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Abstract—Choosing the right feature for motion based ac-
tivity spotting is not a trivial task. Often, features derived
by intuition or that proved to work well in previous work
are used. While feature selection algorithms allow automatic
decision, definition of features remains a manual task. We
conduct a comparative study of features with very different
origin. To this end, we propose a new type of features based
on polynomial approximation of signals. The new feature type
is compared to features used routinely for motion based activity
recognition as well as to recently proposed body-model based
features. Experiments were performed on three different, large
datasets allowing a thorough, in-depth analysis. They not only
show the respective strengths of the different feature types but
also their complementarity resulting in improved performance
through combination. It shows that each feature type with its
individual and complementary strengths and weaknesses can
improve results by combination.

Keywords-activity recognition, wearable computing, feature
analysis

I. INTRODUCTION

Activity recognition is a broad, active research area within
the pervasive computing community. The type of activities
that have been targeted range from modes of locomotion
(walking, standing, running, etc.), through interaction with
objects and devices (e.g., opening a drawer) to complex
high-level approaches (e.g., preparing breakfast).

This paper deals with a specific subproblem of activity
recognition: the spotting of sporadic actions using wearable
motion sensors. Spotting means that we aim to locate a
set of relevant, often very subtle actions in a continuous
data stream. In general, the relevant actions are arbitrarily
distributed and mixed with a large body of non-relevant
actions. The problem is significant for two reasons. First,
many complex activities can be decomposed into such
isolated actions. Being able to spot and classify them is
a key component of the more complex composed activity
recognition problem. Second, it is known to be a hard
problem that has not been satisfactorily solved so far. The
main difficulties are ambiguities in the sensor signal, a high
percentage of “NULL” class events in a typical signal, a
lack of appropriate models for the “NULL” class, and high
variability in the duration of relevant events.

There has been much previous work on activity recogni-
tion with wearable sensors (see related work).We build on
this work to investigate an aspect that, in our opinion, has
not received sufficient attention so far: feature definition.

The first contribution of this paper is the introduction
of a new type of features adapted from time series ap-
proximation. As such, they are quite different in nature
to the features currently used for activity recognition. The
second contribution is an extensive comparative evaluation
of the new polynomial features type, standard signal-oriented
features (statistical parameters, frequency, etc.), and recently
proposed body-model based features [1]. This includes an
examination of the complementarity of the different feature
types by analyzing their performance in different feature
combination schemes. It shows that while the new polyno-
mial features can not replace the other two types of features,
they provide significant added value.

The evaluation is performed on three data sets with a total
of 44 different activities collected from a total of 22 subjects
and containing about 30 hours of data. Together, the three
data sets provide a comprehensive test suite that allows for
a thorough examination of the strengths and weaknesses
of the different feature types. We want to emphasize that
the feature comparison is not about comparing specific
individual features but rather about different approaches
to feature definition. Which specific features from which
approach are actually used is determined automatically by a
Joint Boosting algorithm.

First, we review related work (Section II) and then intro-
duce all features used in this paper in Section III. Section IV
explains the overall approach consisting of a common seg-
mentation and a spotting procedure. Section V introduces the
three datasets. Section VI describes the evaluation procedure
and section VII discusses the experimental results. Finally,
we conclude our findings in Section VIII.

II. RELATED WORK

Previous research covers a variety of approaches to acti-
vity recognition. Besides different types of sensors and ma-
chine learning techniques (e.g., SVM, Boosting, or HMM),
different types of features are employed. The predominant
type of features are—what we call—signal-oriented features
such as mean and variance [2] or frequency based features
[3]. While the mean captures the posture during an activity
the variance indicates how much motion is present in the
signal. The combination of computational efficacy and the



descriptive power made them widely used in different stud-
ies. In [4], high level activities are successfully recognized
using a fixed sliding window and mean and variance as
features. Frequency based features prove to work well on
activities including reoccurring motion patterns [5]. In [6],
the signal is discretized and modeled by symbols. Then,
similar subsequences which model motifs of activities are
discovered.

While most of related work bases its detection on sliding
windows with a fixed size, others segment the continuous
data stream into windows of interest. Algorithms for time
series segmentation can be found in a wide range of ap-
plications, for example medical and biological diagnostics,
analysis of financial time series, speech processing, or sensor
analysis. A commonly used method for representing and
segmenting time series is piecewise linear approximation [7],
used for example in [8] in conjunction with time-warping to
segment ECG signals. In [9], SWAB (cf. [10], [11]) is used
in a first detection stage.

Another type of feature and segmentation has been used
in [1]. Here, atomic primitive features (such as moving the
hands up, turning the arm, or keeping the arm in a specific
posture) are derived intuitively from body movement for
each activity. A comparison [12] to signal oriented features
reveals that such a body model can leverage performance.

While [12] has used a single dataset for comparison
only, the present paper extends their study by using three
datasets. Furthermore, an alternative feature type based on
piecewise linear approximation [13] of inertial sensor data
is introduced, compared, and analyzed.

III. FEATURES FOR ACTIVITY RECOGNITION

It is often a manual and intensive task to choose or
discover features that are suited for certain scenarios. The
quality and appropriateness of this choice translates directly
to recognition performance. In the following, we describe
three fundamentally different feature types. First, we outline
common signal based features used in this paper and which
are most widely used in the community. Then we describe
an alternative feature type based on motion primitives during
activities. Finally, we describe a new feature type based on
polynomial approximations.

A. Signal oriented features
For each sensor signal, e.g., a sensor’s acceleration di-

mension (x, y or z), a set of features in the frequency and
time domains are calculated. First, the Fast Fourier Trans-
form (FFT) maps the incoming signal into the frequency
domain. We use 10 coefficients and group them into five
logarithmic bands by summation. Furthermore, we calculate
the cumulative energy of the Fourier series. In addition,
10 cepstral coefficients are calculated modeling the spectral
energy distribution. The spectral entropy, which gives a cue
about the complexity of the signal is also added. Features
in the time domain are mean and variance of the signal.

B. Body model derived features

Substantial variability in most activities requires the defi-
nition of invariant features to varying performances. Unlike
in the signal based approach, the sensors are set in a relation
to each other. With knowledge about the sensors’ placement
[1], we calculate a body-model as depicted in Fig 1. The
orientation information of the user’s upper and lower arms
and the torso are concatenated to a kinematic chain starting
at the torso and ending at the hand.
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Figure 1. Calculated body model using 5 inertial measurement units placed
at the back, the upper and lower arms. Given a global reference system by
the sensor, the absolute direction of the torso can be estimated.

Using this body model, primitives are derived such as
moving the arms up or down, push-pull the hands, bend,
twist the torso, or twist the arms. For each kind of primitive,
a temporal representation of a fixed size, the number of
primitive occurrence, maximum, minimum, and average are
considered as features. Furthermore, histograms of the prim-
itive’s length as well as directional vectors of subsequent
hand positions are estimated and added. In addition to move-
ment primitives, postures turn out to be a valuable cue for
activity recognition. Here, the maximum, minimum, mean,
and variance over the arms’ orientation towards gravity, the
distance between two hands, the hands’ height, and the
torso’s direction in a global reference system are added to
the feature set.

C. Novel Features Describing Trends in Time Series

In this section we describe a new kind of features that
describe essential trends in time series (or segments of
time series). These features can be used to determine the
similarity of time series efficiently. For that purpose, we
search for polynomials that approximate the time series
and use coefficients of an orthogonal expansion of the
approximating polynomial as features.

Assume we are given a time series (or segment) consisting
of N + 1 real-valued observations yn at points in time
xn with n ∈ {0, . . . , N}. An optimally (in the least-
squares sense) approximating polynomial pa of degree K
can be represented by a linear combination of K + 1 basis
polynomials pk (k ∈ {0, . . . K}):

pa(x) =
K∑

k=0

akpk(x), (1)



with a weight vector a ∈ RK+1, a = (a0, a1, . . . aK)T.
The basis polynomials must have the following properties:
1) They must have ascending degrees 0, . . . ,K.
2) The coefficient of the monomial with the highest

degree of each basis polynomial must be one.
3) Each pair of basis polynomials pk1 and pk2 (with k1 6=

k2) must be orthogonal with respect to a certain inner
product, That is, for all k1 6= k2,

N∑
n=0

pk1(xn)pk2(xn) = 0. (2)

The choice of these basis polynomials depends on the points
in time when samples are observed. In the context of a
representation with orthogonal basis polynomials, the ak are
called orthogonal expansion coefficients.

Techniques can be applied allowing for an efficient com-
putation of approximating polynomials in either sliding
or growing time windows. Assume, we are given an ap-
proximating polynomial for a time series (or segment) of
N +1 real-valued observations yn at points in time xn with
n ∈ {0, . . . , N} and a new observation yN+1 at xN+1. Then,
the approximating polynomial for either the observations
yn with n ∈ {1, . . . , N + 1} or the observations yn with
n ∈ {0, . . . , N+1} can be computed with low computational
effort which is independent from N and only depends on
the polynomial degree K. In the case of a sliding window,
the basis polynomials remain unchanged, in the case of
growing windows they are updated “on the fly” in each
step. This makes this technique well-suited for time-critical
applications. More details can be found in [14], [13].

In [14], [15] we have shown that a0, a1, a2, a3, etc. can
be interpreted as the optimal estimators of average, slope,
curve, change of curve, etc. of the time series. Thus, they
express the essential behavior of the time series in a few
values (usually K � N ) and can be used as features for
time series classification. It is quite simple to choose an
appropriate polynomial degree in a real application: The
recommendation is simply to select a degree that is higher
than an assumed one. If the degree was too high, the respec-
tive coefficients contain no information. This could easily be
detected by an appropriate feature selection technique.

With a given representation of a time series by orthogonal
expansion coefficients, two time series can be compared
simply by taking the Euclidian distance (or the scaled
Euclidean distance) of two orthogonal expansion coefficient
vectors [15]. Doing so, the temporal effort to compare pre-
computed coefficient vectors is marginal. However, depend-
ing on the application we may also wish to compare two
time series neglecting constant offsets in the target domain or
different lengths. This can be done easily with some simple
transformations as shown in [15].

In addition to the coefficients, the lengths of the time
series themselves and the approximation errors turned out
to be useful features in various applications [15].
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Figure 2. Example for polynomial approximation of degrees 1 to 3 of
the right hand’s trajectory (z-axis) during the gesture of openening a car’s
door from the car quality inspection dataset.

In this paper, polynomial features are used for activity
spotting for the first time. An example of approximat-
ing polynomials is shown in Fig. 2: the approximation
smoothens the signal but preservs its original form.

IV. SPOTTING ACTIVITIES

Many recognition tasks are based on two steps. First, the
data is segmented using a sliding window with a fixed size
to calculate features on a continuous data stream. Then, a
classifier is trained on each window given a class label. In
the classification task a sliding window is applied again
to unknown data, returning scores for all activities. The
following describes the method used to spot activities.

To reduce the amount of potential windows we adopt the
segmentation procedure suggested in [1]. The segmentation
is based on the observation that the movement of the hand
slows down at the starting and ending point of an interaction.
Since the variance over the hand positions is lower at
these points, local minima within the variance of the hand
positions can be detected separately for both hands.

Boosting [16] is a state-of-the-art machine learning algo-
rithm for binary classification and has been used successfully
for activity recognition [3], [17], [2], [1], [18]. In each
boosting round, a weak classifier is trained, often based
on a single feature. Weak classifiers are then combined
to a final strong classifier for categorization. Torralba et
al. [19] propose an extension called Joint Boosting that
trains weak classifiers shared across multiple categories. In
activity recognition, groups of similar activities are separated
during the initial boosting rounds. In the following rounds,
activities in the same group are discriminated with additional
weak classifiers. Joint Boosting reduces the computational
complexity by sharing features across several classes. Here,
it uses the segment features described Section III. Given
the annotations, features on the positive training segments
can directly be calculated and used as inputs for the training
phase. When calculating the features on the test data and the
negative instances of the training data, all possible combi-
nations of segments with specified minimum and maximum
lengths are considered. In the test phase all segments are
classified and activities are spotted by finding local maxima
in the streams of the classifier score.



V. DATASETS

As motivated in Section I, we want to benchmark the
novel feature type for spotting human activities. We conduct
our studies on three different datasets, namely the car
quality inspection, the woodshop, and the drink and work
datasets. Each contains real-world challenges such as the
high variability in executing such activities. While the first
two datasets contain a large variety of classes, the latter
is specifically interesting for its fairly short drink activities
amid a large amount of background data.

Across all datasets inertial measurement units (IMU) [20]
are used to collect the data. Each sensor integrates 3D- accel-
eration, rate of turn, and magnetic field data. A sensor fusion
algorithm is used which allows the sensors to accurately
estimate absolute orientation in a three-dimensional space
in real-time. The result is the estimated orientation of the
sensor-fixed coordinate system with respect to a Cartesian
earth-fixed coordinate system. The sensors are located at
the wearer’s torso and the upper and lower arm. While
performing the activities, the subjects are recorded on video
for later annotation.

First, the next section introduces a new woodshop dataset.
Then, we describe the car quality inspection dataset, which
was previously used in [1], [12], [21]. Finally, the new drink
and work dataset is outlined.

A. Woodshop
We asked 8 different people to perform the overall task

of building two wooden book boxes. Fig. 3 (a) shows the
book box from the front and from the side. Building such
a bookshelf consists of a variety of manual activities, for
instance, sawing, drilling, or screw driving. In total the
complete procedure covers 22 activities. The procedure took
roughly 45–70 min per person, resulting in approximately
9 h of data in total.

In the following, challenges in recognizing different phys-
ical activities are motivated. In many scenarios, selected
activities differ significantly in their constitution. Often,
activities are characterized by repetitive movements such as
turning the arm when screwing or moving the arm up and
down while hammering. Beyond these activities of longer
duration (>10 s), very short activities (<3 s) such as drilling,
marking holes, or hanging up boxes are of interest. Not only
the short duration complicates the detection of activities. In
addition, short activities often do not contain discriminant
arm movements. Whereas hammering or turning screws can
be identified by noticeable arm movements, the arm position
hardly changes for activities such as cutting the template or
marking holes for drilling. The dataset includes activities
of diverse complexity as illustrated in Fig. 4. In addition to
repetitive activities such as sawing, hammering, or screwing,
the recognition of short activities such as drilling, fixing a
back support, marking, cutting, or hanging up the boxes are
of major importance.

(a) (b)
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Figure 3. Description of boxes in the manual. (a) front (b) side view

Figure 4. Diverse class complexity: drilling, screwing, hammering, mark,
hang up (left to right).

Beyond the difficulty to find discriminant characteristics
of these activities, the execution often differs significantly
between subjects.. Fig. 5 illustrates four different people
while screwing side parts. Although the subjects perform
the same activity, a high variance in execution (intra class
variability) can be observed. A rotation of the screw driver
can be enforced either by hand or turning the whole arm
(see subject in the left images). Whereas the subject in the
third picture uses his left hand, the last subject clasps the
screw driver in a different way than the three other subjects.

B. Car quality inspection
The dataset contains 20 activities that are performed dur-

ing a typical car quality inspection [22]. Example activities
are checking gaps of the car’s body or inspecting movable
parts, for instance, by opening and closing doors. Besides a
high variability of motion patterns, such activities are short
(on average 3 s per activity). As a result, the ratio of the
activities versus the “NULL” class is 1:135 for each activity.
This makes activity spotting a challenging task.

The dataset was recorded within the scope of an indus-
trial project focusing on wearable technology in production
environments [23]. In total, 12 h of data were recorded. 8
subjects performed the activities, repeating the procedure
about 10 times on average.

C. Drink and work
This dataset consists of several drinking events embedded

in daily scenarios. The subject drinks from four differ-
ent drinking vessels (glass, bottle, beer mug, cup) while
completing four scenarios in a typical daily routine: office
work, eating, gaming and leisure. Within these routines,
activities such as using the computer and printing, preparing

Figure 5. Intra-class variability when performing the activity screwing.



a sandwich, scratching head, answering phone call etc.
occur. The presence of ambiguities (e.g., drinking vs. eating
or scratching the head) and a great percentage of NULL
class makes this dataset particularly interesting for analysis.

Altogether, six subjects were recorded, each 50–60 min,
including about 12 min of drinking.

VI. EVALUATION

In all datasets we evaluate the performance of activity
spotting for each activity individually. A leave-one-user-
out cross-validation is performed to enable user-independent
activity recognition. In each cross-validation round, scores
for all detected segments (see Section IV) are calculated.
A segment S is counted as true positive if the annotated
ground truth segment A has the same activity label and if
the following equation holds:

start(A) ≤ center(S) ≤ stop(A), (3)

where start(A) and stop(A) correspond to the begin and
end times of the ground truth segment A and center(S)
indicates the central time of segment S. In other words:
Only if the central time of a spotted segment intersects
with the annotated activity, the segment is counted as a
true positive. Ideally, both precision and recall are 100%.
Typically however, the precision decreases with increasing
recall for a particular activity. For the description of the
results we use the equal error rate (EER), a characteristic
point in the precision-recall curve.

Unlike in previous work, we use 20% of background data
only during training, due to computational reasons.

VII. RESULTS

As mentioned earlier, we compare three different feature
types on three different datasets. In the following, results
are given for each dataset individually. First, we describe
the results on the one-class dataset drink and work. Then,
results on the multi-class datasets woodshop and car quality
inspection are given.
A. Drink and Work

Spotting drinking activities while the user resides in
different working scenarios results in an EER of 90% using
signal oriented features and 89% using polynomial features.
By combining both feature types, we achieve an EER of
91% and by combining all features 92%. Using body model
features only, we achieve an EER of 88%.

To understand the performance drop using body model
features only, we examined the features selected by Joint
Boosting. It turned out that hand height features are pre-
dominantly represented with 45.7%. This corresponds to the
intuition, that the height of the hand is a strong cue for
drinking events. However, the dataset also contains activities
such as eating and scratching the head which cannot be
discriminated by the height only. Hence, more specific
features are necessary.

B. Woodshop
The overall results are depicted in Table I. The rows are

sorted by the average EER.
Using feature types individually (row 4 to 6), the perfor-

mance is worse than using their combination (row 1 to 3).
For individual activities, signal oriented features perform
better for 11 activities. Using polynomial features, better
results are achieved for 5 activities. Body model features
achieve better results for one activity only. While the average
performance of signal oriented features and polynomial
features is similar (53% and 51%), the body model features
perform significantly worse with 41%. Combining different
feature types (row 1 to 3) performs better than each feature
type individually. The combination of all three features types
performs best at about 59% EER. Here, the combination of
all feature types (row 1) performs better on 8 activities. The
combination of polynomial and signal oriented features is
better on 6 activities and combining signal with body model
features performs better on 7 activities.

Near perfect recognition is gained for sawing using signal
oriented features. Intuitively, the variance, respectively the
recurrent movement in the hand is a good cue to discriminate
this activity from others. As one expects for multi-class
activity recognition, a significant number of similar activities
are not well recognized. More specifically, the following
activities are not recognized well: marking positions of the
back part, marking template, marking holes in template, and
cut template. All those activities are very short and almost
no arm movements are involved. Furthermore, executing
those activities allows for a high variance, for example
when cutting the template. Here only the interplay between
all features is able to recognize the activities to a certain
extend (40–60% EER). Interestingly, on those activities the
polynomial features seem to contain important information
(e.g., on marking positions of the back part both, body model
and signal oriented features, have an EER of 0% while
polynomial features yield 19%). The best performance on
those classes always involves polynomial features.

Altogether, the body model features have a significantly
worse performance. Note that the body model features were
designed on the car quality inspection dataset. Postures
and movements are quite different in both scenarios. For
instance, while the person is standing straight and bowing
for an activity in the car quality inspection, the subjects are
bending over for almost the entire procedure of building a
bookshelf (excluding activities at the wall). Fig. 6 shows the
different nature of the scenarios. While activities in the car
quality inspection dataset are characterized by an obvious
displacement of the hands, the activities of the woodshop
dataset contain less movement. Body model features such
as the hand height, the distance of two hands, or bending
can help to distinguish activities such as drilling holes into
a wall and drilling holes into the backpart. However, many
activities, e.g., hang up box and mark holes in wall with
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Table I. Results for the woodshop dataset using different feature types (signal oriented, body model and polynomial features and their combinations. The
rows are sorted according to the achieved Equal Error Rate (EER). The bold numbers indicate the maximum EER per activity.
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Figure 6. Examples for activities from the woodshop (a, b) and the car
quality inspection (c, d) datasets: (a) Marking holes in template, (b) sawing,
(c) opening the hood, (d) opening the left door. The stick figure shows the
end posture while the colored thin lines show the trajectories of the hands.

similar posture and motion demand more specific features.
This indicates that the design of body model features is not
yet complete and a more complete set of features is required
to enable good performance for a wider range of scenarios.

Table II shows the selected coefficients when using poly-
nomial features. Looking at the normalized coefficients, the
zero-order coefficient (i.e., the mean) has the highest fraction
(49%). From the first to the forth coefficient the selection
is almost equally distributed with about 9%. Beyond the
forth coefficient the fraction drops to 2–5%. Unnormalized
coefficients are almost completely ignored. Only for the
first and the second we can observe a slight usage of 7%
in total. Different instances of a particular activity have
not necessarily the same duration. Hence, the unnormal-
ized coefficients can be different for the same activity as
they strongly depend on the activities’ length. The rather
uniform distribution of the normalized coefficients with a
higher degree indicates that subtle changes in the signal,
represented by the respective higher degree, can be important
to distinguish different activities. It also reveals that the
posture, which is described by the mean of the signal, proves
to be a good (initial) cue for several activities in this dataset.

Coefficient 0 1 2 3 4 5 6 7 8
Normalised 46% 9% 9% 5% 10% 5% 2% 3% 4%
Unnormalised 0% 5% 2% 0% 0% 0% 0% 0% 0%

Coefficient 0 1 2 3 4 5 6 7 8
Normalised 48% 13% 5% 4% 2% 2% 1% 3% 1%
Unnormalised 0% 15% 7% 2% 1% 0% 0% 0% 0%

Car Quality Inspection

Woodshop

Table II. Distribution of coefficients for the polynomial features (woodshop
dataset). For the approximation a degree of 8 was used.

C. Car quality inspection
The overall results are given in Table III. Again, the best

results can be achieved by combining different feature types
derived from the signal and the body model (89% EER).
Combining all feature types, the EER is 88%. While in the
former case a higher EER is achieved for 10 activities, the
EER differs less than 1% for 7 activities. For 3 activities,
the combination of all features performs better.

In contrast to the woodshop dataset, the body model
features alone perform better (87%) on this dataset and
outperform polynomial (83%) and signal features (84%) in-
dividually and in combination (86%). Here again, combining
polynomial and signal oriented features performs better than
both feature types individually.

Coefficient 0 1 2 3 4 5 6 7 8
Normalised 46% 9% 9% 5% 10% 5% 2% 3% 4%
Unnormalised 0% 5% 2% 0% 0% 0% 0% 0% 0%

Coefficient 0 1 2 3 4 5 6 7 8
Normalised 48% 13% 5% 4% 2% 2% 1% 3% 1%
Unnormalised 0% 15% 7% 2% 1% 0% 0% 0% 0%

Car Quality Inspection

Woodshop

Table IV. Distribution of coefficients for the polynomial features (car
quality inspection dataset). For the approximation a degree of 8 was used.

Table IV shows the distribution of selected coefficients.
As in the woodshop dataset, the fraction for the zero-
order coefficient is the highest with nearly 50%. Again, the
posture can be a good cue for discriminating the activities
in this dataset. This is followed by the first (normalized
and unnormalized) coefficient with a total of 28%. The
fraction of the remaining coefficients of higher degree drops
to 0–5%. Compared to the woodshop dataset, this indicates
that the slope of the polynomial, which can be interpreted
as direction of movement/signal change, seems to have
a stronger impact in the car quality inspection scenario
than coefficients of higher degrees. This corresponds to the
intuition that activities in this scenario are coarser and do not
profit from a detailed signal description by higher degrees.

VIII. LESSONS LEARNED

Across a broad range of recognition problems as rep-
resented by the experiments investigated in this paper the
following can be said: Overall (averaged overall all data sets
and activities), none of the three feature types emerges as a
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Table III. Results for the car quality inspection dataset using different feature types (signal oriented, body model and polynomial features and their
combinations. The rows are sorted according to the achieved equal error rate (EER). The bold numbers indicate the maximum EER per activity.

clear “winner” or “looser”. The combination of feature types
consistently leads to better performance on all datasets. This
indicates that the features types provide complementary in-
formation, which can be leveraged by algorithms containing
feature selection mechanisms.

While overall there is no clear ranking, there are sig-
nificant variations at the level of individual activities and
even data sets. Thus, body model features clearly outperform
the polynomial features on the car quality inspection data
set (EER 87% to 83%), while on the workshop data set
the polynomial features do far better (EER 51% to 41%).
Looking at the variations in feature performance at a more
detailed level, the following interesting observations emerge:

As expected the body model features perform best in
the car inspection data set for which they have been hand
crafted. Polynomial features have performed particularly
well for classes that are very difficult to recognize (marking
activities and cut template). Best performance on those
classes always involves polynomial features with the differ-
ence being very significant (e.g. 57% vs. 25% on marking
holes in template). On the car inspection data set, the com-
bination of polynomial and signal features is very close to
body model alone. This is significant because hand crafting
features for an application involves a lot of effort from a
human, while the signal and polynomial ones are “generic”
and can be automatically generated.

Altogether, it can be said that while the polynomial
features can not replace signal oriented or body model
features, they can provide an added value. While we inves-
tigated polynomial features per dimension in this work, we
plan to continue our work on potentially more expressive
polynomials of trajectories in a 3D space and using its
representation for improved detection of potential segments
of interests in the segmentation step.
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