

Lecture 10: Learning halfpaces - Perceptron algorithm

Themis Gouleakis

June 22, 2021

Halfspaces

- Other names: Linear Threshold functions, Perceptrons, Linear separators, Threshold Gates, Weighted Voting Games, etc
- **Extensively studied in ML since** [Rosenblatt 58]

Definition: $f : \mathbb{R}^d \to \{\pm 1\}$, such that $f(\mathbf{x}) = \text{sgn}(\langle \mathbf{w}, \mathbf{x} \rangle - \theta)$, $\|\mathbf{w}\|_2 = 1$ where $\mathbf{x} \in \mathbb{R}^d, \theta \in \mathbb{R}$.

planek institut

PAC Learning [Valiant 84]

- $\mathcal{C}\text{:}$ Known concept class of functions $f:\mathbb{R}^d \to \{\pm 1\}.$
- **Input:** Examples $\{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^n \sim \mathcal{D} = (\mathcal{D}_{\mathbf{x}}, \mathcal{D}_{y})$ supported in $\mathbb{R}^d \times \{ \pm 1 \},$ such that:

$$
y^{(i)}=f(\mathbf{x}^{(i)})
$$

for some fixed unknown target concept $f \in \mathcal{C}$.

Goal: Find a hypothesis $h : \mathbb{R}^d \to \{\pm 1\}$ that minimizes **Pr**_{(**x**,*y*)∼D[h (**x**) \neq *y*].}

Mistake-bound model

- In each stage, the learning algorithm is given example **x** and asked to predict *f*(**x**).
- No assumptions about the order.
- Goal: Bound the total number of mistakes.

Definition: We say that a learner L learns class C with mistake bound *M* if *L* makes at most *M* mistakes on any sequence of examples consistent with some $f \in C$.

- **Note:** The sequence can have arbitrary length.
- \blacksquare A class *C* is learnable in the MB model if there exists a learner with mistake bound and running time (per stage) *poly*(*d*, *s*), where *s* is the size of the smallest $f \in C$.

Example - Disjunctions

- We have boolean features $f:X\to \{0,1\}$, where $X=\{0,1\}^n$
- Target: OR function (e.g: $x_5 \vee x_8 \vee x_{11}$) $\mathcal{L}_{\mathcal{A}}$

Can we learn with at most *n* mistakes in the MB model?

Example - Disjunctions

- We have boolean features $f:X\to \{0,1\}$, where $X=\{0,1\}^n$
- Target: OR function (e.g: $x_5 \vee x_8 \vee x_{11}$) $\mathcal{L}_{\mathcal{A}}$

Can we learn with at most *n* mistakes in the MB model?

Example - Disjunctions

- What if most features are irrelevant? (i.e target disjunction has only *r* out of *n* variables)
- Can we do better?

Winnow algorithm:

- 1. Initialize: ∀*i* ∈ [*n*] : *wⁱ* = 1
- 2. *h*(**x**): Predict 1 (positive) iff $w_1x_1 + \cdots + w_nx_n \ge n$
- 3. Mistake on positive: $w_i \leftarrow 2w_i$
	- $-$ Mistake on negative: $w_i \leftarrow 0$

Theorem: Winnow algorithm makes at most *O*(*r* log *n*) mistakes.

Winnow for general LTFs

■ Using similar ideas, we can learn halfspaces: $(i.e. 3x₅ + 5x₈ - 2x₁₁ > 5)$

Theorem: Suppose that ∃*w* [∗] s.t:

- *w* ∗ · **x** ≥ γ on positive **x**
- *w* ∗ · **x** ≤ −γ on negative **x**

then the mistake bound is $M = O(L_1(w^*)/\gamma^2 \log n)$

Large margin assumption

 $f(\mathbf{x}^{(i)}) = \text{sgn}(\langle \mathbf{w}^*, \mathbf{x}^{(i)} \rangle).$ $|\langle \mathbf{w}^*, \mathbf{x}^{(i)} \rangle| > \gamma.$

Preceptron algorithm

Perceptron algorithm:

- 1. Initialize: $w = 0$
- 2. $h(x)$: Predict 1 (positive) iff $w \cdot x > 0$
- 3. Mistake on positive: $w \leftarrow w + x$
	- Mistake on positive: **w** ← **w** − **x**

Perceptron algorithm - Analysis

Perceptron algorithm - Lower bound

Perceptron algorithm - hinge loss

