
MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

Contents

6 Simulating Synchronous Systems 1
6.1 Overview 2
6.2 Synchronous Message Passing 2

6.2.1 Example: Simultaneous Restart 5
Bibliography 15

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

6 Simulating Synchronous Systems

Chapter Contents
6.1 Overview 2
6.2 Synchronous Message Passing 2

Learning Goals
The main goal of this chapter is to introduce a simple yet highly idealized
model of distributed computing: the synchronous model. We design and
analyze algorithms for fundamental problems in the synchronous model, and
discuss the model’s power and limitations. We then show how one can simulate
the synchronous model in an asynchronous system.

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

2 Chapter 6 Simulating Synchronous Systems

6.1 Overview

Perhaps the simplest theoretical distributed models are synchronous models.
Here, we describe a synchronous message passing model, SMP, that abstracts
away many computational details that must be considered in practice: local
computational costs, bandwidth restrictions, asynchrony, and faults. Nonethe-
less, SMP is instructive for designing and reasoning about distributed protocols.
In SMP, all nodes progress in lock step, and all messages sent in each round
are received before the next round begins. Thus, all nodes progress in a coor-
dinated way. The only computational restriction in SMP is locality: each node
maintains a private state, and can only communicate with neighboring nodes
to learn about their states.

Since the synchronous model assumes so few restrictions on its computational
power, lower bounds for this model transfer a fortiori to weaker, more realistic
computational models. Yet synchronous protocols can often be adapted to
more realistic models as well—the challenge is to understand how.

We next introduce a fully asychronous message passing model, AMP, that
makes no assumptions whatsoever about synchrony between nodes. In AMP,
all computations occur in response to events without any synchrony between the
timing of events; local computations and message delivery may take arbitrarily
long to complete.

Despite the seemingly pessimistic assumption of total asynchrony in the AMP
model, we present a general technique, called an 𝛼-synchronizer, that allows
one to simulate any algorithm for the SMP model in the seemingly much weaker
AMP model. Specifically, we will prove the following theorem.

Theorem ??. Given any algorithmA in SMP with running time 𝑇 , there is an
algorithm B that simulates A in AMP with a running time of 𝑇 .

In general, it is often fruitful to first understand how to simulate a more
powerful model before attempting to solve a problem in the more restrictive
model directly. The 𝛼-synchronizer technique we describe gives a general
procedure for simulating executions of SMP in AMP.

6.2 Synchronous Message Passing

We describe a distributed system by a simple, connected graph 𝐺 = (𝑉, 𝐸) (see
Appendix ??), where𝑉 is the set of 𝑛 B |𝑉 | nodes (our computational entities,
e.g., clock domains on a chip, processors in a multi-core machine, or computers
in a network). Nodes 𝑣 and 𝑤 can directly communicate if and only if there
is an edge {𝑣, 𝑤} ∈ 𝐸 . We model each node in the network as a finite state

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

6.2 Synchronous Message Passing 3

machine, where the state of a node includes the contents of messages received
from other nodes .

Definition 6.1. [The SMP model] The network consists of as a simple graph
𝐺 = (𝑉, 𝐸) of 𝑛 nodes. Each node 𝑣 ∈ 𝑉 has a unique port number assigned
to each neighbor from the range 1, 2, . . . , deg(𝑣) (where deg(𝑣) denotes the
degree—i.e., number of neighbors—of 𝑣). Nodes are modeled by finite state
machines. An algorithm is executed in synchronous rounds, where in each
round, each node performs the following steps:

1. update its local state according to its transition function applied to its
current state at the beginning of the round and messages received in
previous rounds;

2. send messages to its neighbors in the graph 𝐺;
3. receive messages (that were sent by neighbors in step 2 of the current

round).

In addition, nodes may determine a (local) output and terminate at the end of
a round.

In SMP, we think of the state of a node 𝑣 at the beginning of round as
consisting of both the state of 𝑣’s “internal” finite state machine, as well as the
state (i.e., value) of messages received in the previous round. Thus, for a node
𝑣 with two neighbors, the state of 𝑣 is a triple of values (state𝑣 , rec1, rec2).
Here rec1 and rec2 are the messages recieved from 𝑣’s neighbors with port
numbers 1 and 2 (respectively) in the previous round. The transition function
for 𝑣 determines both how 𝑣 updates state𝑣 and the messages, snd1 and snd2,
𝑣 sends to its neighbors in Step 2 of the current round.

Example 6.2 (Distributed Program Counter). In a distributed program counter,
each node 𝑣 maintains a variable count𝑣 ∈ N satisfying the following condi-
tions:

1. monotonicity: for all times 𝑡, 𝑡 ′ with 𝑡 ≤ 𝑡 ′, we have count𝑣 (𝑡) ≤
count𝑣 (𝑡 ′);

2. increment: if count𝑣 (𝑡) > 0 at time 𝑡, then there exists some time 𝑡 ′(< 𝑡)
for which count𝑣 (𝑡 ′) = count𝑣 (𝑡) − 1;

3. waiting for neighbors: for all times 𝑡 and all neighbors 𝑤 of 𝑣 count𝑣 (𝑡) ≤
count𝑤 (𝑡) + 1.

Conditions 1 and 2 simply require that count𝑣 attains values 0, 1, 2, . . . se-
quentially (though the count is allowed to stop at any time). Condition 3 is
important for distributed coordination: it stipulates that 𝑣 cannot increase
count𝑣 until all of its neighbors’ counters have also reached the value count𝑣 .

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

4 Chapter 6 Simulating Synchronous Systems

Implementing a distributed program counting in SMP is extremely simple, as
each node can set count𝑣 to the current round:

1: count := 0;
2: for all rounds 𝑟 do
3: count := count + 1
4: end for

The pseudo-code above clearly satisfies the monotonicity and increment con-
ditions. The wait-up condition is satisfied due to the specification of the SMP
model: all nodes are assumed to transition from one round to the next at pre-
cisely the same time. Thus, in the SMP model, the pseudo-code above gives
the stronger guarantee that for all times 𝑡 and all nodes 𝑣, 𝑤 ∈ 𝑊 , we have
count𝑣 (𝑡) = count𝑤 (𝑡). Moreover, this perfect synchrony is achieved without
any communication! Achieving such perfect synchronization is, of course, im-
possible in practice. In the following section, we will show how to implement
a distributed program counter in a fully asynchronous model. Understanding
how to do so will give the key insight into simulating any synchronous algorithm
in the asynchronous model.

E6.1 Consider a relaxation of a distributed program counter where item 2 is replaced
with:

2’ weak increment: if count𝑣 (𝑡) > count𝑣 (0) at time 𝑡, then there exists some
time 𝑡 ′(< 𝑡) for which count𝑣 (𝑡 ′) = count𝑣 (𝑡) − 1.

That is, count𝑣 may be initialized to an arbitrary count, but the other properties
of a distributed program counter must be maintained. Write pseudo-code for
an algorithm that solves this relaxed program counter problem, and prove its
correctness (i.e., that it satisfies the three conditions of a distributed program
counter with the modified condition 2).

In SMP, an important measure of the quality of an algorithm is the number of
rounds the algorithm requires in order to perform some task. (Other important
considerations might be the message size, number of states in the finite state
machine, or complexity of local computations performed. For now, we focus
on the number of rounds.) The notion of time complexity formalizes a measure
of complexity for performing tasks in SMP.

Definition 6.3. Let A be an algorithm in the SMP model, and let T denote a
task performed byA. The time complexity ofA completing T is defined to be

sup {𝑟1 − 𝑟0 | T initiated in round 𝑟0, completed in round 𝑟1} , (6.1)

where, for a fixed network 𝐺, the supremum is taken over all possible states of
the individual nodes in round 𝑟0. That is, the time complexity ofA completing

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

6.2 Synchronous Message Passing 5

T on 𝐺 is the maximum number of rounds that elapse between when T is
initiated until it is completed.

Remark 6.4. We defined time complexity as the worst-case completion time for
a fixed network 𝐺. However, it is often valuable to understand the performance
of algorithms on families of graphs, and how the time complexity depends on
different graph parameters. For example, one would often like to know how
the performance of an algorithm scales with the size—i.e., number of nodes—
of the network. One can then interpret the sup in (6.1) to be taken over all
inputs and all networks with 𝑛 nodes, so that the time complexity becomes
a function 𝑛. Thus the statement “algorithm A has time complexity 𝑂 (𝑛)”
can be interprated as saying that the worst case time complexity of A over
all graphs with 𝑛 nodes scales (at most) linearly in the size of the network.
Similarly, one can analyze how the time complexity of A depends on, say, the
network diameter, 𝐷, or maximum degree of a node, Δ (or even a combination
of parameters) by interpretating the sup in (6.1) as taken over all networks with
fixed values of these parameters, and treating the complexity as a function of
the parameters of interest.

Remark 6.5. Definition 6.3 allows for the possibility that a task is completed
in the same round that it is initiated. Thus, the time complexity for a task can
be 0.

6.2.1 Example: Simultaneous Restart
Here, we introduce a fundamental problem in hardware design that we call
simultaneous restart.1 In the simultaneous restart problem, a node—which
we call the leader—enters a state ready (due to some external signal, say)
at the beginning of some arbitrary round 𝑟0. The goal is for all nodes to
simultaneously enter a state start at some later round 𝑟1 > 𝑟0.

For the present discussion, the network consists of a path of 𝑛 nodes, which
we will refer to as 𝑣1, 𝑣2, . . . , 𝑣𝑛, ordered from left to right. For each 𝑣𝑖 with
2 ≤ 𝑖 ≤ 𝑛− 1, 𝑣𝑖−1 is 𝑣𝑖’s left neighbor, with associated port number 1, and 𝑣𝑖+1
is 𝑣𝑖’s right neighbor with port number 2. We assume that the left-most node
𝑣1 is the leader.

6.2.1.1 A Solution with Counters We first present a conceptually simple
counter-based solution to the simultaneous restart problem, assuming that the

1 Historically, this problem was called the “firing squad” problem, but we opt for the less morbid
and more descriptive “simultaneous restart.” See the chapter notes for a discussion of the classical
literature on the subject.

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

6 Chapter 6 Simulating Synchronous Systems

network size, 𝑛, is known to the leader, and that messages may be as large as
log 𝑛 bits. While the solution we present is conceptually straightforward, the
resources required to implement the counter-based solution in hardware may
be unsuitably large. We present a solution where the state space and message
sizes are constant (indpendent of 𝑛) in the sequel.

In our counter-based solution, the restart is initiated when the leader, 𝑣1,
receives a signal “restart.” At that point, the leader starts a countdown of
𝑛−1 rounds until it enters the start state. It also decrements its counter to 𝑛−2,
and sends this value to its right neighbor. Upon receiving a counter value, each
𝑣𝑖 decrements the received value, sets its own counter to the decremented value,
and sends this value to its right neighbor. Each round thereafter, 𝑣𝑖 decrements
its counter until it reaches 0. Once 𝑣𝑖’s counter reaches 0, 𝑣𝑖 transitions to
start. We give pseudo-code in Algorithm 1.

Algorithm 1 RestartCounter.
1: count := ∞
2: for all rounds 𝑟 do
3: if leader and receive restart then
4: count := 𝑛 − 1 ⊲ set local counter
5: snd2 := 𝑛 − 1 ⊲ send counter value to right neighbor
6: end if
7: if rec1 ≠ ∅ then ⊲ receive a count from left neighbor
8: count := rec1 − 1
9: snd2 := count ⊲ send decremented count to right neighbor

10: else if count < ∞ then
11: count := count − 1
12: end if
13: if count = 0 then
14: state := start
15: end if
16: end for

Proposition 6.6. The algorithm RestartCounter (Algorithm 1) solves the si-
multaneous restart problem in 𝑛 − 1 rounds.

Proof. Let 𝑟0 denote the round in which the leader receives the restart mes-
sage. For 𝑖 = 0, 1, 2, . . . , 𝑛 − 1, we claim that the following properties hold at
the end of round 𝑟0 + 𝑖:
1. 𝑣𝑖 sets count𝑖 to 𝑛 − 𝑖 − 1 and sends this value to 𝑣𝑖+1,

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

6.2 Synchronous Message Passing 7

2. all 𝑣 𝑗 with 𝑗 ≤ 𝑖 satisfy count 𝑗 = 𝑛 − 𝑖 − 1.

We argue by induction on 𝑖. The base case 𝑖 = 0 is immediate from Lines 4
and 5. For the inductive step, assume items 1 and 2 above hold for round
𝑟0 + 𝑖 with 𝑖 > 0. By the inductive hypothesis, node 𝑣𝑖+1 receives the message
“𝑛 − 𝑖 − 1” from 𝑣𝑖 in round 𝑟0 + 𝑖 + 1. In Lines 8 and 9, 𝑣𝑖+1 sets count to
𝑛 − 𝑖 − 2 = 𝑛 − (𝑖 + 1) − 1 and sends this value to 𝑣𝑖+2. Thus 𝑣𝑖 satisfies items 1
and 2 of the claim in round 𝑟0+ 𝑖+1. For each 𝑗 < 𝑖+1 the inductive hypothesis
implies that count 𝑗 = 𝑛 − 𝑖 − 1 at the beginning of round 𝑖 + 1. This value is
decremented in Line 11, so that count 𝑗 = 𝑛 − (𝑖 + 1) − 1 at the end of round
𝑟0 + 𝑖 + 1. Therefore 𝑣 𝑗 satisfies item 2 for all 𝑗 < 𝑖 + 1 at the end of round 𝑖 + 1
as well. This concludes the inductive argument.

By item 2 above, all nodes transition to state start in round 𝑟1 = 𝑟0 + 𝑖 − 1
(Line 14), and no node transitions to start in any round 𝑟0 + 𝑖 with 0 ≤ 𝑖 <

𝑛 − 1. Therefore, RestartCounter solves the simultaneous restart problem, as
desired. �

E6.2 Suppose that you can customize each state machine, i.e., the state machine of
node 𝑣𝑖 may depend on 𝑖. Modify Algorithm 1 to work with “empty” messages,
i.e., the only communicated bit of information is whether a message was sent or
not. Prove that the modified algorithm is correct!

E6.3 Consider the case where the network 𝐺 = (𝑉, 𝐸) is an arbitrary connected graph
(i.e., not a path as described above). Suppose a fixed node 𝑣1 is the leader, and
that the radius 𝑅 (i.e., the maximum distance from 𝑣1 to any other node in the
network) is known to 𝑣1. Modify Algorithm 1 to solve the simultaneous restart
problem on 𝐺, and prove the correctness of your algorithm. What is the time
complexity of the modified algorithm?

6.2.1.2 A Finite State Solution Here we describe a solution to the simul-
taneous restart problem that requires no previous knowledge of the size of the
network, and uses only a constant number of node states, independently of the
network size. The basic idea of the solution is recursive: each “phase” divides
the network in half, and then recursively solves the firing squad problem on the
two (equal sized) halves of the network. More specifically, the first phase of
the algorithm finds the midpoint(s) of the network, which serve as leader(s) for
the second phase. In each phase, the size of each “active” component of the
network gets cut in half, as does the amount of time to complete the phase. At
the end of the last phase, all nodes are in the ready state, at which point they
simultaneously transition to start. Before the final phase, each node will have
at least one neighbor who is not in the ready state, so no one transitions to
start before the final phase.

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

8 Chapter 6 Simulating Synchronous Systems

Finding the center node of an “active” component—i.e., a set of nodes be-
tween consecutive ready nodes—is at the heart of the algorithm. The idea is
simple: initially the leader sends two messages to its right neighbor: a “fast”
message and a “slow” message. The fast message progresses one hop per round,
until it reaches the right end of the network. At this point, the fast message
bounces back from right to left, still moving at one hop per time step. Mean-
while, the slow message moves to the right at one hop every 3 rounds. Thus,
after b3𝑛/2c rounds, the two messages meet at the middle node or adjacent
middle nodes (depending on the parity of 𝑛). When the two messages meet,
the node(s) where they meet enter(s) the state ready, and initiate(s) fast/slow
messages both to the right and left. This concludes the first phase. The sub-
sequent phases progress analogously with the newly ready nodes serving as
leaders for the next phase.

In the 𝑘-th phase, the size of each active component is at most 𝑛/2𝑘 , and
all active components have the same size. In the final phase, all nodes are in
the ready state, and they simultaneously transition to start in the following
round. As for the run-time of the procedure, the duration of a phase is 3/2
times the size of active components during that phase. Thus, the total run-time
is

3
2
𝑛 + 3

2
· 𝑛

2
+ 3

2
· 𝑛

4
+ · · · < 3𝑛

∞∑︁
𝑘=1

1
2𝑘

= 3𝑛.

In order to describe and analyze the algorithm sketched above formally, we
describe explicit states and transition functions. The state space consists of 16
states, with the following symantics:

𝑅 the ready state (a.k.a., ready),
𝑆 the start state (a.k.a. start),
𝑄 the quiescent state (i.e., the nominal state before the procedure begins),
𝑄 ′ the quiescent state of the right-most node,
→
𝐹 𝑖 ,

←
𝐹 𝑖 fast message states moving right and left, respectively, for 𝑖 = 1, 2

→
𝑆 𝑖 ,
←
𝑆 𝑖 slow message states moving right and left, respectively, for 𝑖 = 1, 2, 3,

→
𝑊 ,

←
𝑊 waiting states indicating the direction of the previous “message” state.

We assume that each node sends its internal state to its neighbors in each
round. Thus, the transition function is specified by determining the next local
state of each node from the local states of itself and its neighbors at the end of
the previous round. We use the notation

𝑆l 𝑆 𝑆r

𝑆′

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

6.2 Synchronous Message Passing 9

to indicate that a node in state 𝑆 whose left and right neighbors are in states 𝑆l
and 𝑆r, respectively, transititions to state 𝑆′.

We assume that for all rounds 𝑟 < 𝑟0, every node is in state 𝑄 except the
right-most nodes, which is in state 𝑄 ′. In round 𝑟0, the leader 𝑣0 transitions
to the ready state 𝑅. We now describe the transition function, along with the
semantics. We use the “wildcard” ∗ to indicate an arbitrary state. We use ⊥
to denote that a neighbor is nonexistent (i.e., for the left neighbor of 𝑣1 and
the right neighbor of 𝑣𝑛. In order to simplify the presentation, the following
rules are written in order of precedence. That is, if two rules apply (due to
wildcards), then the first rule appearing on the list below is applied.

1. Start if everyone is ready

𝑅 𝑅 𝑅

𝑆

⊥ 𝑅 𝑅

𝑆

𝑅 𝑅 ⊥

𝑆

2. Ready stays ready
∗ 𝑅 ∗

𝑅

3. Ready if both neighbors are

𝑅 ∗ 𝑅

𝑅

4. Ready states initiate a fast message in the correct direction

𝑅
←
𝑊 ∗
→
𝐹1

𝑅 𝑄 ∗
→
𝐹1

∗ →
𝑊 𝑅

←
𝐹1

5. Fast messages bounce

∗ →
𝐹1 𝑅

←
𝐹2

𝑅
←
𝐹1

∗
→
𝐹2

∗ →
𝐹1 𝑄 ′

←
𝐹2

6. Rightmost node ready when first message arrives
→
𝐹1 𝑄 ′ ⊥

𝑅

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

10 Chapter 6 Simulating Synchronous Systems

7. Start a slow message after fast message leaves

𝑅
→
𝐹1

∗
→
𝑆 1

∗ ←
𝐹1 𝑅
←
𝑆 1

8. Pre-collision messages create ready nodes
→
𝑆 3

∗ ←
𝐹∗

𝑅

→
𝐹∗ ∗ ←

𝑆 3

𝑅

9. Colliding messages create ready nodes

∗ →
𝑆 ∗

←
𝐹∗

𝑅

→
𝐹∗

←
𝑆 ∗ ∗

𝑅

∗ →
𝐹∗

←
𝑆 ∗

𝑅

→
𝑆 ∗

←
𝐹∗ ∗

𝑅

10. Fast messages move forward
→
𝐹1

∗ ∗
→
𝐹1

→
𝐹2

∗ ∗
→
𝐹2

∗ ∗ ←
𝐹1

←
𝐹1

∗ ∗ ←
𝐹2

←
𝐹2

11. Slow messages wait

∗ →
𝑆 1

∗
→
𝑆 2

∗ →
𝑆 2

∗
→
𝑆 3

∗ ←
𝑆 1

∗
←
𝑆 2

∗ ←
𝑆 2

∗
←
𝑆 3

12. Slow messages move forward
→
𝑆 3

∗ ∗
→
𝑆 1

∗ ∗ ←
𝑆 3

←
𝑆 1

13. Wait after sending a message

∗ →
𝐹∗ ∗
→
𝑊

∗ →
𝑆 3

∗
→
𝑊

∗ ←
𝐹∗ ∗
←
𝑊

∗ ←
𝑆 3

∗
←
𝑊

14. Newly ready nodes send fast messages

∗ →
𝑊 𝑅

←
𝐹1

𝑅
←
𝑊 ∗
→
𝐹1

We give an illustration of an execution in Figure 6.1.
In order to prove the correctness of our construction, we formally introduce

some terminology. We assume without loss of generality that 𝑟0 = 0. We call

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

6.2 Synchronous Message Passing 11

Figure 6.1
An illustration of the firing squad algorithm execution with 𝑛 = 15 nodes.

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

12 Chapter 6 Simulating Synchronous Systems

an interval 𝐼 = [𝑎, 𝑏] active in round 𝑟 if 𝑣𝑎−1 and 𝑣𝑏+1 are state 𝑅 or 𝑄 ′, but
no 𝑣𝑖 with 𝑖 ∈ 𝐼 is in state 𝑅. We say that 𝐼 becomes active in round 𝑟 if 𝐼 is an
active interval in round 𝑟, but not in round 𝑟 − 1.

Observation 6.7. Suppose 𝐼 becomes active in round 𝑟 > 0. Then by Rule 2,
in round 𝑟 − 1 there was some active interval 𝐼 ′ such that 𝐼 ⊆ 𝐼 ′, and some
node 𝑣𝑖 with 𝑖 ∈ 𝐼 ′ transitioned to state 𝑅 in round 𝑟.

We say that a phase begins in round 𝑟 if some interval 𝐼 becomes active in
round 𝑟. By convention, the zeroth phase begins in round 0 when 𝑣1 transitions
to 𝑅. The duration of the phase is the number of rounds until another phase
begins. In what follows, we will bound the duration of each phase and show
that during each phase, all active intervals have the same size.

Lemma 6.8. Suppose a phase begins in round 𝑟 > 0, and the interval 𝐼 = [𝑎, 𝑏]
becomes active in round 𝑟 . Let 𝑐 = b(𝑎 + 𝑏)/2c, 𝑑 = d(𝑎 + 𝑏)/2e, and
𝑠 = b3 |𝐼 | /2c + 1.

Then the following hold.

1. In round 𝑟, all nodes 𝑣𝑖 with 𝑖 ∈ 𝐼 are in the same state, either
←
𝑊 ,

→
𝑊 , and

nodes 𝑣𝑎−1 and 𝑣𝑏+1 are in state 𝑅.
2. 𝐼 is active for all rounds 𝑟, 𝑟 + 1, . . . , 𝑠 − 1.
3. If |𝑆 | > 2, then a new phase begins in round 𝑟 + 𝑠 with intervals 𝐼ℓ =

[𝑎, 𝑐 − 1] and 𝐼𝑟 = [𝑑 + 1, 𝑏] becoming active.
4. If |𝑆 | = 2 then all nodes 𝑣𝑖 with 𝑖 ∈ 𝐼 transition to state 𝑅 in round 𝑟 + 𝑠.
(Note: a proof sketch will be added later. You are not expected to verify this

on your own.)

Proposition 6.9. The 16 state machine described above solves the simultaneous
restart problem on a network of size 𝑛 in at most 3𝑛 rounds.

Proof. For simplicity, we assume 𝑛 ≥ 4 and leave the cases 𝑛 = 2, 3 as an
exercise. We first prove that the state machine solves the simultaneous restart
problem. To this end, observe that by Lemma 6.8, there is a sequence of rounds
𝑟0 < 𝑟1 < · · · such that a phase begins in each round 𝑟𝑖 , and for each 𝑖, no
phase begins in any round 𝑟 satisfying 𝑟𝑖 < 𝑟 < 𝑟𝑖+1.

Claim. For every 𝑖 and round 𝑟 ∈ [𝑟𝑖 , 𝑟𝑖+1 − 1], all active intervals 𝐼 have the
same size, and all such intervals are deactivated in round 𝑟𝑖+1.

Proof of claim. We argue by induction on 𝑖. For the base case 𝑖 = 1, there
is a single active interval 𝐼 = [2, 𝑛 − 1] in round 𝑟0. By Lemma 6.8, 𝐼 is
deactivated in round 𝑟1 = 𝑟0 + 𝑠.

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

6.2 Synchronous Message Passing 13

For the inductive step, suppose the claim holds for the phase beginning in
round 𝑟𝑖−1, and let 𝐼1, 𝐼2, . . . , 𝐼𝑚 be the intervals active during this phase.
Applying Lemma 6.8 and the inductive hypothesis, all 𝐼 𝑗 are the same
size, and each 𝐼 𝑗 becomes deactivated in round 𝑟𝑖 = 𝑟𝑖+1 + 𝑠, where 𝑠

is computed as in Lemma 6.8. Now fix some 𝐼 = 𝐼 𝑗 , and let 𝐼ℓ and
𝐼𝑟 be the intervals computed in Lemma 6.8. Then by the same lemma
|𝐼ℓ | = |𝐼𝑟 | = b(|𝐼 | − 1)/2c, and either both intervals are empty, or both
become active in round 𝑟𝑖 . Thus, the claim holds for 𝑟𝑖 as well.

By the claim, all active intervals during the 𝑖th phase have the same length,
which we denote ℓ𝑖 . Moreover, by Lemma 6.8, we have

ℓ𝑖+1 = b(ℓ𝑖 − 1)/2c . (6.2)

Therefore, there exists some minimal 𝑘 for which ℓ𝑘 ≤ 2. At the end of the 𝑘th
phase, all active nodes transition to state 𝑅 by item 4 or Lemma 6.8. Finally,
by Rule 1 of the transition function, all nodes simultaneous transition to 𝑆 in
the subsequent round. This concludes the proof of correctness.

To prove the run-time of the algorithm, by Lemma 6.8, duration of the 𝑖th
phase is b3ℓ𝑖/2c ≤ 3

2ℓ𝑖 , where ℓ0 = 𝑛 − 2 < 𝑛. Applying Equation (6.2)
inductively, we have ℓ𝑖 < ℓ0/2𝑖 . Therefore, the total duration is at most

𝑘∑︁
𝑖=0

3
2
ℓ𝑖 <

𝑘∑︁
𝑖=0

3
2
ℓ0

2𝑖

<
3
2
𝑛

∞∑︁
𝑖=0

2−𝑖

= 3𝑛.

This gives the desired bound on the round complexity. �

E6.4 Prove Proposition 6.9 in the cases 𝑛 = 2, 3.

E6.5 In the preceding discussion, we assumed that only the “leader” node 𝑣1 could
spontaneously initiate the execution of the algorithm. Modify the finite state
restart algorithm so that any single node can initiate a restart in a round. (Assume
that only a single node initiates the restart during the execution.) What is the
round complexity of the new algorithm?

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

Bibliography

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

MITPress NewMath.cls LATEX Book Style Size: 6x9 December 18, 2020 6:02pm

18 Bibliography

