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Abstract

Recognizing 3D objects from arbitrary view points is one of the most fundamental
problems in computer vision. A major challenge lies in the transition between the 3D ge-
ometry of objects and 2D representations that can be robustly matched to natural images.
Most approaches thus rely on 2D natural images either as the sole source of training data
for building an implicit 3D representation, or by enriching 3D models with natural image
features. In this paper, we go back to the ideas from the early days of computer vision,
by using 3D object models as the only source of information for building a multi-view
object class detector. In particular, we use these models for learning 2D shape that can be
robustly matched to 2D natural images. Our experiments confirm the validity of our ap-
proach, which outperforms current state-of-the-art techniques on a multi-view detection
data set.

1 Introduction
In the 70’s and 80’s the predominant approach to recognition was based on 3D represen-
tations of object classes [4, 17, 18, 19, 22]. While being an intriguing paradigm these ap-
proaches showed only limited success when applied to real-world images. This was due to
both the difficulty to robustly extract 2D image features as well as their inherent ambiguity
when matching them to 3D models. Today, thirty years later, the predominant paradigm to
recognition relies on robust features such as SIFT [16] and powerful machine learning tech-
niques. While enabling impressive results, e.g., for the PASCAL-VOC challenge [6], these
methods have at least two inherent limitations. First, methods typically do not allow to rec-
ognize objects from arbitrary viewpoints but are limited to single viewpoints instead. And
second, these approaches rely on the existence of representative and sufficient real-world
image training data for object classes limiting their generality and scalability.

The starting-point of this paper is therefore to go back to the idea of using 3D object
models only and re-examine the problem of object class recognition from such 3D data alone,
not using any natural training images of the object class. In contrast to early approaches, we
draw from a multitude of advancements in both object class recognition and 3D modeling,
which we use as tools for designing highly performant object class models. The first and
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Figure 1: Learning shape models from 3D CAD data. (a) Collection of 3D CAD mod-
els composed of semantic parts, (b) viewpoint-dependent, non-photorealistic renderings, (c)
learned spatial part layouts, (d) multi-view detection results.

most important tool is an abstract shape representation that establishes the link between
3D models and natural images, based on non-photorealistic rendering. The second tool is
a collection of discriminatively trained part detectors, based on robust dense shape feature
descriptors on top of this representation. The third tool is a powerful probabilistic model
governing the spatial layout of object parts, capable of representing the full covariance matrix
of all part locations. All three tools aim at capturing representative object class statistics from
a collection of 3D models, increasing the robustness of the resulting object class models.

The main contributions of our paper are as follows. First, we revisit the problem of object
class recognition entirely based on 3D object models, avoiding the need for any natural train-
ing images of the objects. Second, we propose an abstract shape representation in connec-
tion with robust part detectors that establishes the link between 3D data and natural images.
Third, we evaluate our model in a series of experiments with respect to multi-view detec-
tion and viewpoint classification (pose estimation), and demonstrate superior performance
compared to state-of-the-art techniques on a standard multi-view recognition benchmark.

2 Related work

Recognition of 3D objects has a long history. While many of today’s approaches model
single 2D views rather than 3D objects, 3D object class models have been revived recently
as object recognition is inherently related to the object’s three dimensional nature. 3D object
class models are typically built either implicitly, by organizing training images according to
their position on the viewing sphere, or explicitly, by establishing correspondences between
training images and a given 3D geometry representative for an object class. In both cases,
and in addition to representing 3D constraints, the robust encoding of object appearance
learned from a sufficient amount of natural training images is considered key to success.

The first major line of research in 3D object recognition starts from a collection of natu-
ral training images depicting the object class of interest from varying viewpoints [2, 11, 21,
26, 27]. The viewpoint itself is treated either as an observed [11, 14] or unobserved [26]
variable, resulting in different amounts of supervision needed during training. Establishing
correspondences between image features from different views by means of tracking [27]
or imposing affine transformations [26] can then be used as the basis for rough estimates
of three dimensional object geometry. These approaches have adopted sophisticated tech-
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niques to compensate for the large amount of required training data, such as sharing infor-
mation between multiple codebooks by activation links [27], similarity transforms [2], or
by synthesizing unseen viewpoints by means of a morphing variable [26]. However, due
to the reliance on sufficient training data from multiple viewpoints they are still bound to a
typically coarse 3D and viewpoint representation of the object class, limiting the amount of
variation captured by both appearance and geometry representations.

The second major line of research thus starts from a given 3D geometry representative
for an object class, typically given in the form of one or a few 3D models [14, 29], which
is assumed to capture geometric variation better than a model built from a limited collection
of viewpoint images. The geometry model then serves as a reference frame to which sup-
plemental natural training image features are attached, which can then be matched to natural
images for recognition. While [29] performs the attachment based on appearance similarity,
[14] establishes the link between images and geometric model by spatial consistency. In
particular, the geometric model is rendered from the same viewpoints as the training images
(requiring viewpoint annotations). Both are overlaid the same regular grid, establishing cor-
respondences between respective grid positions. However, these approaches still require a
sufficient number of supplemental real-world training images again limiting their generality.

Rather than using real-world training images we go back to the idea of early papers
[4, 17, 18, 19, 22] to use 3D object models alone. More specifically we resort to using
3D computer aided design (CAD) models exclusively, both for learning local shape and
global geometry models for the object class of interest. Abandoning object training images
altogether additionally circumvents the need for an attachment step, which is susceptible to
introducing noise into the appearance representation. We note that [15] is also exclusively
based on 3D CAD data, but has been superseded by [14], which in turn is outperformed
by our approach (see Sect. 5). Our work is different from [15], in that we explicitly design
an abstract shape representation for 3D CAD data that can be directly matched to natural
images, while [15] uses photorealistic rendering techniques against varying backgrounds to
produce features resembling the ones found in natural images. We further suggest a full
covariance spatial model for capturing the geometric variation of a collection of 3D CAD
models, while [15] resorts to a star model (via generalized Hough voting).

3 Object class representation

Our object class representation combines two prominent approaches. First, it represents
object classes as an assembly of spatially arranged parts, which has been shown to be an
effective strategy for dealing with intra-class variation and partial occlusion for generic ob-
ject class recognition [7, 13]. Second, it subsumes object classes in a collection of distinct
models, where each model corresponds to a discrete viewpoint. For each viewpoint, the link
between 3D CAD models used for training and natural test images is established by a local
shape representation of object parts, based on non-photorealistic rendering.

3.1 Object classes as flexible part configurations

In the spirit of [8], we choose a part-based object class representation as the basis for our
approach. Instances of a given object class are assumed to consist of a fixed set of parts, sub-
ject to both constraints describing their spatial layout and their relative sizes. Following early
uses of CAD models for recognition [4], but in contrast to recent work [14, 15], we chose
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Figure 2: Comparison of shape representations fed into Shape Context descriptors for a real
image (left) and a rendered 3D CAD model (right). For each colored bounding box, we show
overlapping edge image patches, where edge orientation is encoded as hue and edge strength
as saturation. Best viewed in color with magnification.

to not only use the three dimensional geometry from 3D CAD data, but additionally exploit
included semantic information. In particular, we benefit from the fact that CAD data is typ-
ically created by human designers, often following intuitive routes when building complex
models from simpler building blocks. As an example, consider the car model of Fig. 1 (a),
which has been composed of semantically meaningful parts, such as wheels, doors, a roof,
etc. While we cannot expect arbitrary 3D CAD models from the web to offer consistent part
decomposition and labeling, we observe that all 41 car CAD models in our data base1 share
a common set of approximately 20 parts, from which we use 13 in our experiments (four
wheels, both front doors, both bumpers, hood and trunk, windshield and rear window, the
roof; see Fig. 1 (c)). Since both part decomposition and naming are potentially preserved
in modern CAD file formats, we can establish semantic part-level correspondences between
CAD models with minimal labeling effort. Inferring candidate parts and their correspon-
dences automatically based on 3D geometry would be an alternative [24].

3.2 Viewpoint-dependent shape representation
In order to map 3D CAD data parts to the image plane, we apply a perspective projection
according to the viewpoint of interest. In the image plane, each part is characterized by
an axis-aligned bounding box (see Fig. 1 (a,b)). Note that we can still identify a part with a
bounding box even in case it is not visible due to object-level self occlusion, as is the case for
the right front wheel in the left side view of the car of Fig. 1 (b). In this case, the contents of
the bounding box (orange) will depict the occluder (portion of the left front wheel, left front
fender), not the originating object part. Following parts through occlusion in this fashion has
the advantage of rendering occlusion reasoning superfluous, simplifying the design of the
model. Coherence of part shapes between neighboring viewpoints also falls out naturally.

In contrast to earlier attempts at learning appearance models from 3D CAD data [15], we
choose a shape-based abstraction of object appearance at the core of our part-based repre-
sentation. We focus on capturing edge information, which we expect to be repeatable across
3D CAD models of a given object class as well as natural images depicting instances of that
class. At the same time, using the edge abstraction eliminates the need for rendering CAD
models multiple times under varying lighting conditions, textures, and backgrounds, and
having a learning algorithm finding out about relevant gradients afterwards. This intriguing
property was shared by early approaches [4, 17, 18, 19, 22], but is often neglected by re-
cent object class models. Specifically, we render three different types of edges for any 3D
CAD model: crease edges, which are inherent properties of a 3D mesh, and thus invariant
to the viewpoint, part boundaries, which mark the transition between object parts and often
coincide with creases, and silhouette edges, which describe the viewpoint-dependent visible
outline of an object [12]. In all three cases, we render edge strength (determined by the

1Commercial models from www.doschdesign.com
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Figure 3: Part detector responses for left front wheel (red), left front door (green), and wind-
shield (magenta), overlaid onto the original image (left). For each part, we show an accu-
mulation of bounding boxes, weighted by detector response, drawn at the respective location
and scale.

sharpness of the crease for crease edges) as well as orientation in the image plane.
In order to describe the contents of a part bounding box in the image plane, we use

a specific flavor of Shape Context [3] descriptors that has proven to be highly robust in
the context of object class detection in cluttered images [1]. These descriptors are densely
sampled over a uniform grid of overlapping image patches, and accumulate edge orientations
locally in log-polar histograms. Fig. 2 visualizes edge information fed into these descriptors
for both a non-photorealistic rendering of a 3D CAD model (right) and a natural image
(left). Please note the high degree of visual similarity between the two visualizations. It
indicates that the chosen shape abstraction successfully captures common properties of both
renderings and natural images, which we consider a key ingredient for robust recognition.

4 Multi-view object class detection

As outlined in Sect. 3, our multi-view object class detection framework is based on a set
of distinct object class models, one for each particular viewpoint, which is sometimes re-
ferred to as a bank of detectors [27]. All models are structurally equal, the only difference
between them is the viewpoint-dependent data used for training. Final detection hypotheses
are generated by combining hypotheses from the individual models.

4.1 Discriminative part shape detectors

In order to discriminate between object parts and image background, we use the highly per-
formant part shape detectors proposed by [1] in connection with the shape context features
described in Sect. 3.2. For each object part, we train an Ada-Boost classifier [9] on posi-
tive and negative training examples. Positive examples are obtained via non-photorealistic
rendering of the object part in question. Negative examples are randomly sampled from a
background image set, not containing the object class of interest. The set of positive training
examples is further artificially enhanced by adding slightly translated and scaled (jittered)
copies of the original examples. During detection, the trained classifier is evaluated in a
sliding-window fashion at different image positions and scales. Fig. 3 gives example part
responses for three different car parts in a left side view. We transform Ada-Boost classifier
responses into pseudo-likelihoods using Platt scaling [20], and form a set of discrete candi-
date part locations (typically up to several 100K per part and image) by applying a threshold.
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4.2 Probabilistic spatial model

Interestingly, most recent work in multi-view recognition has adopted star-shaped spatial
models [2, 15, 26, 27, 29]. In contrast to these prior works, our approach uses a more pow-
erful probabilistic representation of the spatial layout of parts inspired by the constellation
model [7]. We use an efficient implementation along the lines of [25], from which we bor-
row the notation in the following paragraphs. The probabilistic formulation combines the
shape of individual parts S, their relative scales R, and their overall spatial layout X . During
detection, the goal is to find an assignment of all P model parts to candidate part locations
in a test image, denoted as the detection hypothesis H = (h1, . . . ,hP). That is, hp contains
a candidate part identifier assigned to part p. The detection problem can be formulated as a
maximum a posteriori (MAP) hypothesis search over the distribution p(X ,R,S,H|θ), which
is the joint posterior distribution of H and image evidence, given a learned model θ . It fac-
tors into separate likelihood contributions for local part shape, spatial part layout, relative
part scales, and a (uniform) prior on hypotheses, as follows:

p(X ,R,S,H|θ) = p(S|H,θ)︸ ︷︷ ︸
Local Shape

p(X |H,θ)︸ ︷︷ ︸
Layout

p(R|H,θ)︸ ︷︷ ︸
RelativeScale

p(H|θ)︸ ︷︷ ︸
Prior

(1)

Local part shape. Local part shape S(hp) is modeled as a product of independent pseudo-
likelihoods from Platt-scaled Ada-Boost classifier responses p(S(hp)|θ).

p(S|H,θ) =
P

∏
p=1

p(S(hp)|θ) (2)

Spatial layout and relative scales. Spatial layout of parts is modeled as a joint Gaussian
distribution over their coordinates X(H) in a translation- and scale-invariant space (the con-
stellation), using Procrustes analysis [5]. The model allocates independent Gaussians for the
relative scale R(hp) of each part, i.e., the ratio between part and constellation scale.

p(X |H,θ) p(R|H,θ)=N (X(H)|θ)
P

∏
p=1

N (R(hp)|θ) (3)

Learning and inference. Since we assume the densities for relative scales and spatial lay-
out to be Gaussian, we can estimate parameters θ in a maximum likelihood fashion, given
part-level correspondences. Following [25], we use an efficient Data-Driven Markov Chain
Monte Carlo sampling algorithm for MAP inference. We approximate the MAP hypothe-
sis HMAP = argmaxH p(H|X ,R,S,θ), which is is equivalent to argmaxH p(X ,R,S,H|θ), by
drawing samples from p(X ,R,S,H|θ) using the Metropolis-Hastings (MH) algorithm [10].
Employing the single component update variant of MH allows to separately update individ-
ual components of the target density, conditioned on the remaining portion of the current
state of the Markov chain. This opens the possibility to guide the sampling towards high
density regions by data-driven, bottom-up proposals [28, 30], which we instantiate by part
shape likelihoods p(S(hp)|θ).
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Figure 4: Viewpoint-dependent object class models for the viewpoints left (1), front-left (2),
front (3), back-left (4), and back (5) (left-most column). Ellipses denote positional variance
of parts, which are drawn at the learned mean scales. Example detections (right columns).

4.3 Viewpoint estimation
In order to be able to detect potentially multiple object instances in an image, we run a
number of independent Markov chains (typically 50) for each viewpoint-dependent detector
of a bank. For each chain, we memorize the highest-scoring bounding box together with
the viewpoint of the originating detector. We then apply a standard, greedy, overlap-based
non-maximum suppression on all bounding box-viewpoint pairs, and retain all survivors as
the final hypotheses concerning object bounding box and viewpoint.

5 Experimental evaluation
We evaluate the performance of our model on the car class of the 3D Object Classes data
set introduced by [23]. The data set has been explicitly designed as a multi-view detection
benchmark, containing 10 different cars, each pictured in front of varying backgrounds from
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Figure 5: Multi-view object class detection results, (a) comparison to state-of-the-art ([11,
14, 26]), (b) varying amounts of perturbation w.r.t. the true annotated viewpoint, (c) varying
densities of sampled viewpoints, (d) confusion matrix for viewpoint classification.

8 different 45 degree-spaced azimuth angles (left, front-left, front, front-right, right, back-
right, back, back-left), 2 different elevation angles (low, high), and 3 different distances
(close, medium, far). The resulting 48 viewpoints are typically not fully accurately met, but
may be off by a few degrees in either direction. We evaluate object class detection from
multiple viewpoints by first training an object class model consisting of a bank of 8 different
detectors, where each detector corresponds to one of the approximate azimuth angles defined
by the data set, using 41 3D CAD models. We expect our viewpoint-dependent detectors to
be robust enough to cover both elevation angles. Similarly, varying distance is handled by
considering part candidates at different scales. Fig. 4 visualizes 5 examples of the 8 learned
models, together with corresponding example detections. It visualizes the part layouts of true
positive detection hypotheses. In most cases, the hypothesized layout of object parts resem-
bles the true layout pretty accurately, supporting exact localization at the object bounding
box-level (by forming the smallest bounding box including all parts).

Comparison to state-of-the-art. We compare the performance of our model to three re-
cent published results on the 3D Object Classes Cars data set, following the protocol of
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[26]. Fig. 5 (a) gives precision/recall (P/R) plots for our bank of 8 detectors (green curve)
and the methods of Su et al. [26] (cyan curve), Gill and Levine [11] (blue curve), and the
very recent Liebelt and Schmid [14] (magenta curve). Achieving an average precision (AP)
of 81.0%, our method clearly outperforms all three related approaches (APs 55.3%, 72.6%,
and 76.7%). Performance can be further improved by increasing the number of detectors to
36 in a 10-degree spacing (red curve, AP 89.9%, see dense viewpoint sampling for details).

Sensitivity to viewpoint variation. In a second experiment, we examine the sensitivity of
our viewpoint-based object class model to discrepancies between viewpoints used for train-
ing and testing. For this purpose, we perturb the 8 original training viewpoints systematically
by p ∈ {±5, ±10, ±15, and ±20} degrees, and test the performance of object class models
consisting of all viewpoint-dependent detectors of a certain perturbation, amounting to banks
of 16 detectors each (8 perturbed by +p and 8 perturbed by −p degrees). Fig. 5 (b) gives
the corresponding P/R plots in different shades of red color, recapitulating the original green
curve from Fig. 5 (a). We observe that, as expected, perturbation has a negative effect on
performance in most cases, depending on the amount of perturbation. While for±10 degrees
(light red curve), performance is on par with the original bank of 8 detectors (comparing the
two curves; the AP of 81.2% is in fact even slightly higher), it drops significantly for ±15
(dark orange curve, AP 70.3%) and±20 (light orange curve, AP 58.5%) degrees. Strikingly,
even for±20 degrees, where all detectors are practically positioned as far away from the test
image viewpoints as possible, the model still achieves an AP of 58.5%. The ±5 detectors
(dark red curve) improve (AP 81.3%) over the original bank of 8 detectors, managing to
capture slight inaccuracies in the actual test image viewpoints.

Dense viewpoint sampling. In a third experiment, we want to determine the density of
sampled viewpoints (VPs) required for good performance. We thus train banks of varying
numbers of detectors, each bank representing a uniform sampling of the azimuth angle range
of 360 degrees into equal size intervals. Fig. 5 (c) gives P/R curves for banks of detectors
with interval sizes 5, 10, 15, 20, and 30 degrees (curves in shades of red and yellow color).
We start sampling the azimuth angle range at 0 degrees (corresponding to a left side view) for
each bank, and proceed counterclockwise from there. Note that this results in different num-
bers of sampled VPs coinciding with test image VPs for different banks. As a consequence,
the evaluation involves both viewpoint density and number of coincident VPs. In Fig. 5 (c),
we observe that an interval of 30 degrees (yellow curve, 4 coincident VPs) already provides
a sufficient coverage of the azimuth angle range (AP 80.7%). Performance increases consis-
tently for denser sampling and saturates at 10 degrees (light red curve, 4 coincident VPs, AP
89.9%, outperforming related work by 13.2%). An even denser sampling of 5 degrees does
not further improve performance (dark red curve, 8 coincident VPs, AP 89.8%). We observe
that missing recall is often caused by missing edge information due to low image contrast
(dark car color, shadows), and occurs mostly for small scale objects pictured from the most
distant (far) VP. This holds true for 91% of the cars missed by our best performing model.

Viewpoint estimation. Fig. 5 (d) gives the confusion matrix for classifying all true positive
detections according to the 8 azimuth angles defined by the data set, using the bank of 8
detectors. While we observe that neighboring VPs are rarely confused, confusion is larger
for opposing views due to car symmetries (38% of back views are classified as front views).
The average accuracy of 81% compares favorably to the best reported result of 70% by [14].
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6 Conclusions
In this paper, we revisit the idea of learning shape models for object class recognition purely
from 3D data, not using any natural training images of the object class of interest. While
early approaches mostly failed in matching 3D models robustly to natural images, we benefit
from intermediate advancements in object class recognition. By building our object class
model on the robust combination of local part shape with a powerful model of spatial part
layout, we demonstrate superior performance to state-of-the-art on a standard multi-view
object class detection benchmark. While our current object class representation is based on
individual per-viewpoint models, we expect integrating a continuous viewpoint estimate into
a true unified 3D representation to be beneficial for performance.
Acknowledgements. This work has been funded, in part, by the DFG Emmy Noether grant
GO1752/3-1.
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