(logf � log Y�1). As typically f � 1, this
means that we gain roughly a factor of 2.

• We can gain another factor of 2 by introducing skew more carefully. If we
construct E1 so that messages “in direction of |” have delay (roughly) 3 � D
and messages “in direction of {” have delay 3, we can hide D skew per hop.
We favored the simpler construction to avoid additional bookkeeping.

• Overall, if (o � 1)3 ⌧ D, f � 1, and log
f
⇡ � 1, we can show a lower

bound of (D � Y) log
f
⇡ for some small Y > 0.

• What if (o � 1)3 is comparable to D or even larger? As for a lower bound
construction we can always pretend that clock drifts are actually smaller,
e.g., o0 B min{o, 1 + D/(43)}, the lower bound does not get weaker if the
hardware clocks get worse. On the other hand, we will see that larger o is not
really an issue (up to a “one-time” additive term of $ ((o � 1)3)), as we can
then bounce messages back and forth between nodes to keep track of time
with greater accuracy than the “base clocks” permit.

8.3 Constant Local Skew with Halting Clocks

From Theorem 8.3, we know that we cannot concurrently have

• 3!{
3C

(C) � 3�{
3C

(C) for all { and C,
• 3!{

3C
(C)  (1 + `) 3�{

3C
(C) for all { and C, and

• L  5 (3, D, `, o) for some function 5 , i.e., a local skew that does not depend
on the network size.

In the next sections, we will address these points one by one.
In this section, we start with the first point. It entails that all logical clocks

increase at rate at least 1 at all times. We now show how the other two
requirements can be satisfied, by relaxing the first one to amortized 1-progress
(see Definition 7.10, i.e., we demand that for each execution there is some
⇠ 2 R�0 such that for all C 0 � C and all { 2 + it holds that

!{ (C 0) � !{ (C) � C
0 � C � ⇠ .

In order to prove this claim, we analyze Algorithm 6, which can be viewed
as a TMP version of Algorithm 2 that maintains logical clocks. First, we prove
amortized 1-progress.
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Algorithm 6 This clock synchronization algorithm can be viewed as a TMP
variant of Algorithm 2; replacing the “tick” messages by the messages of some
synchronous algorithm (labeled by round number), this algorithm could be
simulated.

1: if C = 0 (i.e., { just woke up) then
2: ✓  0 ù initialize !{ (0) to 0
3: ⌘ getH()
4: A  1 ù logical clock is initially running
5: for each ? 2 {1, . . . , deg({) do
6: �����?  0
7: send “tick” to ?

8: end for
9: end if

10: if A = 1 and getH() � ⌘ = 3 then
11: ✓  ✓ + 3 ù memorize progress
12: ⌘ getH()
13: for ? 2 {1, . . . , deg({)} do
14: send “tick” on ? ù inform neighbors on progress
15: �����?  �����? � 1 ù consume neighbors’ ticks
16: if �����? = �1 then ù made 3 progress since last tick on ?

17: A  0 ù stop clock until tick on ? arrives
18: end if
19: end for
20: end if
21: if received “tick” on port ? then
22: �����?  �����? + 1
23: if A = 0 and �����@ � 0 for all @ 2 {1, . . . , deg({) then
24: ⌘ getH()
25: A  1 ù restart clock
26: end if
27: end if
28: procedure getL() ù returns !{ (C)
29: if A = 1 then
30: return ✓ + getH() � ⌘ ù logical clock increases at rate 3�{

3C

31: else
32: return ✓ ù logical clock is halted
33: end if
34: end procedure
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Lemma 8.4. In graphs of diameter ⇡, Algorithm 6 satisfies amortized 1-
progress with ⇠ = 0.

E8.1 Prove the lemma. Hint: Review the proof of Theorem 6.18 and recall that we
assume that all nodes wake up at time 0.

Lemma 8.5. Algorithm 6 satisfies for each { 2 + that !{ is continuous and
that 3!{

3C
(C)  3�{

3C
(C) at all times C when A{ does not change.

E8.2 Prove the lemma.

Lemma 8.6. Algorithm 6 satisfies L  max{3, oD}.

Proof. Fix neighbors {, | 2 + and a time C. W.l.o.g., assume that !{ (C) �
!| (C) (otherwise, flip { and |). Let 8 be the number of tick messages { has
sent by time C, and 9 the number of tick messages from | it has received. By a
simple induction, we have that 9 � 8 � 1 (for every “tick” after its first, { waits
for a “tick” from |), (8 � 1)3  !{ (C)  83, and !| (C) � ( 9 � 1)3 (| must
reach this clock value to send 9 “tick” messages). If 9 � 8 or 8 = 1, we have
that !{ (C) � !| (C)  3.

Thus, it remains to consider the case that 9 = 8 � 1 for 8 � 2. Denonte by CA

the time when { received the 9-th “tick” message from | and by CB the time it
was sent. Observe that !| (CB) = ( 9 � 1)3 and !{ (CA )  (8 � 3). Because |

sets A to 1 when sending the message and does not set A back to 0 before 3 time
has passed on its hardware clock, we have that

!| (C) � !| (CB) + min{3,�| (C) � �| (CB)}Line 30

= ( 9 � 1)3 + min{3,�| (C) � �| (CB)}
= (8 � 2)3 + min{3,�| (C) � �| (CB)}9 = 8 � 1

� (8 � 2)3 + min{3, C � CB}3�|
3C � 1 (8.5)
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If C � CB � 3, we again get that !| (C) � (8 � 1)3 and hence !{ (C) � !| (C)  3,
so assume that C � CB < 3. Then

!{ (C) � !| (C) = !{ (CA ) + !{ (C) � !{ (CA ) � !| (C) adding 0

 (8 � 1)3 + !{ (C) � !{ (CA ) � !| (C)
 (8 � 1)3 + �{ (C) � �{ (CA ) � !| (C) Lemma 8.5

 (8 � 1)3 + o(C � CA ) � !| (C) 3�{
3C  o

 3 + (o � 1) (C � CA ) � (CA � CB) C � CB < 3, (8.5)

 3 + (o � 1) (C � CB) � o(3 � D) CA � CB � 3 � D

< oD.
C � CB < 3⇤

Theorem 8.7. There is a clock synchronization algorithm achieving a local
skew of max{3, oD}, amortized 1-progress with ⇠ = 0, and 3!{

3C
(C)  3�{

3C
(C)

for all times C and nodes { 2 + .

Proof. Follows from Lemmas 8.4 to 8.6. ⇤

E8.3 Show that a node may stop its logical clock (i.e., continuously have A{ = 0) for
D⇡ time. Hint: Maximize the global skew while all message delays are D � 3.
Then have a chain of messages starting at the node that is most behind all have
delay 3.

E8.4 Show that this is the worst case, i.e., no node halts its logical clock for more
than D⇡ time. Hint: Consider the time when some node halts its clock after
generating tick 8 and argue that nodes in distance A have generated their tick 8 � A
at the latest A (3 � D) time earlier. This requires to use that all nodes wake up at
time 0 (otherwise it holds only for su�ciently large times).

8.4 Lower Bound with Arbitrary Clock Rates

We will now show that clock rates 3!{
3C

(C) 2 l(log1/(o�1) ⇡) do not help. That
is, if (o � 1)3 < D/4, we have that L 2 ⌦(D log(log1/(o�1) ⇡)/(o�1) ⇡).

To this end, we need a technical lemma stating that, provided that we leave
some slack in terms of clock drifts and message delays, we can introduce ⌦(D)
hardware clock skew between any pair of neighbors in an indistinguishable
manner. As this follows from repetition of previous arguments, we skip the
proof.

Lemma 8.8. Let E be any execution in which hardware clock rates are at most
1 + (o � 1)/2 and message delays are in the range (3 � 3D/4, 3 � D/4). Then,
for any {{,|} 2 ⇢ and su�ciently large times C, there is an indistinguishable
execution E{ such that ! (E{ )

{
(C) = !

(E)
{

(C + D/4) and !
(E{ )
|

(C) = !
(E)
|

(C).
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Proof Sketch. The general idea is to use the remaining slack of D/2 to hide the
additional skew, and the slack in the clock rates to introduce it. We can do this
as slowly as needed, just as in the proof of Lemma ??. Again, we can choose
the clock rates according to the function 3 (G) defined in Lemma ??; as { and
| are neighbors here, it can only take on values of �1, 0, or 1. ⇤

This is all we need to generalize our lower bound to arbitrarily large logical
clock rates.

Theorem 8.9. Any clock synchronization algorithm satisfying that 3�{
3C

(C) 
3!{
3C

(C) for all nodes { and times C has

L = ⌦
⇣⇣
D

4
� (o � 1)3

⌘
log dfe ⇡

⌘

for f = log1/(o�1) ⇡)/(o � 1).

Proof. Set D0 B D/2, 3 0 B 3 � D/4, and o
0 B 1 + (o � 1)/2. We perform the

exact same construction as in Theorem 8.3, with three modifications. First, D,
3, and o are replaced by D0, 3 0, and o0. Second, before starting the construction,
we wait for su�ciently long so that Lemma 8.8 is applicable to all times when
we actually “work,” i.e., we let the algorithm run for the required time with
hardware clock rates of 1 and message delays of 3 0 � D0/2. Third, we assume
that ` = log1/(o�1) ⇡ in the construction, resulting in the base of the logarithm
being f

0 = 2`/(o�1) = ⇥(f); if we ever attempt to use this (assumed) bound
on the clock rates in an inequality and it does not hold, the construction fails.

Now two things can happen. The first is that the construction succeeds. Note
that we may assume that D0/4 > (o0 � 1)3 0, as otherwise D/4 < (o � 1)3, i.e.,
nothing is to show. Hence, the construction shows a lower bound of✓

D
0

4
� (o0 � 1)3 0

◆
log df0 e ⇡ =

✓
D

8
� (o � 1)3

2

◆
log d2fe ⇡

= ⌦
⇣⇣
D

4
� (o � 1)3

⌘
log dfe ⇡

⌘
,

i.e., the claim follows in this case.
On the other hand, if the construction fails, there is an index 8 < 8max for

which (8.3) does not hold—this is the only place where we make use of the fact
that logical clocks do not run faster than rate `. Thus,

!
(E (8) )
|

(C8+1) � !
(E (8) )
|

(C8) > `(C8+1 � C8)

for some 8 < 8max. Recall that in the construction, dist({,|) = 1
8max�8 � 1 and

C8+1 � C8 = 3 +
✓

D

2(o � 1) � 3

◆
dist({, |)

1

>

D

2(o � 1) � 3 >

D

4(o � 1) �
D

4
.
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Hence, there must be a time C � C8 so that

!
(E (8) )
|

⇣
C + D

4

⌘
� !

(E (8) )
|

(C) > `D

4
.

Let G be an arbitrary neighbor of |. By Lemma 8.8, we can construct an
execution E| so that

!
(E| )
|

(C) = !
(E (8) )
|

⇣
C + D

4

⌘
> !

(E (8) )
|

(C) + `D

4

and !
(E| )
G

(C) = !
(E (8) )
G

(C). Thus, in at least one of the executions, the local
skew exceeds
`D

8
=
D

8
log1/(o�1) ⇡ >

D

8
log

`/(o�1) ⇡ = ⌦
⇣⇣
D

4
� (o � 1)3

⌘
log dfe ⇡

⌘
. ⇤
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