
MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

7 Network Synchronization

Chapter Contents
7.1 Overview 26
7.2 The Timed Message Passing Model 29
7.3 The Max Algorithm 34
7.4 Lower Bound on the Global Skew 36
7.5 Refining the Max Algorithm 40
7.6 Afterthought: Stronger Lower Bound 43

Learning Goals
The main goal of this chapter is to introduce the timed message passing model
TMP, which is a more realistic middle ground between the extremes of SMP
and AMP from the previous chapter. In this model, we introduce the clock
synchronization problem, variants of which we will study intensively in later
chapters. Moreover, we consider the notion of crash faults, where nodes fail
“neatly” by stopping to execute their FSMs and sending messages. We show
how to adapt the simulation technique from the previous chapter to handle crash
faults in TMP, which is impossible in AMP.

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

26 Chapter 7 Network Synchronization

7.1 Overview

In Chapter 6, the SMP and AMP models were introduced. They represent
unrealistically optimistic and pessimistic extremes, respectively: SMP provides
such perfect guarantees on timing that time is abstracted to the point where
it is reduced to the round number, while AMP makes no assumptions on
how long any operation takes whatsoever. AMP has the advantage that it
puts comparatively little load on the designers of the system on which AMP
algorithms run. In contrast, SMP is much more convenient for the algorithm
designer, but ensuring that the system follows SMP can be highly challenging.

Chapter 6 presented a way of getting the best of both worlds. By simulating
SMP in AMP (cf. Theorem 6.18), the advantages of SMP are made available to
algorithm designers without putting the burden of directly implementing SMP
on hardware developers. The latter is crucial when solutions from earlier chap-
ters based on clock trees and PLLs become insufficient to maintain (the illusion
of) perfect synchrony. However, there are situations in which this technique
is insufficient. First, Theorem 6.18 provides no guarantees on relative timing
between events of the same round at different nodes. Even when imposing
bounds on delays, the resulting guarantees are weak: if the maximum delay is
one time unit, there can be up to 𝐷 time units between the times when different
nodes in the network execute the same round locally; here 𝐷 is the diameter of
the graph 𝐺, which is defined to be the maximum length of a shortest path in
𝐺. This may result in poor performance when the system needs to coordinate
actions in time, either internally or in relation to external events.

Second, even the most benign faults, nodes neatly “crashing” without sending
any spurious messages or us requiring for them to recover later, breaks the
simulation of SMP in AMP.

Definition 7.1 (Crash Faults). A network node 𝑣 ∈ 𝑉 crashes by stopping to
execute its algorithm, i.e., its FSM stops performing computations and sending
messages. Nodes might crash during an operation, such that only a subset of
the resulting messages are sent. In SMP, this means that if node 𝑣 crashes
in round 𝑟 ∈ N, it sends an arbitrary subset of the messages it would usually
send, and all other messages in this round and those sent in future rounds are
replaced by ⊥. Likewise, in AMP and TMP (see Section 7.2), if 𝑣 crashes when
processing an event, it sends an arbitrary subset of the messages its FSM would
send due to the event, and will not respond to any future events. Similarly, local
outputs may or not be generated when the node crashes, but not afterwards
(in SMP, we can represent this by the special output symbol ⊥). A node that
crashes during execution E is referred to as being faulty in E, while nodes that
are not faulty in E are deemed correct in E.

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

7.1 Overview 27

Theorem 7.4. Suppose for SMP algorithmA there are two executions in which
all local inputs are identical, but (due to a crash) a local output of some 𝑣 ∈ 𝑉
is different in the two executions. Then A cannot be simulated by an AMP
algorithm.

The timed message passing model, TMP, overcomes the above impossibility
by adding minimal assumptions on timing to the AMP model. First, we require
a known upper bound 𝑑 on the maximum end-to-end delay; this is different
from AMP, where we introduced such a bound to compare the performance
of algorithms, but required the algorithm to work correctly regardless of how
large delays become. Unfortunately, this, by itself, is of no use to algorithms,
so long nodes cannot measure time. This motivates the second assumption,
which is that each node is equipped with its own hardware clock. This clock
is not perfectly accurate, but progresses at a rate between 1 and 𝜗 > 1. Nodes
are capable of reading their local clocks, which allows them to trigger a local
event when their clock proves that 2𝑑 time has passed after an event (i.e., 2𝜗𝑑
time according to their local clock elapsed).

For example, node 𝑣 ∈ 𝑉 can exploit this to send a query to a neighbor 𝑤
determining whether it crashed—if 𝑤 does not respond with an “I’m alive”
message before the above (local!) timeout has passed, the querying node can
infer that 𝑤 must have crashed. This simple failure detector allows us to modify
the simulation of SMP in AMP from Theorem 6.18 to also work in TMP with
crash faults. As detecting a fault takes 𝑂 (𝑑) time and the simulation is held up
until the problem is noticed, the time complexity of the simulation increases
by 𝑂 (𝑑𝑓) when facing 𝑓 faults.

Theorem 7.5. Given any algorithm B in SMP with crash faults, there is an
algorithm A that simulates B in TMP with crash faults, in the sense that
Definition 6.17 is satisfied and the same set of nodes are faulty. Simulation
of the first 𝑇 rounds of B is complete by time (𝑡0 + 𝑇 + 𝑂 (𝑓))𝑑 in executions
where all nodes 𝑣 ∈ 𝑉 have woken up by time 𝑡0𝑑, for all 𝑖 ∈ N>0 the event of
𝑣 receiving 𝛾B

𝑣,𝑖
happens by time (𝑡0 + 𝑖)𝑑, and there are at most 𝑓 faults. In

graphs that have diameter 𝐷 after removing all faulty nodes, this implies that
the first 𝑇 rounds of B are simulated by time (𝐷 + 𝑇 +𝑂 (𝑓))𝑑.

Coming back to the first issue, in this chapter we study the task of clock
synchronization, in which the goal is to maintain at each node a logical clock
that is well-synchronized to the logical clocks of other nodes.

Definition 7.2 (Clock Synchronization). The clock synchronization problem
requires each node 𝑣 ∈ 𝑉 to provide a subroutine getL() for querying its logical
clock 𝐿𝑣 : R+0 → R

+
0 , i.e., 𝐿𝑣 (𝑡) is defined to be the result of getL() called at

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

28 Chapter 7 Network Synchronization

time 𝑡 (after all operations of a possible event at time 𝑡 have been completed).
The goal is to minimize the global skew

G B sup
𝑡 ∈R+0
{G(𝑡)},

over all executions E, where

G(𝑡) B max
𝑣,𝑤∈𝑉

{|𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) |} = max
𝑣∈𝑉
{𝐿𝑣 (𝑡)} −min

𝑣∈𝑉
{𝐿𝑣 (𝑡)}

is the global skew at time 𝑡. The suprema and maxima above are also taken
over all possible executions.

We first tackle this task by a simple algorithm. Node 𝑣 ∈ 𝑉 increase its
logical clock 𝐿𝑣 at the speed 𝑑𝐻

𝑑𝑡
of its hardware clock 𝐻𝑣 . To maintain

synchronization, it will communicate when its logical clock reaches a threshold
of 𝑘𝑇 for 𝑘 ∈ N>0 and a parameter 𝑇 , and set its logical clock to any received
value that exceeds its current logical clock value. We show that this algorithm
achieves the following skew bound.

Theorem 7.7. Set 𝐻 B max𝑣∈𝑉 {𝐻𝑣 (0)}−min𝑣∈𝑉 {𝐻𝑣 (0)}. Then Algorithm 3
achieves

G ≤ max{𝐻, 𝑑𝐷} + (𝜗 − 1) (𝑑𝐷 + 𝑇).

We then show that a worst-case clock skew of Ω(𝑢𝐷) is unavoidable if end-
to-end delays are between 𝑑 − 𝑢 and 𝑑, and clocks are required to increase at
an amortized constant rate.

Definition 7.9. [Amortized Minimum Progress] For 𝛼 ∈ R+, an algorithm
satisfies the amortized 𝛼-progress condition, if there is some 𝐶 ∈ R+0 such that
min𝑣∈𝑉 {𝐿𝑣 (𝑡)} ≥ 𝛼𝑡 − 𝐶 for all 𝑡 ∈ R+0 and all executions.

Note that one might choose 𝑢 = 𝑑, leading to a lower bound of Ω(𝑑𝐷). This
is a refinement of the model taking into account that the system might provide
more accurate guarantees on end-to-end delays than just an upper bound. The
amortized progress condition, which stipulates that clocks actually increase, is
simply necessary to enforce non-trivial solutions to the clock synchronization
problem; otherwise, all nodes could return 0 as response to getL() at all times.

Theorem 7.11. If an algorithm satisfies the amortized 𝛼-progress condition
for some 𝛼 ∈ R+, then G ≥ 𝛼𝑢𝐷

2 , even if we are guaranteed that 𝐻𝑣 (0) = 0 for
all 𝑣 ∈ 𝑉 .

Neglecting implementation issues, 𝑇 can be chosen arbitrarily small. Hence,
for the sake of comparing the upper and lower bounds, let us pretend that𝑇 = 0.

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

7.2 The Timed Message Passing Model 29

An unsatisfying gap of (𝑑 − 𝑢/2)𝐷 + (𝜗 − 1)𝑑𝐷 remains. Usually, 𝑢 � 𝑑,
i.e., the uncertainty about message transit and processing times can be kept
much smaller than the end-to-end delay. We modify the algorithm giving rise
to Theorem 7.7 to account for the fact that we know that the minimum time a
message is under way is 𝑑 − 𝑢, by adding this difference to any received value.
We end up with the following improved upper bound.

Theorem 7.14. Set 𝐻 B max𝑣∈𝑉 {𝐻𝑣 (0)} − min𝑣∈𝑉 {𝐻𝑣 (0)}. Then Algo-
rithm 4 achieves

G ≤ max{𝐻, 𝑢𝐷} + (𝜗 − 1) (𝑑 + 𝑇)𝐷.

This reduces the gap to 𝑢𝐷/2 + (𝜗 − 1)𝑑𝐷 (still pretending that 𝑇 = 0). The
first part can be explained by noting that our algorithms satisfy the more strict
progress condition that min𝑤∈𝑉 {𝐻𝑤 (𝑡)} ≤ 𝐿𝑣 (𝑡) ≤ max𝑤∈𝑉 {𝐻𝑤 (𝑡)} for each
𝑣 ∈ 𝑉 . For this natural strong envelope condition, a stronger lower bound of
𝑢𝐷 holds.

Theorem 7.16. For any algorithm satisfying the strong envelope condition, it
holds that G ≥ 𝑢𝐷, even if we are guaranteed that 𝐻𝑣 (0) = 0 for all 𝑣 ∈ 𝑉 .

This leaves us with the so far unexplained term of (𝜗 − 1)𝑑𝐷, which is due
to nodes’ clocks drifting apart during the up to 𝑑𝐷 time message propagation
between nodes in distance 𝐷 might take. However, if this term dominates, this
entails that (𝜗 − 1)𝑑 > 𝑢. In this case, we are better off by relying on messages
to compute more accurate “hardware” clocks!

E7.1 Show that, up to an additive error of 𝑂 ((𝜗 − 1)𝑑), a node can generate a local
clock with rates from [1, 1 + 𝑢/(𝑑 − 𝑢)] by playing “message ping pong” with a
neighbor.

Corollary 7.3. Set 𝐻 B max𝑣∈𝑉 {𝐻𝑣 (0)} −min𝑣∈𝑉 {𝐻𝑣 (0)} and assume that
𝑢 ≤ 𝑑/2. For any 𝜀 > 0, there is an algorithm that achieves

G ≤ max{𝐻, 𝑢𝐷} + (2𝑢 + 𝜀)𝐷 +𝑂 ((𝜗 − 1)𝑑).

While this admittedly again leaves a constant factor gap to the lower bound,
we can see that the obstacle is the quality of the hardware clocks. As typically
𝑢 � (𝜗 − 1)𝑑, the above results provide a fairly detailed picture of how well
the clock synchronization problem can be solved.

7.2 The Timed Message Passing Model

In the timed message passing model TMP, each node 𝑣 is equipped with a
hardware clock, denoted 𝐻𝑣 . The goal of clock synchronization is for each node

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

30 Chapter 7 Network Synchronization

to compute a logical clock, denoted 𝐿𝑣 , such that all logical clocks remain as
closely synchronized as possible. The challenge arises from TMP—in contrast
to SMP—modeling inherent timing uncertainty in the system. Specifically, the
model has two forms of uncertainty: uncertainty in the hardware clock rate,
called clock drift, and uncertainty in the transit times of messages between
nodes.

There are several possible ways of augmenting the AMP model in order to
provide the node’s FSM with access to its hardware clock, for example:
• add a port presenting the current hardware clock value to the FSM on each

event
• model the hardware clock as a separate state machine that is queried by the

node (possibly with some delay and/or inaccuracy in responses)
• provide the FSM with the ability to start timeouts (via local outputs), where

a timeout of duration 𝑇 being started results in an expiration event between
𝑇/𝜗 and 𝑇 time later

Each of these choices has different advantages and disadvantages.
The first choice provides the most power to the algorithm, but is typically

furthest from (an efficient) implementation. This is made worse, as for analysis
purposes we will model 𝐻𝑣 as a continuous, strictly increasing, real-valued
function, but digital logic operates with discrete values. This entails that
any physical implementation must involve some form of discretization error—
either because the clock is only accessed at discrete times or its readings are
themselves discretized—as well as modulo operation.

The second choice allows for a more realistic modeling, but doing so would
complicate the model by introducing further variability and parameters. This,
in turn, makes it more cumbersome when analyzing algorithms.

Lastly, timeouts make explicit what the algorithm is keeping track of and
map to implementations in a fairly intuitive manner. However, they can result
in fairly unintuive descriptions of some algorithms.

Regardless of the option picked, good implementations involve careful design
and low-level analysis of the components that are critical for timing. Reflecting
this in the model in detail gets in the way of proving correctness and guarantees
of the higher-level algorithms that are introduced in this and later chapters. The
most suitable compromise is absorb these details in the uncertainty parameters
of the TMP model, i.e., uncertainty in message transit times and clock drift.
When implementing an algorithm, one then optimizes the hardware implemen-
tation of individual nodes and communication links to emulate the abstract
behavior assumed by the TMP model in a way minimizing its uncertainty
parameters.

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

7.2 The Timed Message Passing Model 31

In line with this reasoning, we will not fix in the TMP model how algorithms
are mapped to FSMs, opting for a more abstract description. In pseudocode,
nodes will make use of hardware clock readings by calling getH(), which returns
𝐻𝑣 (𝑡) when called at time 𝑡. In later chapters, we will also make use of timeouts.
This comes with the understanding that additional work is necessary to derive
suitable hardware implementations. Nonetheless, it is instructive to think of
TMP as “AMP with additional timing constraints.” For every execution, we
assume that there is an objective “true” Newtonian time taking values in R+0 .
We will typically denote objective times by the variables 𝑡 or 𝑡 ′, referring to
them simply as “time 𝑡” or “time 𝑡 ′,” respectively. Objective time allows us to
define (and reason about) the global state of the system at any given instant, but
the objective time is never known to any node.

For each node 𝑣 ∈ 𝑉 , we model 𝑣’s hardware clock as a strictly increasing
function 𝐻𝑣 : R+0 → R

+
0 . We assume that 𝐻𝑣 increases at a rate between 1 and

𝜗 > 1:

∀𝑣 ∈ 𝑉, 𝑡, 𝑡 ′ ∈ R+0 , 𝑡 ≥ 𝑡 ′ : 𝑡 − 𝑡 ′ ≤ 𝐻𝑣 (𝑡) − 𝐻𝑣 (𝑡 ′) ≤ 𝜗(𝑡 − 𝑡 ′), (7.1)

where 𝑡, 𝑡 ′ ∈ R+0 denote objective times. For simplicity, we assume that hard-
ware clocks are differentiable and denote the derivative by 𝑑𝐻𝑣

𝑑𝑡
.6 We call 𝐻𝑣 (𝑡)

the local time and 𝑑𝐻𝑣

𝑑𝑡
(𝑡) the (instantaneous) hardware clock rate of 𝑣 at objec-

tive time 𝑡. Observe that Equation (7.1) implies that 𝑑𝐿𝑣

𝑑𝑡
(𝑡) ∈ [1, 𝜗] at all times

𝑡. The parameter 𝜗—an upper bound on the rates of all hardware clocks—is
known to the algorithm designer, however nodes have no way of learning the
values of 𝑑𝐻𝑣

𝑑𝑡
(𝑡) directly. Thus any possible (differentiable) hardware clock

values 𝐻𝑣 satisfying (7.1) are admissible, and a good clock synchronization
algorithm should maintain synchronization for all possible 𝐻𝑣 without knowl-
edge of the rates 𝑑𝐻𝑣

𝑑𝑡
beyond what is implied by (7.1). We note that even if

the hardware clocks of nodes 𝑣 and 𝑤 would be initially perfectly synchronized
(i.e., 𝐻𝑣 (0) = 𝐻𝑤 (0)), over time they could drift apart at a rate of up to 𝜗 − 1.
Accordingly, we refer to 𝜗 − 1 as the maximum drift, or, in short, drift.7

In order to establish or maintain synchronization, nodes need to communicate
with each other. To this end, on any edge {𝑣, 𝑤}, 𝑣 can send messages to 𝑤

(and vice versa). However, it is not known how long it will take for 𝑣’s message

6 All of the claims we make can be derived from (7.1) without the assumption of differentiability,
but this assumption simplifies our analysis.
7 A cheap quartz oscillator has a drift of 𝜗 − 1 ≈ 10−5, which will be more than accurate enough
for running most algorithms discussed in this book. In some cases, however, one might only want
to use basic digital ring oscillators (an odd number of inverters arranged in a cycle), for which
𝜗 − 1 ≈ 10% is not unusual.

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

32 Chapter 7 Network Synchronization

to be delivered to 𝑤. A message sent at objective time 𝑡 is received at a time
𝑡 ′ ∈ (𝑡 + 𝑑 − 𝑢, 𝑡 + 𝑑), where 𝑑 is the (maximum end-to-end) delay and 𝑢 is the
(delay) uncertainty. The delay 𝑑 subsumes delays due to local computations,
etc. That is, in our model, at the time 𝑡 ′when the message is received, all updates
to the state of the receiving node take effect immediately, and messages it sends
in response are also sent immediately.

An event consists of (1) a node starting execution of the algorithm (at the latest
when receiving its first message), (2) a node sending or receiving a message, (3)
a node’s hardware clock reaching some prescribed value (possibly determined
in response to a previous event), or (4) a node receiving a local input. Every
event 𝑒 seen by a node 𝑣 has both an associated objective time 𝑡𝑒 when the event
occurs, and an associated local time 𝐻𝑣 (𝑡𝑒) when 𝑣 witnesses the event.

Regardless of how we choose to implement an algorithm, this entails that the
state of a node at time 𝑡 is a function of the history of events witnessed by 𝑣 up
to time 𝑡 along with the associated local (i.e., hardware clock) times at which 𝑣

witnessed the events, as well as the current hardware time 𝐻𝑣 (𝑡). Informally,
an algorithm specifies when and how a node responds to each event it sees,
given its current state when the event occurs. We assume that an algorithm
produces (and hence witnesses) a finite number of events in every bounded
interval of time, but we do not make any other assumptions about nodes’ local
computations. This being said, an algorithm designer is well-advised to keep in
mind what is practical to implement; processing messages at a high frequency
might be challenging or even impossible, and is likely to affect 𝑑 or 𝑢.

An execution of an algorithm on a system specifies hardware clock functions
𝐻𝑣 as above for each 𝑣 ∈ 𝑉 , and assigns to each event 𝑒 an objective time
𝑡𝑒 at which the event occurs. In particular, a message sent by 𝑣 at objective
time 𝑡 must be received at time 𝑡 ′ ∈ [𝑡 + 𝑑 − 𝑢, 𝑡 + 𝑑]. Since an algorithm
only produces finitely many events in any bounded interval of time, there is
an increasing sequence of times 𝑡1 < 𝑡2 < 𝑡3 < · · · at which some event(s)
occur (at any node). Further, the state of the system at these times is defined
inductively: given the execution and states of nodes at time 𝑡𝑖 for 𝑖 ≥ 1, one
can determine the time 𝑡𝑖+1 at which the next event(s) occur, as well as the state
of the system at this time.

As mentioned in Definition 7.1, we model crash faults by the failing node
stopping to respond to events. If the node crashes while processing an event, it
sends an arbitrary subset of the messages (which might be none) it would send
if it stayed operational.

We stress that this fault model is very optimistic, in that a crashing node
is required to ensure that it halts without sending out any ambiguous signals.

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

7.2 The Timed Message Passing Model 33

Error detection techniques for sanitizing communication can help in making this
assumption more realistic, but are cumbersome at best in low-level hardware
implementations. Therefore, we caution to view the results on crash faults in
this and subsequent chapters mainly as an indication of the capabilities and
limitations of the presented techniques. In later chapters, we will see that TMP
allows us to handle much more general fault types, showing that it is also a
practical model for designing fault-tolerant algorithms.

7.2.1 Simulating SMP with Crash Faults
As a proof of concept for TMP, we can now show that in AMP, we cannot
simulate SMP with crash faults, but in TMP we can.

Intuitively, in the AMP model one should not expect to be able to handle
crashes, since there is no way to distinguish between a node that has crashed
and one that is just very slow to respond. This means that a simulation algorithm
for SMP cannot commit to an output that depends on the content of a message
that might be sent if a node has not crashed; it must wait forever to see whether
the message might yet arrive.

Theorem 7.4. Suppose for SMP algorithmA there are two executions in which
all local inputs are identical, but (due to a crash) a local output of some 𝑣 ∈ 𝑉
is different in the two executions. Then A cannot be simulated by an AMP
algorithm.

In the SMP model, nodes can easily detect a crash of a neighboring node
if an expected message is not received. In fact, one could always require that
messages are sent, meaning that crashes are always detected by all neighbors
either in the round they occur or one round later. Algorithms in the SMP model
then can be designed to respond to crashes in a suitable manner. In order to
simulate such an algorithm, the simulation thus must also be able to detect
crashes.

In TMP, we can make use of the timing guarantees to detect crashes. While
this is not as trivial as in the SMP model, the idea is the same: observe that an
expected message does not arrive in time. To this end, we “wrap” each link into
a lower level state machine that collects messages from the link and forwards
them to the port of the high level state machine responsible for the simulation.
Each link state machine notifies the other endpoint of the link that the node has
not crashed (yet) by sending an “empty” message (distinct from the algorithm’s
messages) every 𝑑 time. Simultaneously, it keeps track of when the most recent
message arrived from the other end. If no message arrives within 2𝑑 time, it
determines that the other end crashed and notifies the high level state machine

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

34 Chapter 7 Network Synchronization

of the crash (again indicated by a symbol distinct from the messages of the
simulation algorithm).

Notice that in order to ensure that indeed 2𝑑 time passed, due to the uncer-
tainty in the hardware clock rate, the lower level state machine must wait for
2𝜗𝑑 local time before declaring the other endpoint of the link crashed.

Theorem 7.5. Given any algorithm B in SMP with crash faults, there is an
algorithm A that simulates B in TMP with crash faults, in the sense that
Definition 6.17 is satisfied and the same set of nodes are faulty. Simulation
of the first 𝑇 rounds of B is complete by time (𝑡0 + 𝑇 + 𝑂 (𝑓))𝑑 in executions
where all nodes 𝑣 ∈ 𝑉 have woken up by time 𝑡0𝑑, for all 𝑖 ∈ N>0 the event of
𝑣 receiving 𝛾B

𝑣,𝑖
happens by time (𝑡0 + 𝑖)𝑑, and there are at most 𝑓 faults. In

graphs that have diameter 𝐷 after removing all faulty nodes, this implies that
the first 𝑇 rounds of B are simulated by time (𝐷 + 𝑇 +𝑂 (𝑓))𝑑.

E7.2 Show that the additional assumptions made for TMP are minimal to overcome the
impossibility shown in Theorem 7.4, i.e., if one discards either the assumption of
hardware clocks or bounded message delays, the theorem applies again.

7.3 The Max Algorithm

We now move on to solving the clock synchronization problem from Defini-
tion 7.2, proving Theorem 7.7. In the following, we simplify the presentation
by making an unrealistic simplification: all nodes wake up at time 0. This is
of course highly impractical, as it would require perfect synchronization—and
we just set out to solve this problem! However, the details of how nodes wake
up are of no great importance, as any real system can simply wait for, say, a
microsecond when booting, until the logical clocks have settled to guaranteeing
a skew bound that is not affected by the initilialization conditions.

Moreover, in the following 𝐷 denotes the diameter of the network graph after
removing all faulty nodes. Thus, any two correct nodes are connected by a path
of at most length 𝐷 that does not contain any faulty nodes. Note that if the
graph becomes disconnected by crashes, we cannot maintain synchronization
between the different connected components any more. In this case, 𝐷 = ∞ and
the stated skew bound becomes ∞, too.8 Moreover, nodes have no knowledge
of 𝐷 and the algorithm makes no use of it; it only appears in skew bounds.
Hence, w.l.o.g. we assume that 𝐷 < ∞ in the following.

8 However, Theorem 7.7 still applies to each connectivity component when we replace 𝐷 with the
diameter of the component.

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

7.3 The Max Algorithm 35

The algorithm is straightforward: nodes initialize their logical clocks to their
initial hardware clock value, increase it at the rate of the hardware clock, and
set it to the largest value they can be sure that some other node has reached. To
make the latter useful, each node broadcasts its clock value (i.e., sends it to all
neighbors) whenever it reaches an integer multiple of some parameter 𝑇 . See
Algorithm 3 for the pseudocode.

Algorithm 3 Basic Max Algorithm. Parameter𝑇 ∈ R+ controls how frequently
messages are sent. The code lists the actions of node 𝑣 at time 𝑡 and provides
getL().

1: if 𝑡 = 0 (i.e., 𝑣 just woke up) then
2: ℎ← getH()
3: ℓ ← ℎ ⊲ initialize 𝐿𝑣 (0) to 𝐻𝑣 (0)
4: end if
5: if received 〈ℓ′〉 at time 𝑡 and ℓ′ > getL() then
6: ℎ← getH()
7: ℓ ← ℓ′ ⊲ increase logical clock to received value
8: end if
9: if getL() = 𝑘𝑇 for some 𝑘 ∈ N then

10: send 〈𝑘𝑇〉 to all neighbors
11: end if
12: procedure getL() ⊲ returns 𝐿𝑣 (𝑡)
13: return ℓ + getH() − ℎ ⊲ logical clock increases at rate 𝑑𝐻𝑣

𝑑𝑡

14: end procedure

Lemma 7.6. In a system executing Algorithm 3, it holds that

G(𝑡) ≤ 𝜗𝑑𝐷 + (𝜗 − 1)𝑇 ;

for all 𝑡 ≥ 𝑑𝐷 + 𝑇 , where 𝐷 is the maximal diameter of 𝐺 by time 𝑡.

Proof. For any time 𝑡, let 𝐿max (𝑡) = max𝑤∈𝑉 {𝐿𝑤 (𝑡)} be the maximum logical
clock value in the system at time 𝑡. Observe that any node 𝑣 satisfying 𝐿𝑣 (𝑡) =
𝐿max (𝑡) cannot satisfy the condition in Line 5. Therefore, 𝐿max (𝑡) increases at
a rate of at most 𝜗 (the maximum rate of any hardware clock), so that

𝐿max (𝑡 ′) ≤ 𝐿max (𝑡) + 𝜗 · (𝑡 ′ − 𝑡) for all 𝑡 ′ > 𝑡. (7.2)

Fix a time 𝑡 ′ ≥ 𝑑𝐷 + 𝑇 , and let 𝑣 be the node with the maximum logical clock
value at time 𝑠 B 𝑡 ′ − 𝑑𝐷 − 𝑇 . That is, 𝐿𝑣 (𝑠) = 𝐿max (𝑠). Applying (7.2), we

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

36 Chapter 7 Network Synchronization

find that

𝐿max (𝑡 ′) ≤ 𝐿max (𝑠) + 𝜗 · (𝑡 ′ − 𝑠) = 𝐿max (𝑠) + 𝜗 · (𝑑𝐷 − 𝑇). (7.3)

To finish the proof, it suffices to show that at time 𝑡 ′, all nodes 𝑤 ∈ 𝑉 satisfy
𝐿𝑤 (𝑡 ′) ≥ 𝐿max (𝑠). To this end observe that 𝑣’s logical clock increases at a rate
of at least 1, so there exists a time 𝑠′ ∈ [𝑠, 𝑠+𝑇] such that 𝐿𝑣 (𝑠′) = 𝑘𝑇 ≥ 𝐿𝑣 (𝑠)
for some integer 𝑘 ∈ N.9 At time 𝑠′, 𝑣 sends the message 〈𝑘𝑇〉 to all of
its neighbors in accordance with line 10. This message is received by all
of 𝑣’s neighbors by time 𝑠′ + 𝑑, hence by time 𝑠′ + 𝑑, all of 𝑣’s neighbors’
logical clocks are at least 𝐿max (𝑠′) ≥ 𝐿max (𝑠). Continuing in this way, a
straightforward induction argument shows that for all ℓ ∈ N and all nodes 𝑤

within distance ℓ from 𝑣 will satisfy 𝐿𝑤 (𝑠′ + ℓ · 𝑑) ≥ 𝐿max (𝑠). In particular,
taking ℓ = 𝐷 (the network diameter), we find that for all 𝑤 ∈ 𝑉

𝐿max (𝑠) ≤ 𝐿max (𝑠′) ≤ 𝐿𝑤 (𝑠′ + 𝐷 · 𝑑) ≤ 𝐿𝑤 (𝑡 ′);

which implies the desired result. �

Theorem 7.7. Set 𝐻 B max𝑣∈𝑉 {𝐻𝑣 (0)}−min𝑣∈𝑉 {𝐻𝑣 (0)}. Then Algorithm 3
achieves

G ≤ max{𝐻, 𝑑𝐷} + (𝜗 − 1) (𝑑𝐷 + 𝑇).

Proof. Consider 𝑡 ∈ R+0 . If 𝑡 ≥ 𝑑𝐷 + 𝑇 , then G(𝑡) ≤ 𝜗𝑑𝐷 + (𝜗 − 1)𝑇 by
Lemma 7.6. If 𝑡 < 𝑑𝐷 + 𝑇 , then for any 𝑣, 𝑤 ∈ 𝑉 we have that

𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) ≤ 𝐿𝑣 (0) − 𝐿𝑤 (0) + (𝜗 − 1)𝑡 ≤ 𝐻 + (𝜗 − 1) (𝑑𝐷 + 𝑇). �

7.4 Lower Bound on the Global Skew

To argue that we performed well, we need to show that we could not have
done (much) better (in the worst case). To this end, we will use the shifting
technique, which enables to “hide” skew from the nodes. That is, we construct
two executions that look completely identical from the perspective of all nodes,
but different hardware clock values are reached at different times. No matter
how the algorithm assigns logical clock values, in one of the executions the
skew must be large – provided that nodes do increase their clocks at least at the
rate of slowest hardware clock among all nodes. First, we need to state what it
means that two executions are indistinguishable at a node.

9 It could be the case that 𝐿𝑣 reaches 𝑘𝑇 because 𝑣 received a message from some other node 𝑣′

that overtook 𝑣 as the fastest node in the network. However, our argument only relies on the fact
that 𝐿𝑣 reaches an integer multiple 𝑘𝑇 ≥ 𝐿𝑣 (𝑠) at some time in the interval [𝑠, 𝑠 +𝑇].

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

7.4 Lower Bound on the Global Skew 37

Definition 7.8 (Indistinguishable Executions). Executions E0 and E1 are in-
distinguishable at node 𝑣 ∈ 𝑉 until local time 𝐻, if 𝐻 (E0)

𝑣 (0) = 𝐻
(E1)
𝑣 (0) (where

the superscripts indicate the execution) and, for 𝑖 ∈ {0, 1}, for each message 𝑣

receives at local time 𝐻 ′ ≤ 𝐻 in E𝑖 from some neighbor 𝑤 ∈ 𝑉 , it receives an
identical message from 𝑤 at local time 𝐻 ′ in E1−𝑖 . If we drop the “until local
time 𝐻,” this means that the statement holds for all 𝐻, and if we drop the “at
node 𝑣,” the statement holds for all nodes.

If two executions are indistinguishable until local time 𝐻 at 𝑣 ∈ 𝑉 , it sends
the same messages in both executions and computes the same logical clock
values—in terms of its local time—until local time 𝐻. This holds because our
algorithms are deterministic and all actions nodes take are determined by their
local perception of time and which messages they received (and when).

This has an important consequence. As long as we can ensure that the receiver
of each message receives it at the same local time in two executions without
violating the constraint that messages are under way between 𝑑 − 𝑢 and 𝑑 real
time in both executions, we can inductively maintain indistinguishability: as
long as this condition is never violated, each node will send the same messages
in both executions at the same local times.

Before showing that we cannot avoid a certain global skew, we need to add a
requirement, namely that clocks actually behave like clocks and make progress.
Note that, without such a constraint, setting 𝐿𝑣 (𝑡) = 0 at all 𝑣 ∈ 𝑉 and times 𝑡
is a “perfect” solution for the clock synchronization problem.

Definition 7.9. [Amortized Minimum Progress] For 𝛼 ∈ R+, an algorithm
satisfies the amortized 𝛼-progress condition, if there is some 𝐶 ∈ R+0 such that
min𝑣∈𝑉 {𝐿𝑣 (𝑡)} ≥ 𝛼𝑡 − 𝐶 for all 𝑡 ∈ R+0 and all executions.

We now prove that we cannot only “hide hardware clock skew,” but also keep
nodes from figuring out that they might be able to advance their logical clocks
slower than their hardware clocks in such executions.

Lemma 7.10. Fix some nodes 𝑣, 𝑤 ∈ 𝑉 and 𝜌 ∈ (1, 𝜗) such that (𝜌 − 1)𝑑 <

𝑢/2, and set 𝑡0 B 𝑑 (𝑣, 𝑤) (𝑢/(2(𝜌 − 1)) − 𝑑). For any algorithm, there are
indistinguishable executions E1 and E𝑣 satisfying that
• 𝐻

(E1)
𝑥 (𝑡) = 𝑡 for all 𝑥 ∈ 𝑉 and 𝑡,

• 𝐻
(E𝑣)
𝑣 (𝑡) = 𝐻

(E1)
𝑣 (𝑡) + 𝑑 (𝑣, 𝑤) (𝑢/2 − (𝜌 − 1)𝑑) for all 𝑡 ≥ 𝑡0,

• 𝐻
(E𝑣)
𝑤 (𝑡) = 𝑡 for all 𝑡, and

• E1 does not depend on the choice of 𝑣 and 𝑤.

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

38 Chapter 7 Network Synchronization

Proof. In both executions and for all 𝑥 ∈ 𝑉 , we set 𝐻𝑥 (0) B 0. Execution E1
is given by running the algorithm with all hardware clock rates being 1 at all
times and the message delay from 𝑥 to 𝑦 being 𝑑 − 𝑢/2.

Set

𝑑 (𝑥) B

−𝑑 (𝑣, 𝑤) if 𝑑 (𝑥, 𝑤) − 𝑑 (𝑥, 𝑣) < −𝑑 (𝑣, 𝑤)
𝑑 (𝑣, 𝑤) if 𝑑 (𝑥, 𝑤) − 𝑑 (𝑥, 𝑣) > 𝑑 (𝑣, 𝑤)
𝑑 (𝑥, 𝑤) − 𝑑 (𝑥, 𝑣) else.

Note that |𝑑 (𝑥) − 𝑑 (𝑦) | ≤ 2 for any {𝑥, 𝑦} ∈ 𝐸 . Moreover, 𝑑 (𝑣) = 𝑑 (𝑣, 𝑤)
and 𝑑 (𝑤) = −𝑑 (𝑣, 𝑤). In E𝑣 , we set the hardware clock rate of node 𝑥 ∈ 𝑉 to
1 + (𝜌 − 1) (𝑑 (𝑥) + 𝑑 (𝑣, 𝑤))/(2𝑑 (𝑣, 𝑤)) at all times 𝑡 ≤ 𝑡0 and to 1 at all times
𝑡 > 𝑡0. This implies that

𝐻
(E𝑣)
𝑣 (𝑡0) = 𝜌𝑡0 = 𝐻

(E1)
𝑣 (𝑡0) + 𝑑 (𝑣, 𝑤)

(𝑢
2
− (𝜌 − 1)𝑑

)
and

𝐻
(E𝑣)
𝑤 (𝑡0) = 𝑡0 = 𝐻

(E1)
𝑤 (𝑡0).

As clock rates are 1 from time 𝑡0 on, this means that the hardware clocks satisfy
all stated constraints.

It remains to specify message delays and show that the two executions are
indistinguishable. We achieve this by simply ruling that a message sent from
some 𝑥 ∈ 𝑉 to a neighbor 𝑦 ∈ 𝑁𝑥 in E𝑣 arrives at the same local time at 𝑦 as it
does in E1. By induction over the arrival and sending times of messages, then
indeed all nodes also send identical messages at identical local times in both
executions, i.e., the executions are indistinguishable. However, it remains to
prove that this results in all message delays being in the range (𝑑 − 𝑢, 𝑑).

To see this, fix a time 𝑡 and set 𝜆 := max{𝑡/𝑡0, 1}. We compute

𝐻
(E𝑣)
𝑥 (𝑡) − 𝐻

(E𝑣)
𝑦 (𝑡) = 𝑑 (𝑦) − 𝑑 (𝑥)

2𝑑 (𝑣, 𝑤) · (𝜌 − 1)𝜆𝑡0

= 𝜆 · 𝑑 (𝑦) − 𝑑 (𝑥)
2

(𝑢
2
− (𝜌 − 1)𝑑

)
.

In execution E1, a message sent from 𝑥 to 𝑦 at local time 𝐻
(E1)
𝑥 (𝑡) = 𝑡 is

received at local time 𝐻
(E1)
𝑦 (𝑡 + 𝑑 − 𝑢/2) = 𝐻

(E1)
𝑥 (𝑡) + 𝑑 − 𝑢/2. Thus, showing

that 𝐻 (E𝑣)𝑦 (𝑡 + 𝑑 − 𝑢) < 𝐻
(E𝑣)
𝑥 (𝑡) + 𝑑 − 𝑢/2 < 𝐻

(E𝑣)
𝑥 (𝑡) + 𝑑 will complete the

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

7.4 Lower Bound on the Global Skew 39

proof. Recall that 𝜌 is such that 𝑢/2 − (𝜌 − 1)𝑑 > 0. We have that

𝐻
(E𝑣)
𝑦 (𝑡 + 𝑑) ≥ 𝐻

(E𝑣)
𝑦 (𝑡) + 𝑑

= 𝐻
(E𝑣)
𝑥 (𝑡) + 𝑑 + 𝜆 · 𝑑 (𝑥) − 𝑑 (𝑦)

2

(𝑢
2
− (𝜌 − 1)𝑑

)
≥ 𝐻

(E𝑣)
𝑥 (𝑡) + 𝑑 −

(𝑢
2
− (𝜌 − 1)𝑑

)
> 𝐻

(E𝑣)
𝑥 (𝑡) + 𝑑 − 𝑢

2
,

where the second to last inequality uses that 𝑑 (𝑥) − 𝑑 (𝑦) ≥ −2 and 0 ≤ 𝜆 ≤ 1.
On the other hand,

𝐻
(E𝑣)
𝑦 (𝑡 + 𝑑 − 𝑢) < 𝐻

(E𝑣)
𝑦 (𝑡) + 𝜌𝑑 − 𝑢

= 𝐻
(E𝑣)
𝑥 (𝑡) + 𝜌𝑑 − 𝑢 + 𝜆 · 𝑑 (𝑥) − 𝑑 (𝑦)

2

(𝑢
2
− (𝜌 − 1)𝑑

)
≤ 𝐻

(E𝑣)
𝑥 (𝑡) + 𝜌𝑑 − 𝑢 + 𝑢

2
− (𝜌 − 1)𝑑

= 𝐻
(E𝑣)
𝑥 (𝑡) + 𝑑 − 𝑢

2
,

where the second inequality uses that 𝑑 (𝑥) − 𝑑 (𝑦) ≤ 2 and 0 ≤ 𝜆 ≤ 1. �

Theorem 7.11. If an algorithm satisfies the amortized 𝛼-progress condition
for some 𝛼 ∈ R+, then G ≥ 𝛼𝑢𝐷

2 , even if we are guaranteed that 𝐻𝑣 (0) = 0 for
all 𝑣 ∈ 𝑉 .

Proof. Fix 𝑣, 𝑤 ∈ 𝑉 such that 𝑑 (𝑣, 𝑤) = 𝐷 and set 𝜌 ∈ (1, 𝜗) such that
(𝜌 − 1)𝑑 < 𝑢/2. In the following, we abbreviate 𝜀 := (𝜌 − 1)𝑑; note that
we can choose 𝜀 > 0 arbitrarily small by picking 𝜌 accordingly. We apply
Lemma 7.10 twice, where the second time we reverse the roles of 𝑣 and 𝑤.
As E1 does not depend on the choice of 𝑣 and 𝑤 and indistinguishability of
executions is transitive, we get two indistinguishable executions E𝑣 and E𝑤
such that there is a time 𝑡0 satisfying for all 𝑡 ≥ 𝑡0 that
• 𝐻

(E𝑤)
𝑣 (𝑡) = 𝐻

(E𝑣)
𝑤 (𝑡) = 𝑡 and

• 𝐻
(E𝑣)
𝑣 (𝑡) = 𝐻

(E𝑤)
𝑤 (𝑡) = 𝑡 + (𝑢/2 − 𝜀)𝐷.

Because the algorithm satisfies the amortized 𝛼-progress condition, we have
that 𝐿 (E𝑣)𝑥 (𝑡) ≥ 𝛼𝑡 − 𝐶 for all 𝑡, 𝑥 ∈ 𝑉 , and some 𝐶 ∈ R+0 . We claim that there
is some 𝑡 ≥ 𝑡0 satisfying that

𝐿
(E𝑤)
𝑣

(
𝑡 +

(𝑢
2
− 𝜀

)
𝐷

)
− 𝐿

(E𝑤)
𝑣 (𝑡) + 𝐿 (E𝑣)𝑤

(
𝑡 +

(𝑢
2
− 𝜀

)
𝐷

)
− 𝐿

(E𝑣)
𝑤 (𝑡)

≥ 𝛼(𝑢 − 3𝜀)𝐷. (7.4)

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

40 Chapter 7 Network Synchronization

Assuming for contradiction that this is false, set 0 < 2𝛼′ B 𝛼(𝑢−3𝜀)𝐷
(𝑢/2−𝜀)𝐷 < 2𝛼

and consider times 𝑡𝑘 B 𝑡0 + 𝑘 (𝑢/2 − 𝜀)𝐷 for 𝑘 ∈ N. By induction over 𝑘 , we
get that

𝐿
(E𝑤)
𝑣 (𝑡𝑘) + 𝐿 (E𝑣)𝑤 (𝑡𝑘) ≤ 𝐿

(E𝑤)
𝑣 (𝑡0) + 𝐿 (E𝑣)𝑤 (𝑡0) + 2𝛼′(𝑡𝑘 − 𝑡0)

≤ 2𝛼𝑡𝑘 − 2(𝛼 − 𝛼′)𝑡𝑘 + 𝐿 (E𝑤)𝑣 (𝑡0) + 𝐿 (E𝑣)𝑤 (𝑡0).

Choosing 𝑘 large enough so that 𝑡𝑘 > (𝐿 (E𝑤)𝑣 (𝑡0) +𝐿 (E𝑣)𝑤 (𝑡0) +2𝐶)/(2(𝛼−𝛼′)),
we get that

𝐿
(E𝑤)
𝑣 (𝑡𝑘) + 𝐿 (E𝑣)𝑤 (𝑡𝑘) < 2(𝛼𝑡𝑘 − 𝐶).

Therefore, 𝐿
(E𝑤)
𝑣 (𝑡𝑘) < 𝛼𝑡𝑘 − 𝐶 or 𝐿

(E𝑣)
𝑤 (𝑡𝑘) < 𝛼𝑡𝑘 − 𝐶, violating the 𝛼-

progress condition in at least one of the executions. This is a contradiction, i.e.,
the claim must hold true.

Now let 𝑡 ≥ 𝑡0 be such that (7.4) holds. As 𝐻 (E𝑤)𝑣 (𝑡+(𝑢/2−𝜀)𝐷) = 𝑡+(𝑢/2−
𝜀)𝐷 = 𝐻

(E𝑣)
𝑣 (𝑡), by indistinguishability of E𝑣 and E𝑤 we have that 𝐿 (E𝑣)𝑣 (𝑡) =

𝐿
(E𝑤)
𝑣 (𝑡+(𝑢/2−𝜀)𝐷). Symetrically, 𝐿 (E𝑤)𝑤 (𝑡) = 𝐿

(E𝑣)
𝑤 (𝑡+(𝑢/2−𝜀)𝐷). Hence,

|𝐿 (E𝑣)𝑣 (𝑡) − 𝐿
(E𝑣)
𝑤 (𝑡) | + |𝐿 (E𝑤)𝑣 (𝑡) − 𝐿

(E𝑤)
𝑤 (𝑡) |

≥ 𝐿
(E𝑣)
𝑣 (𝑡) − 𝐿

(E𝑣)
𝑤 (𝑡) + 𝐿 (E𝑤)𝑤 (𝑡) − 𝐿

(E𝑤)
𝑣 (𝑡)

= 𝐿
(E𝑤)
𝑣

(
𝑡 +

(𝑢
2
− 𝜀

)
𝐷

)
− 𝐿

(E𝑣)
𝑤 (𝑡) + 𝐿 (E𝑣)𝑤

(
𝑡 +

(𝑢
2
− 𝜀

)
𝐷

)
− 𝐿

(E𝑤)
𝑣 (𝑡)

= 𝐿
(E𝑤)
𝑣

(
𝑡 +

(𝑢
2
− 𝜀

)
𝐷

)
− 𝐿

(E𝑤)
𝑣 (𝑡) + 𝐿 (E𝑣)𝑤

(
𝑡 +

(𝑢
2
− 𝜀

)
𝐷

)
− 𝐿

(E𝑣)
𝑤 (𝑡)

≥ 𝛼(𝑢 − 3𝜀)𝐷.

We conclude that in at least one of the two executions, the logical clock differ-
ence between 𝑣 and 𝑤 reaches at least (𝛼(𝑢−3𝜀)𝐷)/2. As 𝜀 > 0 can be chosen
arbitrarily small, it follows that G ≥ 𝛼𝑢𝐷

2 , as claimed. �

The good news: We have a lower bound on the skew that is linear in 𝐷. The
bad news: typically 𝑢 � 𝑑, so we might be able to do much better.

7.5 Refining the Max Algorithm

When propagating information, we have not factored in yet that we know that
messages are under way for at least 𝑑 − 𝑢 time. In order to get closer to the
lower bound, we now seek to exploit this.

Lemma 7.12. In a system executing Algorithm 4, no 𝑣 ∈ 𝑉 ever sets 𝐿𝑣 to a
value larger than max𝑤∈𝑉 \{𝑣 }{𝐿𝑤 (𝑡)}.

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

7.5 Refining the Max Algorithm 41

Algorithm 4 Refined Max Algorithm. Note that now nodes send messages
based on their hardware clock readings. This is to avoid indefinitely cascading
messages, since now the received values are increased by 𝑑 − 𝑢.

1: if 𝑡 = 0 (i.e., 𝑣 just woke up) then
2: ℎ← getH()
3: ℓ ← ℎ ⊲ initialize 𝐿𝑣 (0) to 𝐻𝑣 (0)
4: end if
5: if received 〈ℓ′〉 at time 𝑡 and ℓ′ > getL() then
6: ℎ← getH()
7: ℓ ← ℓ′ + 𝑑 − 𝑢 ⊲ increase logical clock, adding 𝑑 − 𝑢
8: end if
9: if getH() = 𝑘𝑇 for some 𝑘 ∈ N then

10: send 〈getL()〉 to all neighbors
11: end if
12: procedure getL() ⊲ returns 𝐿𝑣 (𝑡)
13: return ℓ + getH() − ℎ ⊲ logical clock increases at rate 𝑑𝐻𝑣

𝑑𝑡

14: end procedure

Proof. If any node 𝑣 ∈ 𝑉 sends message 〈𝐿𝑣 (𝑡)〉 at time 𝑡, it is not received
before time 𝑡 + 𝑑 − 𝑢, for which it holds that

max
𝑤∈𝑉
{𝐿𝑤 (𝑡 + 𝑑 − 𝑢)} ≥ 𝐿𝑣 (𝑡 + 𝑑 − 𝑢) ≥ 𝐿𝑣 (𝑡) + 𝑑 − 𝑢,

as all nodes, in particular 𝑣, increase their logical clocks at least at rate 1, the
minimum rate of increase of their hardware clocks. �

Lemma 7.13. In a system executing Algorithm 4, it holds that

G(𝑡) ≤ ((𝜗 − 1) (𝑑 + 𝑇) + 𝑢)𝐷

for all 𝑡 ≥ (𝑑 + 𝑇)𝐷, where 𝐷 is the maximal diameter of 𝐺.

Proof. Set 𝐿 B max𝑣∈𝑉 {𝐿𝑣 (𝑡 − (𝑑 +𝑇)𝐷)}. By Lemma 7.12 and the fact that
hardware clocks increase at rate at most 𝜗, we have that

max
𝑣∈𝑉
{𝐿𝑣 (𝑡)} ≤ max

𝑣∈𝑉
{𝐿𝑣 (𝑡 − (𝑑 + 𝑇)𝐷)} + 𝜗(𝑑 + 𝑇)𝐷 = 𝐿 + 𝜗(𝑑 + 𝑇)𝐷.

Consider any node 𝑤 ∈ 𝑉 . We claim that 𝐿𝑤 (𝑡) ≥ 𝐿 + (𝑑 + 𝑇 − 𝑢)𝐷, which
implies

max
𝑣∈𝑉
{𝐿𝑣 (𝑡)}−𝐿𝑤 (𝑡) ≤ 𝐿+𝜗(𝑑+𝑇)𝐷−(𝐿+(𝑑+𝑇−𝑢)𝐷) = ((𝜗−1) (𝑑+𝑇)+𝑢)𝐷;

as 𝑤 is arbitary, this yields the statement of the lemma.

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

42 Chapter 7 Network Synchronization

It remains to show the claim. Let 𝑣 ∈ 𝑉 be such that 𝐿𝑣 (𝑡 − (𝑑 + 𝑇)𝐷) = 𝐿.
Denote by (𝑣𝐷−ℎ = 𝑣, 𝑣𝐷−ℎ+1, . . . , 𝑣𝐷 = 𝑤), where ℎ ≤ 𝐷, a shortest 𝑣-𝑤-
path. Define 𝑡𝑖 B 𝑡 − (𝐷 − 𝑖) (𝑑 + 𝑇). We prove by induction over 𝑖 ∈
{𝐷 − ℎ, 𝐷 − ℎ + 1, . . . , 𝐷} that

𝐿𝑣𝑖 (𝑡𝑖) ≥ 𝐿 + 𝑖(𝑑 + 𝑇 − 𝑢),

where the base case 𝑖 = 𝐷 − ℎ is readily verified by noting that

𝐿𝑣 (𝑡𝐷−ℎ) ≥ 𝐿𝑣 (𝑡 − (𝑑 +𝑇)𝐷) + 𝑡𝐷−ℎ − (𝑡 − (𝑑 +𝑇)𝐷) = 𝐿 + (𝐷 − ℎ) (𝑑 +𝑇).

For the induction step from 𝑖 − 1 ∈ {𝐷 − ℎ, . . . , 𝐷 − 1} to 𝑖, observe that 𝑣𝑖−1
sends a message to 𝑣𝑖 at some time 𝑡𝑠 ∈ (𝑡𝑖−1, 𝑡𝑖−1 + 𝑇], as its hardware clock
increases by at least 𝑇 in this time interval. This message is received by 𝑣𝑖 at
some time 𝑡𝑟 ∈ (𝑡𝑠 , 𝑡𝑠 + 𝑑) ⊆ (𝑡𝑖−1, 𝑡𝑖−1 + 𝑑 + 𝑇). Note that 𝑡𝑖−1 < 𝑡𝑠 < 𝑡𝑟 < 𝑡𝑖 .
If necessary, 𝑣𝑖 will increase its clock at time 𝑡𝑟 , ensuring that

𝐿𝑣𝑖 (𝑡𝑖) ≥ 𝐿𝑣𝑖 (𝑡𝑟) + 𝑡𝑖 − 𝑡𝑟
≥ 𝐿𝑣𝑖−1 (𝑡𝑠) + 𝑑 − 𝑢 + 𝑡𝑖 − 𝑡𝑟
≥ 𝐿𝑣𝑖−1 (𝑡𝑠) + 𝑡𝑖 − 𝑡𝑠 − 𝑢
≥ 𝐿𝑣𝑖−1 (𝑡𝑖−1) + 𝑡𝑖 − 𝑡𝑖−1 − 𝑢
= 𝐿𝑣𝑖−1 (𝑡𝑖−1) + 𝑑 + 𝑇 − 𝑢
≥ 𝐿 + 𝑖(𝑑 + 𝑇 − 𝑢),

where the last step uses the induction hypothesis. This completes the induction.
Inserting 𝑖 = 𝐷 yields that 𝐿𝑤 (𝑡) ≥ 𝐿𝑣𝐷 (𝑡𝐷) = 𝐿 + (𝑑 + 𝑇 − 𝑢)𝐷, as claimed,
completing the proof. �

Theorem 7.14. Set 𝐻 B max𝑣∈𝑉 {𝐻𝑣 (0)} − min𝑣∈𝑉 {𝐻𝑣 (0)}. Then Algo-
rithm 4 achieves

G ≤ max{𝐻, 𝑢𝐷} + (𝜗 − 1) (𝑑 + 𝑇)𝐷.

Proof. Consider 𝑡 ∈ R+0 . If 𝑡 ≥ (𝑑 + 𝑇)𝐷, then G(𝑡) ≤ 𝑢𝐷 + (𝜗 − 1) (𝑑 + 𝑇)𝐷
by Lemma 7.13. If 𝑡 < (𝑑 + 𝑇)𝐷, then for any 𝑣, 𝑤 ∈ 𝑉 we have that

𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) ≤ 𝐿𝑣 (0) − 𝐿𝑤 (0) + (𝜗 − 1)𝑡 ≤ 𝐻 + (𝜗 − 1) (𝑑 + 𝑇)𝐷. �

A few remarks:
• Note the change from using logical clock values to hardware clock values

to decide when to send a message. The reason is that increasing received
clock values to account for minimum delay pays off only if the increase is
also forwarded in messages. However, sending a message every time the

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

7.6 Afterthought: Stronger Lower Bound 43

clock is set to a larger value might cause a lot of messages, as now different
values than 𝑘𝑇 for some 𝑘 ∈ N might be sent. The compromise presented
here keeps the number of messages in check, but pays for it by exchanging
the (𝜗 − 1)𝑇 term in skew for (𝜗 − 1)𝑇𝐷.

• Choosing 𝑇 ∈ Θ(𝑑) means that nodes need to send messages roughly every
𝑑 time, but in return G ∈ max{𝐻, 𝑢𝐷} +𝑂 ((𝜗 − 1)𝑑𝐷). Reducing 𝑇 further
yields diminishing returns.

• Typically, 𝑢 � 𝑑, but also 𝜗 − 1 � 1. However, if 𝑢 � (𝜗 − 1)𝑑, one might
consider building a better clock by bouncing messages back and forth between
pairs of nodes. Hence, this setting makes only sense if communication is
expensive or unreliable, and in many cases one can expect 𝑢𝐷 to be the
dominant term.

• It is possible to achieve a skew of 𝑂 (𝑢𝐷 + (𝜗 − 1)𝑑).
• So we can say that the algorithm achieves asymptotically optimal global skew

(in our model). The lower bound holds in the worst case, but we have shown
that it applies to any graph. Hence, changing the network topology has no
effect beyond influencing the diameter.

7.6 Afterthought: Stronger Lower Bound

Both of our algorithms are actually much more constrained in terms of clock
progress than just satisfying an amortized lower bound of 1 on the rates.

Definition 7.15 (Strong Envelope Condition). An algorithm fulfills the strong
envelope condition, if at all times and for all nodes 𝑣 ∈ 𝑉 , it holds that
min𝑤∈𝑉 {𝐻𝑤 (𝑡)} ≤ 𝐿𝑣 (𝑡) ≤ max𝑤∈𝑉 {𝐻𝑤 (𝑡)}.

For this stronger condition, one can show that the term of 𝑢𝐷 in the skew
bound is optimal.

Theorem 7.16. For any algorithm satisfying the strong envelope condition, it
holds that G ≥ 𝑢𝐷, even if we are guaranteed that 𝐻𝑣 (0) = 0 for all 𝑣 ∈ 𝑉 .

Proof sketch. It is possible to adapt Lemma 7.10 such that the execution E1
is not using delays of roughly 𝑢/2 between any pair of nodes, but delays are
roughly 𝑑 − 𝑢 when messages are sent “in direction of 𝑤” and 𝑑 when they are
sent “in direction of 𝑣.” This is very similar to the use of 𝑑 (𝑥) in E𝑣 , but we use
the uncertainty “the other way round.” This implies that the hardware clock
difference at 𝑣 between E1 and E𝑣 can be increased to about 𝑢𝐷 (as opposed
to only 𝑢𝐷/2) before we run out of slack in the delays. However, in E1 still
𝐻𝑥 (𝑡) = 𝑡 for all 𝑥 ∈ 𝑉 and times 𝑡, so nodes must maintain that 𝐻𝑥 (𝑡) = 𝐿𝑥 (𝑡)
in E1 to satisfy the strong envelope condition. Because E𝑣 is indistinguishable

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

44 Chapter 7 Network Synchronization

from E1, the same is true in E𝑣 . In particular,

𝐿E𝑣𝑣 (𝑡0) − 𝐿E𝑣𝑤 (𝑡0) ≈ 𝐿E1
𝑣 (𝑡0 + 𝑢𝐷) − 𝐿E1

𝑤 (𝑡0) = 𝑢𝐷. �

We remark that if one merely requires the weaker progress condition 𝑡 ≤
𝐿𝑣 (𝑡) ≤ max𝑣∈𝑉 {𝐻𝑣 (0)} + 𝜗𝑡, then a lower bound of 𝑢𝐷

𝜗
can be shown.

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

Bibliography

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 January 4, 2021 6:55pm

48 Bibliography

