
MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

Contents

6 Simulating Synchronous Systems 1
6.1 Overview 2
6.2 Synchronous Message Passing 2

6.2.1 Example: Simultaneous Restart 6
6.3 Asynchronous Message Passing 15
6.4 Simulating Synchrony 18
Bibliography 25

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

6 Simulating Synchronous Systems

Chapter Contents
6.1 Overview 2
6.2 Synchronous Message Passing 2
6.3 Asynchronous Message Passing 15
6.4 Simulating Synchrony 18

Learning Goals
The main goal of this chapter is to introduce a simple yet highly idealized
model of distributed computing: the synchronous model. We design and
analyze algorithms for fundamental problems in the synchronous model, and
discuss the model’s power and limitations. We then show how one can simulate
the synchronous model in an asynchronous system.

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

2 Chapter 6 Simulating Synchronous Systems

6.1 Overview

Perhaps the simplest theoretical distributed models are synchronous models.
Here, we describe a synchronous message passing model, SMP, that abstracts
away many computational details that must be considered in practice: local
computational costs, bandwidth restrictions, asynchrony, and faults. Nonethe-
less, SMP is instructive for designing and reasoning about distributed protocols.
In SMP, all nodes progress in lock step, and all messages sent in each round
are received before the next round begins. Thus, all nodes progress in a coor-
dinated way. The only computational restriction in SMP is locality: each node
maintains a private state, and can only communicate with neighboring nodes
to learn about their states.

Since the synchronous model assumes so few restrictions on its computational
power, lower bounds for this model transfer a fortiori to weaker, more realistic
computational models. Yet synchronous protocols can often be adapted to
more realistic models as well—the challenge is to understand how.

We next introduce a fully asychronous message passing model, AMP, that
makes no assumptions whatsoever about synchrony between nodes. In AMP,
all computations occur in response to events without any synchrony between the
timing of events; local computations and message delivery may take arbitrarily
long to complete.

Despite the seemingly pessimistic assumption of total asynchrony in the AMP
model, we present a general technique, called an 𝛼-synchronizer, that allows
one to simulate any algorithm for the SMP model in the seemingly much weaker
AMP model. Specifically, we will prove the following theorem.

Theorem 6.18. Given any algorithm B in SMP, there is an algorithm A that
simulates B in AMP. The asynchrononous time complexity of simulating the
first 𝑇 rounds of B is 𝑡0 + 𝑇 in executions where all nodes 𝑣 ∈ 𝑉 have woken
up by time 𝑡0 and for all 𝑖 ∈ N>0 the event of 𝑣 receiving 𝛾B

𝑣,𝑖
happens by time

𝑡0 + 𝑖. In graphs of diameter 𝐷, this implies an asynchronous time complexity
of 𝐷 + 𝑇 for simulating the first 𝑇 rounds of B in such executions.

In general, it is often fruitful to first understand how to simulate a more
powerful model before attempting to solve a problem in the more restrictive
model directly. The 𝛼-synchronizer technique we describe gives a general
procedure for simulating executions of SMP in AMP.

6.2 Synchronous Message Passing

We describe a distributed system by a simple, connected graph 𝐺 = (𝑉, 𝐸) (see
Appendix ??), where𝑉 is the set of 𝑛 B |𝑉 | nodes (our computational entities,

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

6.2 Synchronous Message Passing 3

e.g., clock domains on a chip, processors in a multi-core machine, or computers
in a network). Nodes 𝑣 and 𝑤 can directly communicate if and only if there
is an edge {𝑣, 𝑤} ∈ 𝐸 . We model each node in the network as a finite state
machine, where the state of a node includes the contents of messages received
from other nodes .

Definition 6.1. [The SMP model] The network is modeled as a simple graph
𝐺 = (𝑉, 𝐸) of 𝑛 nodes. Each node 𝑣 ∈ 𝑉 has a unique port number assigned
to each neighbor from the range 1, 2, . . . , deg(𝑣) (where deg(𝑣) denotes the
degree—i.e., number of neighbors—of 𝑣). Nodes are modeled by finite state
machines 𝑇𝑣 = (𝑆, 𝑠𝑣,0,Σ,Λ, 𝑡, 𝑜), where the node-dependent initial state 𝑠𝑣,0
is referred to as the input of node 𝑣. The input and output alphabets are of the
form Σ = Σ

deg(𝑣)
0 × Γ and Λ = Σ

deg(𝑣)
0 × Ω, where Σ0 is the set of admissible

messages, Γ is the set of possible local inputs, and Ω is the set of local outputs.1
Σ0 contains the special symbol⊥, which will be a shorthand for “no message,”
and Γ andΩ contain the symbol to allow for indicating no local input or output,
respectively. Set 𝑚𝑣, 𝑝,0 := ⊥ and 𝛾𝑣,0 := ⊥ for all 𝑝 ∈ {1, 2, . . . , deg(𝑣)}. An
algorithm is executed in synchronous rounds, where in each round 𝑖, each node
is given a local input 𝛾𝑣,𝑖 ∈ 𝐼 and performs the following steps:

1. set 𝑠𝑣,𝑖 := 𝑡 (𝑠𝑣,𝑖−1, (𝑚𝑣,1,𝑖−1, 𝑚𝑣,2,𝑖−1, . . . , 𝑚𝑣,deg(𝑣) ,𝑖−1, 𝛾𝑣,𝑖)) to update its
state;

2. for 𝑝 ∈ {1, . . . , deg(𝑣)}, send to the neighbor whose port number at 𝑣 is 𝑝

the message 𝑜(𝑠𝑣,𝑖−1, (𝑚𝑣,1,𝑖−1, 𝑚𝑣,2,𝑖−1, . . . , 𝑚𝑣,deg(𝑣) ,𝑖−1, 𝛾𝑣,𝑖))𝑝;
3. receive messages, i.e., for 𝑝 ∈ {1, . . . , deg(𝑣)} set 𝑚𝑣,𝑖, 𝑝 to the message

received from the neighbor whose port number at 𝑣 is 𝑝; and
4. output 𝑜(𝑠𝑣,𝑖−1, (𝑚𝑣,1,𝑖−1, 𝑚𝑣,2,𝑖−1, . . . , 𝑚𝑣,deg(𝑣) ,𝑖−1, 𝛾𝑣,𝑖))deg(𝑣)+1.

If in round 𝑖 the FSM of 𝑣 reaches a state 𝑠 satisfying that
• 𝑡 (𝑠𝑣,𝑖 , ·) = 𝑠𝑣,𝑖 (no further state change possible),2
• 𝑜(𝑠𝑣,𝑖 , ·)𝑝 = ⊥ for 𝑝 ∈ {1, . . . , deg(𝑣)} (no further messages can be sent),

and
• 𝑜(𝑠𝑣,𝑖 , ·)deg(𝑣)+1 = 𝑜𝑣 for some 𝑜𝑣 ∈ Ω (no further output change),

1 Note that this means that the state machine as a whole depends on deg(𝑣) . For simplicity, we
omit this from the notation. To have each node run the exact same FSM, one could replace deg(𝑣)
by the maximum node degree, padding message tuples with ⊥. If the algorithm utilizes knowledge
of deg(𝑣) , it then needs to be given to 𝑣 as part of 𝑠𝑣,0 or using Γ. The node-dependent initial states
can also be used to model that different nodes might run different state machines, by encoding the
“type” of the node in 𝑠𝑣,0.
2 Here · stands for “arbitrary argument,” i.e., 𝑡 (𝑠𝑣,𝑖 , ·) is the function obtained from 𝑡 by fixing its
first argument to be 𝑠𝑣,𝑖 .

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

4 Chapter 6 Simulating Synchronous Systems

we say that 𝑣 terminated in round 𝑖 with output 𝑜𝑣 . and call 𝑠 a terminal state.

Remark 6.2. In this book, we are mostly studying tasks that are repetitive or
ongoing. Hence, most algorithms will never terminate. For “one-shot” tasks
where termination occurs, there is the implicit assumption that the algorithm’s
state machine is part of a bigger state machine that manages the control flow
beyond the specific task considered and provides the input to the node (if there
is any). Single-use hardware that is studied from an algorithmic perspective is
rare!

Remark 6.3. It is uncommon to specify algorithms in the SMP model as above
for analysis purposes, as even the most conceptually simple algorithms become
hard to read and understand this way. However, implementing the algorithm in
hardware necessitates to translate the pseudocode or textual description into
a state machine—or rather the corresponding circuit—as described above. If
different nodes behave differently, to avoid blowing up the circuit size, one
should use different state machines, rather than employing the hack of lumping
everything together into a single state machine!

In SMP, we think of the state of a node 𝑣 at the beginning of round as
consisting of both the state of 𝑣’s “internal” finite state machine, as well as the
state (i.e., value) of messages received in the previous round. Thus, for a node
𝑣 with two neighbors, the state of 𝑣 is a triple of values (state𝑣 , rec1, rec2).
Here rec1 and rec2 are the messages recieved from 𝑣’s neighbors with port
numbers 1 and 2 (respectively) in the previous round. The transition function
for 𝑣 determines both how 𝑣 updates state𝑣 and the messages, snd1 and snd2,
𝑣 sends to its neighbors in Step 2 of the current round.

Example 6.4 (Distributed Program Counter). In a distributed program counter,
each node 𝑣 maintains a variable count𝑣 ∈ N satisfying the following condi-
tions:

1. monotonicity: for all times 𝑡, 𝑡 ′ with 𝑡 ≤ 𝑡 ′, we have count𝑣 (𝑡) ≤
count𝑣 (𝑡 ′);

2. increment: if count𝑣 (𝑡) > 0 at time 𝑡, then there exists some time 𝑡 ′(< 𝑡)
for which count𝑣 (𝑡 ′) = count𝑣 (𝑡) − 1;

3. waiting for neighbors: for all times 𝑡 and all neighbors 𝑤 of 𝑣 count𝑣 (𝑡) ≤
count𝑤 (𝑡) + 1.

Conditions 1 and 2 simply require that count𝑣 attains values 0, 1, 2, . . . se-
quentially (though the count is allowed to stop at any time). Condition 3 is
important for distributed coordination: it stipulates that 𝑣 cannot increase
count𝑣 until all of its neighbors’ counters have also reached the value count𝑣 .

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

6.2 Synchronous Message Passing 5

Implementing a distributed program counting in SMP is extremely simple, as
each node can set count𝑣 to the current round:

1: count := 0;
2: for all rounds 𝑟 do
3: count := count + 1
4: end for

The pseudo-code above clearly satisfies the monotonicity and increment con-
ditions. The wait-up condition is satisfied due to the specification of the SMP
model: all nodes are assumed to transition from one round to the next at pre-
cisely the same time. Thus, in the SMP model, the pseudo-code above gives
the stronger guarantee that for all times 𝑡 and all nodes 𝑣, 𝑤 ∈ 𝑊 , we have
count𝑣 (𝑡) = count𝑤 (𝑡). Moreover, this perfect synchrony is achieved without
any communication! Achieving such perfect synchronization is, of course, im-
possible in practice. In the following section, we will show how to implement
a distributed program counter in a fully asynchronous model. Understanding
how to do so will give the key insight into simulating any synchronous algorithm
in the asynchronous model.

E6.1 Consider a relaxation of a distributed program counter where item 2 is replaced
with:

2’ weak increment: if count𝑣 (𝑡) > count𝑣 (0) at time 𝑡, then there exists some
time 𝑡 ′(< 𝑡) for which count𝑣 (𝑡 ′) = count𝑣 (𝑡) − 1.

That is, count𝑣 may be initialized to an arbitrary count, but the other properties
of a distributed program counter must be maintained. Write pseudo-code for
an algorithm that solves this relaxed program counter problem, and prove its
correctness (i.e., that it satisfies the three conditions of a distributed program
counter with the modified condition 2).

In SMP, an important measure of the quality of an algorithm is the number of
rounds the algorithm requires in order to perform some task. (Other important
considerations might be the message size, number of states in the finite state
machine, or complexity of local computations performed. For now, we focus
on the number of rounds.) The notion of time complexity formalizes a measure
of complexity for performing tasks in SMP.

Definition 6.5. Let A be an algorithm in the SMP model, and let T denote a
task performed byA. The time complexity ofA completing T is defined to be

sup {𝑟1 − 𝑟0 | T initiated in round 𝑟0, completed in round 𝑟1} , (6.1)

where, for a fixed network 𝐺, the supremum is taken over all possible states of
the individual nodes in round 𝑟0. That is, the time complexity ofA completing

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

6 Chapter 6 Simulating Synchronous Systems

T on 𝐺 is the maximum number of rounds that elapse between when T is
initiated until it is completed.

Remark 6.6. We defined time complexity as the worst-case completion time for
a fixed network 𝐺. However, it is often valuable to understand the performance
of algorithms on families of graphs, and how the time complexity depends on
different graph parameters. For example, one would often like to know how
the performance of an algorithm scales with the size—i.e., number of nodes—
of the network. One can then interpret the sup in (6.3) to be taken over all
inputs and all networks with 𝑛 nodes, so that the time complexity becomes
a function 𝑛. Thus the statement “algorithm A has time complexity 𝑂 (𝑛)”
can be interprated as saying that the worst case time complexity of A over
all graphs with 𝑛 nodes scales (at most) linearly in the size of the network.
Similarly, one can analyze how the time complexity of A depends on, say, the
network diameter, 𝐷, or maximum degree of a node, Δ (or even a combination
of parameters) by interpretating the sup in (6.3) as taken over all networks with
fixed values of these parameters, and treating the complexity as a function of
the parameters of interest.

Remark 6.7. Definition 6.5 allows for the possibility that a task is completed
in the same round that it is initiated. Thus, the time complexity for a task can
be 0. In this case, the nodes immediately decide on their local outputs, without
ever considering any input apart from their initial state!

6.2.1 Example: Simultaneous Restart
Here, we introduce a fundamental problem in hardware design that we call
simultaneous restart.3 In the simultaneous restart problem, a node—which we
call the leader—enters a state ready when it receives a local input indicating
this, at the beginning of some arbitrary round 𝑟0. The goal is for all nodes to
simultaneously enter a state start at some later round 𝑟1 > 𝑟0.

For the present discussion, the network consists of a path of 𝑛 nodes, which
we will refer to as 𝑣1, 𝑣2, . . . , 𝑣𝑛, ordered from left to right. For each 𝑣𝑖 with
2 ≤ 𝑖 ≤ 𝑛− 1, 𝑣𝑖−1 is 𝑣𝑖’s left neighbor, with associated port number 1, and 𝑣𝑖+1
is 𝑣𝑖’s right neighbor with port number 2. We assume that the left-most node
𝑣1 is the leader.

3 Historically, this problem was called the “firing squad” problem, but we opt for the less morbid
and more descriptive “simultaneous restart.” See the chapter notes for a discussion of the classical
literature on the subject.

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

6.2 Synchronous Message Passing 7

6.2.1.1 A Solution with Counters We first present a conceptually simple
counter-based solution to the simultaneous restart problem, assuming that the
network size, 𝑛, is known to the leader, and that messages may be as large as
log 𝑛 bits. While the solution we present is conceptually straightforward, the
resources required to implement the counter-based solution in hardware may
be unsuitably large. We present a solution where the state space and message
sizes are constant (indpendent of 𝑛) in the sequel.

In our counter-based solution, the restart is initiated when the leader, 𝑣1,
receives a signal “restart.” At that point, the leader starts a countdown of
𝑛−1 rounds until it enters the start state. It also decrements its counter to 𝑛−2,
and sends this value to its right neighbor. Upon receiving a counter value, each
𝑣𝑖 decrements the received value, sets its own counter to the decremented value,
and sends this value to its right neighbor. Each round thereafter, 𝑣𝑖 decrements
its counter until it reaches 0. Once 𝑣𝑖’s counter reaches 0, 𝑣𝑖 transitions to
start. We give pseudo-code in Algorithm 1.

Algorithm 1 RestartCounter.
1: count := ∞
2: for all rounds 𝑟 do
3: if leader and receive restart then
4: count := 𝑛 − 1 ⊲ set local counter
5: snd2 := 𝑛 − 1 ⊲ send counter value to right neighbor
6: end if
7: if rec1 ≠ ∅ then ⊲ receive a count from left neighbor
8: count := rec1 − 1
9: snd2 := count ⊲ send decremented count to right neighbor

10: else if count < ∞ then
11: count := count − 1
12: end if
13: if count = 0 then
14: state := start
15: end if
16: end for

Proposition 6.8. The algorithm RestartCounter (Algorithm 1) solves the si-
multaneous restart problem in 𝑛 − 1 rounds.

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

8 Chapter 6 Simulating Synchronous Systems

Proof. Let 𝑟0 denote the round in which the leader receives the restart mes-
sage. For 𝑖 = 0, 1, 2, . . . , 𝑛 − 1, we claim that the following properties hold at
the end of round 𝑟0 + 𝑖:
1. 𝑣𝑖 sets count𝑖 to 𝑛 − 𝑖 − 1 and sends this value to 𝑣𝑖+1,
2. all 𝑣 𝑗 with 𝑗 ≤ 𝑖 satisfy count 𝑗 = 𝑛 − 𝑖 − 1.

We argue by induction on 𝑖. The base case 𝑖 = 0 is immediate from Lines 4
and 5. For the inductive step, assume items 1 and 2 above hold for round
𝑟0 + 𝑖 with 𝑖 > 0. By the inductive hypothesis, node 𝑣𝑖+1 receives the message
“𝑛 − 𝑖 − 1” from 𝑣𝑖 in round 𝑟0 + 𝑖 + 1. In Lines 8 and 9, 𝑣𝑖+1 sets count to
𝑛 − 𝑖 − 2 = 𝑛 − (𝑖 + 1) − 1 and sends this value to 𝑣𝑖+2. Thus 𝑣𝑖 satisfies items 1
and 2 of the claim in round 𝑟0+ 𝑖+1. For each 𝑗 < 𝑖+1 the inductive hypothesis
implies that count 𝑗 = 𝑛 − 𝑖 − 1 at the beginning of round 𝑖 + 1. This value is
decremented in Line 11, so that count 𝑗 = 𝑛 − (𝑖 + 1) − 1 at the end of round
𝑟0 + 𝑖 + 1. Therefore 𝑣 𝑗 satisfies item 2 for all 𝑗 < 𝑖 + 1 at the end of round 𝑖 + 1
as well. This concludes the inductive argument.

By item 2 above, all nodes transition to state start in round 𝑟1 = 𝑟0 + 𝑖 − 1
(Line 14), and no node transitions to start in any round 𝑟0 + 𝑖 with 0 ≤ 𝑖 <

𝑛 − 1. Therefore, RestartCounter solves the simultaneous restart problem, as
desired. �

E6.2 Suppose that you can customize each state machine, i.e., the state machine of
node 𝑣𝑖 may depend on 𝑖. Modify Algorithm 1 to work with 1-bit messages.
Prove that the modified algorithm is correct!

E6.3 Consider the case where the network 𝐺 = (𝑉, 𝐸) is an arbitrary connected graph
(i.e., not a path as described above). Suppose a fixed node 𝑣1 is the leader, and
that the radius 𝑅 (i.e., the maximum distance from 𝑣1 to any other node in the
network) is known to 𝑣1. Modify Algorithm 1 to solve the simultaneous restart
problem on 𝐺, and prove the correctness of your algorithm. What is the time
complexity of the modified algorithm?

6.2.1.2 A Solution with Constant-size FSMs Here we describe a solution
to the simultaneous restart problem that requires no previous knowledge of
the size of the network, and uses only a constant number of node states,
independently of the network size. The basic idea of the solution is recursive:
each “phase” divides the network in half, and then recursively solves the firing
squad problem on the two (equal sized) halves of the network. More specifically,
the first phase of the algorithm finds the midpoint(s) of the network, which
serve as leader(s) for the second phase. In each phase, the size of each “active”
component of the network gets cut in half, as does the amount of time to
complete the phase. At the end of the last phase, all nodes are in the ready

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

6.2 Synchronous Message Passing 9

state, at which point they simultaneously transition to start. Before the final
phase, each node will have at least one neighbor who is not in the ready state,
so no one transitions to start before the final phase.

Finding the center node of an “active” component—i.e., a set of nodes be-
tween consecutive ready nodes—is at the heart of the algorithm. The idea is
simple: initially the leader sends two messages to its right neighbor: a “fast”
message and a “slow” message. The fast message progresses one hop per round,
until it reaches the right end of the network. At this point, the fast message
bounces back from right to left, still moving at one hop per time step. Mean-
while, the slow message moves to the right at one hop every 3 rounds. Thus,
after b3𝑛/2c rounds, the two messages meet at the middle node or adjacent
middle nodes (depending on the parity of 𝑛). When the two messages meet,
the node(s) where they meet enter(s) the state ready, and initiate(s) fast/slow
messages both to the right and left. This concludes the first phase. The sub-
sequent phases progress analogously with the newly ready nodes serving as
leaders for the next phase.

In the 𝑘-th phase, the size of each active component is at most 𝑛/2𝑘 , and
all active components have the same size. In the final phase, all nodes are in
the ready state, and they simultaneously transition to start in the following
round. As for the run-time of the procedure, the duration of a phase is 3/2
times the size of active components during that phase. Thus, the total run-time
is

3
2
𝑛 + 3

2
· 𝑛

2
+ 3

2
· 𝑛

4
+ · · · < 3𝑛

∞∑︁
𝑘=1

1
2𝑘

= 3𝑛.

In order to describe and analyze the algorithm sketched above formally, we
describe explicit states and transition functions. The state space consists of 16
states, with the following symantics:

𝑅 the ready state (a.k.a. ready),
𝑆 the start state (a.k.a. start),
𝑄 the quiescent state (i.e., the nominal state before the procedure begins),
𝑄 ′ the quiescent state of the right-most node,
→
𝐹 𝑖 ,

←
𝐹 𝑖 fast message states moving right and left, respectively, for 𝑖 = 1, 2

→
𝑆 𝑖 ,
←
𝑆 𝑖 slow message states moving right and left, respectively, for 𝑖 = 1, 2, 3,

→
𝑊 ,

←
𝑊 waiting states indicating the direction of the previous “message” state.

We assume that each node sends its internal state to its neighbors in each
round. Thus, the transition function is specified by determining the next local
state of each node from the local states of itself and its neighbors at the end of

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

10 Chapter 6 Simulating Synchronous Systems

the previous round. We use the notation

𝑆l 𝑆 𝑆r

𝑆′

to indicate that a node in state 𝑆 whose left and right neighbors are in states 𝑆l
and 𝑆r, respectively, transititions to state 𝑆′.

We assume that for all rounds 𝑟 < 𝑟0, every node is in state 𝑄 except the
right-most nodes, which is in state 𝑄 ′. In round 𝑟0, the leader 𝑣0 transitions
to the ready state 𝑅. We now describe the transition function, along with the
semantics. We use the “wildcard” ∗ to indicate an arbitrary state. We use ⊥
to denote that a neighbor is nonexistent (i.e., for the left neighbor of 𝑣1 and
the right neighbor of 𝑣𝑛. In order to simplify the presentation, the following
rules are written in order of precedence. That is, if two rules apply (due to
wildcards), then the first rule appearing on the list below is applied.

1. Start if everyone is ready

𝑅 𝑅 𝑅

𝑆

⊥ 𝑅 𝑅

𝑆

𝑅 𝑅 ⊥

𝑆

2. Ready stays ready
∗ 𝑅 ∗

𝑅

3. Ready if both neighbors are

𝑅 ∗ 𝑅

𝑅

4. Ready states initiate a fast message in the correct direction

𝑅
←
𝑊 ∗
→
𝐹1

𝑅 𝑄 ∗
→
𝐹1

∗ →
𝑊 𝑅

←
𝐹1

5. Fast messages bounce

∗ →
𝐹1 𝑅

←
𝐹2

𝑅
←
𝐹1

∗
→
𝐹2

∗ →
𝐹1 𝑄 ′

←
𝐹2

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

6.2 Synchronous Message Passing 11

6. Rightmost node ready when first message arrives
→
𝐹1 𝑄 ′ ⊥

𝑅

7. Start a slow message after fast message leaves

𝑅
→
𝐹1

∗
→
𝑆 1

∗ ←
𝐹1 𝑅
←
𝑆 1

8. Pre-collision messages create ready nodes
→
𝑆 3

∗ ←
𝐹∗

𝑅

→
𝐹∗ ∗ ←

𝑆 3

𝑅

9. Colliding messages create ready nodes
→
𝑆 ∗

←
𝐹∗ ∗

𝑅

∗ →
𝑆 ∗

←
𝐹∗

𝑅

→
𝐹∗

←
𝑆 ∗ ∗

𝑅

∗ →
𝐹∗

←
𝑆 ∗

𝑅

10. Fast messages move forward
→
𝐹1

∗ ∗
→
𝐹1

→
𝐹2

∗ ∗
→
𝐹2

∗ ∗ ←
𝐹1

←
𝐹1

∗ ∗ ←
𝐹2

←
𝐹2

11. Slow messages wait

∗ →
𝑆 1

∗
→
𝑆 2

∗ →
𝑆 2

∗
→
𝑆 3

∗ ←
𝑆 1

∗
←
𝑆 2

∗ ←
𝑆 2

∗
←
𝑆 3

12. Slow messages move forward
→
𝑆 3

∗ ∗
→
𝑆 1

∗ ∗ ←
𝑆 3

←
𝑆 1

13. Wait after sending a message

∗ →
𝐹∗ ∗
→
𝑊

∗ →
𝑆 3

∗
→
𝑊

∗ ←
𝐹∗ ∗
←
𝑊

∗ ←
𝑆 3

∗
←
𝑊

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

12 Chapter 6 Simulating Synchronous Systems

14. Newly ready nodes send fast messages

∗ →
𝑊 𝑅

←
𝐹1

𝑅
←
𝑊 ∗
→
𝐹1

We give an illustration of an execution in Figure 6.1.
In order to prove the correctness of our construction, we formally introduce

some terminology. We assume without loss of generality that 𝑟0 = 0. We call
an interval 𝐼 = [𝑎, 𝑏] active in round 𝑟 if 𝑣𝑎−1 and 𝑣𝑏+1 are state 𝑅 or 𝑄 ′, but
no 𝑣𝑖 with 𝑖 ∈ 𝐼 is in state 𝑅. We say that 𝐼 becomes active in round 𝑟 if 𝐼 is an
active interval in round 𝑟, but not in round 𝑟 − 1.

Observation 6.9. Suppose 𝐼 becomes active in round 𝑟 > 0. Then by Rule 2,
in round 𝑟 − 1 there was some active interval 𝐼 ′ such that 𝐼 ⊆ 𝐼 ′, and some
node 𝑣𝑖 with 𝑖 ∈ 𝐼 ′ transitioned to state 𝑅 in round 𝑟.

We say that a phase begins in round 𝑟 if some interval 𝐼 becomes active in
round 𝑟. By convention, the zeroth phase begins in round 0 when 𝑣1 transitions
to 𝑅. The duration of the phase is the number of rounds until another phase
begins. In what follows, we will bound the duration of each phase and show
that during each phase, all active intervals have the same size.

Lemma 6.10. Suppose a phase begins in round 𝑟 > 0, and the interval 𝐼 =

[𝑎, 𝑏] becomes active in round 𝑟. Let 𝑐 = b(𝑎 + 𝑏)/2c, 𝑑 = d(𝑎 + 𝑏)/2e, and
𝑠 = b3 |𝐼 | /2c + 1.

Then the following hold.

1. In round 𝑟, all nodes 𝑣𝑖 with 𝑖 ∈ 𝐼 are in the same state, either
←
𝑊 ,

→
𝑊 , and

nodes 𝑣𝑎−1 and 𝑣𝑏+1 are in state 𝑅.
2. 𝐼 is active for all rounds 𝑟, 𝑟 + 1, . . . , 𝑠 − 1.
3. If |𝑆 | > 2, then a new phase begins in round 𝑟 + 𝑠 with intervals 𝐼ℓ =

[𝑎, 𝑐 − 1] and 𝐼𝑟 = [𝑑 + 1, 𝑏] becoming active.
4. If |𝑆 | = 2 then all nodes 𝑣𝑖 with 𝑖 ∈ 𝐼 transition to state 𝑅 in round 𝑟 + 𝑠.
(Note: A proof sketch will be added later. You’re not expected to verify this

on your own.)

Proposition 6.11. The 16 state machine described above solves the simultane-
ous restart problem on a network of size 𝑛 in at most 3𝑛 rounds.

Proof. For simplicity, we assume 𝑛 ≥ 4 and leave the cases 𝑛 = 2, 3 as an
exercise. We first prove that the state machine solves the simultaneous restart
problem. To this end, observe that by Lemma 6.10, there is a sequence of

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

6.2 Synchronous Message Passing 13

Figure 6.1
An illustration of the firing squad algorithm execution with 𝑛 = 15 nodes.

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

14 Chapter 6 Simulating Synchronous Systems

rounds 𝑟0 < 𝑟1 < · · · such that a phase begins in each round 𝑟𝑖 , and for each 𝑖,
no phase begins in any round 𝑟 satisfying 𝑟𝑖 < 𝑟 < 𝑟𝑖+1.

Claim. For every 𝑖 and round 𝑟 ∈ [𝑟𝑖 , 𝑟𝑖+1 − 1], all active intervals 𝐼 have the
same size, and all such intervals are deactivated in round 𝑟𝑖+1.

Proof of claim. We argue by induction on 𝑖. For the base case 𝑖 = 1, there is
a single active interval 𝐼 = [2, 𝑛 − 1] in round 𝑟0. By Lemma 6.10, 𝐼 is
deactivated in round 𝑟1 = 𝑟0 + 𝑠.
For the inductive step, suppose the claim holds for the phase beginning in
round 𝑟𝑖−1, and let 𝐼1, 𝐼2, . . . , 𝐼𝑚 be the intervals active during this phase.
Applying Lemma 6.10 and the inductive hypothesis, all 𝐼 𝑗 are the same
size, and each 𝐼 𝑗 becomes deactivated in round 𝑟𝑖 = 𝑟𝑖+1 + 𝑠, where 𝑠

is computed as in Lemma 6.10. Now fix some 𝐼 = 𝐼 𝑗 , and let 𝐼ℓ and
𝐼𝑟 be the intervals computed in Lemma 6.10. Then by the same lemma
|𝐼ℓ | = |𝐼𝑟 | = b(|𝐼 | − 1)/2c, and either both intervals are empty, or both
become active in round 𝑟𝑖 . Thus, the claim holds for 𝑟𝑖 as well.

By the claim, all active intervals during the 𝑖th phase have the same length,
which we denote ℓ𝑖 . Moreover, by Lemma 6.10, we have

ℓ𝑖+1 = b(ℓ𝑖 − 1)/2c . (6.2)

Therefore, there exists some minimal 𝑘 for which ℓ𝑘 ≤ 2. At the end of the 𝑘th
phase, all active nodes transition to state 𝑅 by item 4 or Lemma 6.10. Finally,
by Rule 1 of the transition function, all nodes simultaneous transition to 𝑆 in
the subsequent round. This concludes the proof of correctness.

To prove the run-time of the algorithm, by Lemma 6.10, duration of the 𝑖th
phase is b3ℓ𝑖/2c ≤ 3

2ℓ𝑖 , where ℓ0 = 𝑛 − 2 < 𝑛. Applying Equation (6.2)
inductively, we have ℓ𝑖 < ℓ0/2𝑖 . Therefore, the total duration is at most

𝑘∑︁
𝑖=0

3
2
ℓ𝑖 <

𝑘∑︁
𝑖=0

3
2
ℓ0

2𝑖

<
3
2
𝑛

∞∑︁
𝑖=0

2−𝑖

= 3𝑛.

This gives the desired bound on the round complexity. �

E6.4 Prove Proposition 6.11 in the cases 𝑛 = 2, 3.

E6.5 In the preceding discussion, we assumed that only the “leader” node 𝑣1 could
spontaneously initiate the execution of the algorithm. Modify the finite state

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

6.3 Asynchronous Message Passing 15

restart algorithm so that any single node can initiate a restart in a round. (Assume
that only a single node initiates the restart during the execution.) What is the
round complexity of the new algorithm?

6.3 Asynchronous Message Passing

As described above, the SMP model is unrealistic as a model for real computer
systems, as it makes overly optimistic assumptions about the computational
power of each node and synchrony between nodes in the network. Here, we
present a model—the AMP model—that does not make any such assumptions.
In the AMP model, nodes are not synchronized, and even simple local compu-
tations may take a long time to complete. The AMP model does not explicitly
bound computational time, space, or communication, but these aspects can be
reflected in the amount of time it takes for a processor to complete a single
“step” of its computation.

Like the SMP model, nodes in the AMP model communicate by passing
messages to neighboring nodes in the underlying network. Similar to the SMP
model, the AMP model is fault-free: every local computation is faithfully
(if slowly) performed, and all sent messages are eventually received by their
intended recipient. Thus, the AMP model is meant to encapsulate all models
that are based on fault-free message exchange.

Definition 6.12 (The AMP message passing model). The network is modeled as
a simple graph𝐺 = (𝑉, 𝐸) of 𝑛 nodes. Each node 𝑣 ∈ 𝑉 has a unique port num-
ber assigned to each neighbor from the range 1, 2, . . . , deg(𝑣) (where deg(𝑣)
denotes the degree—i.e., number of neighbors—of 𝑣). Nodes are modeled by
finite state machines 𝑇𝑣 = (𝑆, 𝑠𝑣,0,Σ,Λ, 𝑡, 𝑜), where the node-dependent initial
state 𝑠𝑣,0 is referred to as the input of node 𝑣. The input and output alphabets
are of the form Σ = (Σ0 × {1, . . . , deg(𝑣)}) ∪ Γ and Λ = Σ

deg(𝑣)
0 × Ω, where

Σ0 is the set of admissible messages.4 Σ0 and Ω contain the special symbol ⊥,
which we will use to indicate “no message” or “no output,” respectively. An
algorithm is executed based on events, where an event at node 𝑣 ∈ 𝑉 consists
of a node (1) starting to execute the algorithm, (2) receiving a local input from
Γ, or (3) receiving a message from a neighbor; nodes start to locally execute
the algorithm at the latest on receipt of the first message. Upon the 𝑖-th event
at node 𝑣, 𝑣 performs the following steps:

1. if the event is reception of a message 𝑚 on port 𝑝, set 𝑥 := (𝑚, 𝑝); if it was
the reception of local input 𝛾, set 𝑥 := 𝛾; otherwise set (𝑚, 𝑝) := (⊥, 1);

4 Again, we omit the resulting dependency of the state machine on deg(𝑣) from the notation.

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

16 Chapter 6 Simulating Synchronous Systems

2. update its state, i.e., 𝑠𝑣,𝑖 := 𝑡 (𝑠𝑣,𝑖−1, 𝑥);
3. for 𝑝 ∈ {1, . . . , deg(𝑣)}, send message 𝑜(𝑠𝑣,𝑖−1, 𝑥)𝑝 to the neighbor whose

port at 𝑣 is 𝑝; and
4. output 𝑜(𝑠𝑣,𝑖−1, 𝑥)deg(𝑣)+1.

If after event 𝑖 the FSM of 𝑣 reaches a state 𝑠 satisfying that
• 𝑡 (𝑠𝑣,𝑖 , ·) = 𝑠𝑣,𝑖 (no further state change possible),
• 𝑜(𝑠𝑣,𝑖 , ·)𝑝 = ⊥ for 𝑝 ∈ {1, . . . , deg(𝑣)} (no further messages can be sent),

and
• 𝑜(𝑠𝑣,𝑖 , ·)deg(𝑣)+1 = 𝑜𝑣 for some 𝑜𝑣 ∈ Ω (no further output change),

we say that 𝑣 terminated after 𝑖 steps with output 𝑜𝑣 . and call 𝑠 a terminal state.
Note that each sent message will be received, but we do not assume anything

about when this happens, except that messages are received after they are sent.

Remark 6.13. The fact that it is not specified when messages are received in
the AMP model results in non-deterministic executions. In contrast to the SMP
model, where the initial states fully determine the state of the system in all
rounds, in AMP the order in which messages are received might affect how the
node states evolve. We stress that “non-deterministic” does not automatically
mean “random,” let alone “uniformly random.” Ideally, we want that our
algorithms work correctly and efficiently for all possible executions in the AMP
model!

The AMP model has a suprising relationship with time. It matters only in
so far as it determines the (total) order in which events happen. The model
allows for a step, i.e., some node processing an event, to take a femtosecond
or 100 years. It is also possible that several nodes take steps concurrently at
the same time, so long as we maintain that all messages are in transit for a
positive amount of time. However, we could marginally move these concurrent
events in time so that they are not concurrent any more, without affecting the
computations performed by the nodes or the messages they send. Thus, so long
as the network does not interact with the “outside” world, in the AMP model
the role of time can be astracted to a total order of events such that if event 𝐵
is receiving a message sent on event 𝐴, then 𝐴 occurred before 𝐵.

Another peculiarity is that the description of the AMP model assumes that
nodes respond to events immediately. Thus, it may appear that nodes perform
calculations instantaneously! This is not the case, however. We can account for
the time required for local computations in response to an event in the transit
time of messages sent in response to it. That is, if a node 𝑣 sends a message to
𝑤 in response to some event, then the amount of time elapsed between when
the event occurs and when 𝑤 receives the message—which we refer to as the

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

6.3 Asynchronous Message Passing 17

end-to-end delay of the message—includes both the time it takes 𝑣 to perform
its local computations as well as the actual delay from when 𝑣 sends the message
to when 𝑤 receives the message.

Any algorithm in the AMP model can be executed in the synchronous model:
if all nodes start the execution at time 0 and the delay of each message is exactly
1 time unit, then the corresponding execution in the AMP model mimics the
respective execution in the SMP model. Thus, the AMP model is a generaliza-
tion (or relaxation) of the SMP model in the sense that every execution of an
SMP algorithm has a corresponding execution in the AMP model.

Thus far, our description of the AMP model does not allow us to measure the
“speed” of an algorithm. Indeed, since we make no assumptions about timing,
a node could take aribtrarily long to perform a single, simple operation. In
order to give some quantitative measure of how time-efficient an algorithm is
in the AMP model, we must make additional assumptions. In what follows,
we assume that delay of the slowest message, the maximum delay, is one unit
of time. That is, no more than one time unit lies between the event causing a
message to be sent and the event of the message being received. The complexity
of an algorithm is then the maximum number of time units elapsed for any
execution of the algorithm in which the first node(s) locally start the execution
at time 0.

Definition 6.14 (Asynchronous time complexity). Let A be an algorithm in
the AMP model, and let T denote a task performed byA. The time complexity
of A completing T is defined to be

sup {𝑟1 − 𝑟0 | T initiated at time 𝑟0, completed at time 𝑟1} , (6.3)

where, for a fixed network 𝐺, the supremum is taken over all possible states
of the individual nodes in round 𝑟0 and all possible transit times of at most 1.
That is, the time complexity of A completing T on 𝐺 is the maximum time
that elapses between when T is initiated until it is completed, provided that
messages are received at most 1 time unit after they were sent.

Remark 6.15. It is important to understand that the restriction to a maximum
transit time of 1 is without loss of generality; it is a normalization that enables
somewhat fair comparison between algorithms. For any execution in which
the maximum message transit time during [𝑟0, 𝑟1] equals Δ, we can construct
an execution with the “correct” maximum message transit time by letting
events that occur at time 𝑡 instead occur at time 𝑟0 + (𝑡 − 𝑟0)/Δ. As this
does neither change the order of events nor the nodes’ response to them, the
resulting execution has maximum transit time 1 during [𝑟0, 𝑟0 + (𝑟1 − 𝑟0)/Δ].

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

18 Chapter 6 Simulating Synchronous Systems

In other words, in executions with maximum end-to-end delay Δ, tasks with
asynchronous time complexity 𝑇 take at most Δ𝑇 time.

Remark 6.16. In general, it is beyond the control of the algorithm when local
inputs arrive. In order for the above notion of time complexity to be meaningful,
one needs that either the task description does not require nodes to wait for
local inputs when performing a task (although they might very well trigger the
task!) or make assumptions on their timely arrival.

E6.6 Can you come up with meaningful asynchronous variants of the “simultaneous”
restart problem? What is their time complexity? What else do they guarantee,
and what not?

We conclude with the following remarks.
• The AMP model is extremely pessimistic about timing, as it assume no

bounds whatsoever on computation time and how messages are in transit.
• This means its realistic in the sense that algorithms in this model can be

readily executed by the physical hardware (assuming we made sure there are
no faults!). However, the highly pessimistic assumptions on timing might
render the result (too) inefficient in practice.

• The SMP and the AMP models are two extremes, so understanding them also
helps understanding the range in between.

6.4 Simulating Synchrony

As we suggested above, the main conceptual advantage of the SMP model is
that in the SMP model it is relatively easy to design algorithms and reason about
their performance. Given the unrealistic assumptions made in the SMP model,
however, one may wonder how useful such algorithms are in practice. When
can an SMP algorithm be implemented in the more realistic AMP model?

In this section, we show the perhaps surprising result that every SMP algo-
rithm can be transformed into an equivalent algorithm in the AMP model. The
central idea is that of simulation: given any SMP algorithm, we can construct
an AMP algorithm that simulates each round of the SMP algorithm in the AMP
model.

The basic idea of the simulation is simple, and essentially boils down to
simulating the round counter from Example 6.4. Each node 𝑣 maintains a
round count 𝑖 corresponding to the next round of the SMP computation it
wishes to simulate. The node 𝑣 waits until all of its neighbors’ round counters
are at least 𝑖 − 1, which it learns from messages sent by its neighbors. In other
words, whenever a node increases its counter to some value 𝑖, it sends out

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

6.4 Simulating Synchrony 19

a message indicating this to each of its neighbors, and it waits for all of its
neighbors’ corresponding messages before increasing its counter to value 𝑖 + 1.
At this point, 𝑣 has all of the information it needs to perform round 𝑖 + 1, so
it performs the respective computations, sends messages to its neighbors, and
waits to proceed to the next round of its computation. Below, we formalize this
idea, and prove that it faithfully simulates the execution of any SMP algorithm.

We begin by formally defining what we mean by simulation. Intuitively,
this simply means that the simulating algorithm collects all the information
needed at each node to locally “run” the FSM of the simulated algorithm.
This is a bit tricky to express, as the simulating algorithm might need to do
a lot of bookkeeping and waiting for messages, etc., to ensure progress of the
computation.

Definition 6.17 (Simulating SMP in AMP). AMP algorithmA simulates SMP
algorithm B, if the following holds. Let 𝑇A𝑣 = (𝑆A , 𝑠A

𝑣,0,Σ
A ,ΛA , 𝑡A , 𝑜A) and

𝑇B𝑣 = (𝑆B , 𝑠B
𝑣,0,Σ

B ,ΛB , 𝑡B , 𝑜B) be the state machines of A and B at node
𝑣 ∈ 𝑉 , respectively. We require that ΓA = ΓB and ΩA = (ΩB)∗, i.e., ΩA is the
set of words over alphabet ΩB; the empty word 𝜀 indicates that the simulation
did not progress in the current step of A. Now, if for all 𝑣 ∈ 𝑉
• 𝑠A

𝑣,0 = 𝑠B
𝑣,0 = 𝑠𝑣,0 for feasible inputs 𝑠𝑣,0 and

• the concatenation of local inputs to A at 𝑣 equals the sequence (𝛾B
𝑣,𝑖
)𝑖∈N>0

of local inputs to B,

then concatenating the output words ofA is required to produce the same word
at all 𝑣 ∈ 𝑉 as concatenating the output symbols of B.

E6.7 Show that it is possible that B terminates at a node 𝑣 ∈ 𝑉 without A doing the
same when reaching the respective point in the simulation.

E6.8 Modify B such that we can infer from the output ofA when B has terminated at
𝑣 ∈ 𝑉 . Can A now always terminate when reaching the point in the simulation
when B does, or could there be a need to run A beyond this point?

Theorem 6.18. Given any algorithm B in SMP, there is an algorithm A that
simulates B in AMP. The asynchrononous time complexity of simulating the
first 𝑇 rounds of B is 𝑡0 + 𝑇 in executions where all nodes 𝑣 ∈ 𝑉 have woken
up by time 𝑡0 and for all 𝑖 ∈ N>0 the event of 𝑣 receiving 𝛾B

𝑣,𝑖
happens by time

𝑡0 + 𝑖. In graphs of diameter 𝐷, this implies an asynchronous time complexity
of 𝐷 + 𝑇 for simulating the first 𝑇 rounds of B in such executions.

Proof. Our strategy is for each node to perform the computations of B in the
first round and send the respective messages. For subsequent rounds, nodes

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

20 Chapter 6 Simulating Synchronous Systems

Algorithm 2 Response of the simulation algorithm A to an event at node
𝑣 ∈ 𝑉 . The pseudocode does not explicitly keep track of the state updates ofA,
collecting the output generated by reception of a message into a single word,
or outputting the empty word 𝜀 if the simulation makes no local progress.

1: if 𝑣 just woke up then
2: round𝑣 := input𝑣 := 1
3: 𝑠B

𝑣,1 := 𝑡 (𝑠B
𝑣,0, (⊥, . . . ,⊥))

4: for 𝑝 ∈ {1, . . . , deg(𝑣)} do
5: send (𝑜B (𝑠𝑣,0, (⊥, . . . ,⊥))𝑝 , 1) to port 𝑝
6: end for
7: output 𝑜B (𝑠𝑣,0, (⊥, . . . ,⊥))deg(𝑣)+1
8: end if
9: if 𝑣 received (𝑚B , 𝑖) on port 𝑝 then

10: store (𝑚B , 𝑖, 𝑝)
11: end if
12: if 𝑣 received local input 𝛾 then
13: store (𝛾, input𝑣)
14: input𝑣 := input𝑣 + 1
15: end if
16: while 𝑣 stores (𝛾, round𝑣) and (𝑚B𝑝 , round𝑣 , 𝑝) for all 𝑝 ∈ {1, . . . , deg(𝑣)}

do
17: round𝑣 := round𝑣 + 1
18: 𝑠B

𝑣,round𝑣 := 𝑡B (𝑠B
𝑣,round𝑣−1, (𝑚

B
1 , . . . , 𝑚

B
deg(𝑣) , 𝛾))

19: for 𝑝 ∈ {1, . . . , deg(𝑣)} do
20: send (𝑜B (𝑠B

𝑣,round𝑣−1, (𝑚
B
1 , . . . , 𝑚

B
deg(𝑣)))𝑝 , round𝑣) to port 𝑝

21: end for
22: output 𝑜B (𝑠B

𝑣,round𝑣−1, (𝑚
B
1 , . . . , 𝑚

B
deg(𝑣)))deg(𝑣)+1

23: end while

wait until they have received all messages from prior rounds and the next input
symbol. To ensure that this can be locally verified, nodes label their messages
with the round number and will send “empty” messages (i.e., a (⊥, 𝑖) messsage
for round 𝑖) whenever B does not send a message to a neighbor in a given
round. The pseudocode for this approach is given in Algorithm 2.

First, we claim that there is a time 𝑡0 by which all nodes have woken up. To
see this, recall that there is some node 𝑣 ∈ 𝑉 waking up at time 0. As nodes
send messages when waking up, all nodes in distance 1 of 𝑣 (i.e., its neighbors)
wake up by the time these messages arrive. They send messages, too, waking
up nodes in distance 2 from 𝑣, and so on. As 𝐺 is connected, we see that

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

6.4 Simulating Synchrony 21

all nodes in 𝐺 are woken up by chains of messages of length at most 𝐷, the
diameter of 𝐺. Note that in executions with maximum delay 1, this entails that
𝑡0 ≤ 𝐷. Hence, it remains to show thatA correctly simulates the first 𝑇 rounds
of B by time 𝑡0 + 𝑇 in executions with maximum delay 1 in which each 𝑣 ∈ 𝑉
receives local input 𝛾B

𝑣,𝑖
by time 𝑡0 + 𝑖.

We prove this statement by induction on 𝑇 , where the induction hypothesis
is that the state updates A computes, the messages it sends, and the output it
generates for rounds 𝑟 ≤ 𝑇 are correct and timely. That is, for all 𝑖 ≤ 𝑟, 𝑣 ∈ 𝑉 ,
and 𝑝 ∈ {1, . . . , deg(𝑣)},
• A sets 𝑠B

𝑣,𝑖+1 to the same value as B by time 𝑡0 + 𝑖,
• sends message (𝑚, 𝑖 + 1) to port 𝑝 by time 𝑡0 + 𝑖, where 𝑚 is the message B

sends to port 𝑝 in round 𝑖 + 1,
• receives message (𝑚, 𝑖+1) on port 𝑝 by time 𝑡0+𝑖+1, where 𝑚 is the message
B receives on port 𝑝 in round 𝑖 + 1, and

• outputs by time 𝑡0 + 𝑖 the symbol that B outputs in round 𝑖 + 1, but not before
outputting the respective symbol for round 𝑖 (if 𝑖 > 0).

We anchor the induction at 𝑟 = 0 by observing that (i) 𝑠B
𝑣,0 is provided to A

as input, (ii) it computes the state, messages to send, and output that B would
for round 1 immediately (i.e., by time 𝑡0), and (iii) the respective messages are
received by time 𝑡0 + 1.

For the induction step from 𝑟−1 to 𝑟 , observe that by the induction hypothesis,
we only need to check the respective statements for index 𝑖 = 𝑟 . From the
hypothesis for 𝑖 = 𝑟 − 1, we have that all round 𝑟 messages are received by
time 𝑡0 + 𝑟 . By the prerequisites of the theorem, 𝑣 ∈ 𝑉 receives input 𝛾𝑣,𝑟 by
time 𝑡0 + 𝑟, and by Definition 6.17 after receiving the previous input symbols;
as the algorithm keeps count of the number of input symbols it received, it
stored (𝛾𝑣,𝑟 , 𝑟) by time 𝑡0 + 𝑟. Hence, the while loop lets 𝑣 compute 𝑠B

𝑣,𝑟+1, the
messages it sends in round 𝑟 + 1 of B, and the output of B in round 𝑟 + 1 by
this time. As the sent messages are received by time 𝑡0 + 𝑟 + 1 and the output
for round 𝑟 + 1 is generated after the one for round 𝑟 (as the variable round𝑣 is
only ever increased), this completes the induction step and thus the proof. �

E6.9 The simulation uses counter values 𝑖 that grow indefinitely and stores the entire
history of the computation. Make it work with constant-sized modulo counters,
messages of dlogΣ0e +1 bits and 2 deg(𝑣) message buffers each holding dlogΣ0e
bits (but no limit on the memory dedicated to input events)! Hint: Show that
for each {𝑣, 𝑤} ∈ 𝐸 , |round𝑣 − round𝑤 | ≤ 1 at all times. Use this to prove that
the simulation of round 𝑖 at 𝑣 is completed before any message (𝑚, 𝑖 + 2) can be
received by 𝑣.

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

22 Chapter 6 Simulating Synchronous Systems

Corollary 6.19. If there are no local inputs, i.e., Γ = {𝛾} for a dummy
symbol 𝛾, Theorem 6.18 holds without any conditions on input events, where
the simulation algorithm A uses messages of dlogΣ0e + 1 bits and at most
2 deg(𝑣) dlogΣ0e + 1 bits of additional memory at 𝑣 than B.

Proof. Instead of receiving and storing input symbols labeled according to their
order of arrival, the simulation algorithm simply ignores all input events and
always plugs in 𝛾 when calling 𝑡 or 𝑜. It needs on bit of memory to distinguish
between odd and even rounds, i.e., it only stores round𝑣 mod 𝑖, and also uses
only this value when sending messages. The memory requirements then follow
by using different sets of message buffers for odd and even rounds, which can
safely be reused once the simulation of the respective round is complete. �

Remark 6.20. In general, if the simulated algorithm has non-trivial inputs, the
memory overhead of the simulating algorithm might be arbitrarily large. For
example, we could require that A in round 𝑖 at node 𝑣 outputs 0 if any of its
neighbors received an input of 0 in the previous round, but 1 otherwise. This
clearly can be implemented easily with bounded memory in the synchronous
setting. However, the simulation algorithm A might suffer from an extremely
slow node. While messages from 𝑤 do not arrive, but input events occur at the
other neighbors of 𝑣, the system state must maintain information on these input
events. Regardless of whether this is done by storing it at nodes or “storing”
it in messages that bounce back and forth between nodes, we cannot bound the
amount of hardware required if there are not guarantees on the timing of input
events whatsoever. This is an example where worst-case assumptions on timing
become impractical, and more restrictive assumptions need to be made—and
justified.

E6.10 What do you get when applying Theorem 6.18 to the algorithm solving the
synchronous restart problem from Section 6.2.1.1? Can you see some practical
utility of the result?

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

Bibliography

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 28, 2020 2:40pm

26 Bibliography

