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Abstract. Categorizing and localizing multiple objects in 3D space is
a challenging but essential task for many robotics and assisted living
applications. While RGB cameras as well as depth information have been
widely explored in computer vision there is surprisingly little recent work
combining multiple cameras and depth information. Given the recent
emergence of consumer depth cameras such as Kinect we explore how
multiple cameras and active depth sensors can be used to tackle the
challenge of 3D object detection. More specifically we generate point
clouds from the depth information of multiple registered cameras and use
the VFH descriptor [20] to describe them. For color images we employ
the DPM [3] and combine both approaches with a simple voting approach
across multiple cameras.

On the large RGB-D dataset [12] we show improved performance for
object classification on multi-camera point clouds and object detection
on color images, respectively. To evaluate the benefit of joining color and
depth information of multiple cameras, we recorded a novel dataset with
four Kinects showing significant improvements over a DPM baseline for
9 object classes aggregated in challenging scenes. In contrast to related
datasets our dataset provides color and depth information recorded with
multiple Kinects and requires localizing and categorizing multiple objects
in 3D space. In order to foster research in this field, the dataset, including
annotations, is available on our web page.

1 Introduction

Accurate 3D localization and categorization of objects is an important ingredi-
ent for many robotic, assisted living, surveillance, and industrial applications.
Consumer depth cameras, such as Microsoft’s Kinect, provide depth informa-
tion based on an active structured light sensor combined with color images. The
additional depth information simplifies estimating the position in 3D real world
coordinates; however, a single (color and depth) camera is still limited especially
in highly cluttered scenes, with object occlusion and objects which are difficult
to distinguish from a single view. While a plate and bowl might not be distin-
guishable from above in a color image (see e.g. Fig. 1, 1% column), additional
cameras (2"¢ column) and depth information (3"¢ and 4" column) can help to
resolve these problems. Given the low price (and likely increasing accuracy in
near future), multiple devices observing the same area are a viable and likely
setting for smart homes or surveillance. While the benefit has been argued before
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Fig. 1. Objects (here bowl and plate) are sometimes difficult to distinguishable from a
certain single view (1°¢ column). Having additional views (2"¢ column) or depth (3¢
and 4" column) can frequently resolve the problem.

we find this scenario of combining multiple views and active depth sensors under-
represented in related work. Multiple works have shown that object recognition
can be improved using stereo/depth information [17,1, 12, 8] or by using multiple
(color) images [7,19]. However, fusing information from multiple depth cameras
for object detection has hardly been addressed. An exception is [14], which how-
ever uses the depth information only to estimate if an object is occluded but
does not combine depth from multiple views and does not use depth for repre-
senting objects. Given the emergence of low-cost depth sensors we would like to
intensify research in this area and thus propose a dataset for multi-camera ob-
ject recognition to explore how to use color and depth information from multiple
views.

Our dataset is recorded in a kitchen scenario which we found to be typical
to contain large amounts of similar objects, frequently occluding each other. We
have four Kinects attached to the ceiling as can be seen in Fig. 3. The idea of
our approach is to combine strong visual cues from color images by using the
deformable part model (DPM) [3] together with the viewpoint feature histogram
(VFH) [20] extracted from depth based point clouds. We first detect the object
in all views with DPM and vote for the location of objects in 3D space, using
the depth information. Additionally we validate the 3D location with the VFH,
extracted on the registered point clouds from all cameras.

Our contributions are as follows: First, we show the benefits of multiple depth
cameras for multi-class object detection. To our knowledge we are the first to
show the benefit of multiple cameras for point cloud-based object recognition.
As the second main contribution we recorded a novel, challenging dataset of
9 object classes with four Kinects to evaluate our approach. As we discuss in
our related work section, this setting and kind of dataset has hardly been ex-
plored previously. Additionally we show improved performance for classification
on multi-camera view point clouds and improvements over related work for ob-
ject detection on the Multi-View RGB-D Object dataset [12].
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The remaining paper is structured as follows: We first discuss related ap-
proaches, scenarios, and datasets in Section 2. Next we introduce our approach
(Section 3) and our newly recorded dataset (Section 4). For evaluation we first
report the performance of our chosen feature on the RGB-D dataset (Section
5.1) and then examine the detection performance of our proposed approach on
the multiple depth camera setting (Section 5.2). We conclude with a summary
and ideas for future work in Section 6.

2 Related work

We organize this section into related feature representations for depth informa-
tion, multi-camera approaches, and available datasets recorded with (consumer)
depth cameras.

Several ways to represent depth information and to extract feature represen-
tations have been proposed. The most common or basic way is to represent depth
information as an image of depth values. On such depth images one can extract
features, such as HOG [2], which have shown good performance on color images.
Depending on the application HOG on depth images was found to perform worse
[17] (for pedestrian recognition) or better [12] (for object recognition) than on
2D intensity images but in all cases a combination of both yielded significantly
better results indicating the obvious complementary information contained in
depth and color/intensity images. Combination of depth and intensity has also
shown to be beneficial for template based method allowing real time object detec-
tion [8]. Another direction is to compute features on 3D point clouds. Spin image
[11], VFH [20], or 3D shape context [5] are prominent examples. An alternative
to represent 3D objects are 3D meshes: The 3D surf descriptor in combination
with spatial pyramids in 3D achieves significant performance improvements for
3D object classification [16]. Depth has also been used to constraint the size of
objects for improved detection [22]. Laser range scanners provide more accurate
but less dense information and can be used to define multi-modal 3D features [6].
In our work we similarly want to benefit from the complimentary information
contained in color and depth images. We choose point clouds for representing
depth, as point clouds allow to easily integrate depth information from multiple
views. We extract the VFH descriptor from the point clouds which has shown
good performance [20].

With respect to related approaches, we first would like to note that this work
focuses on a multi-camera setup, which is sometimes denoted as multi-view [4].
In most cases however, multi-view refers to multiple views of an object category.
Although our work looks at multi-view categorization we additionally want to
explore how beneficial multiple depth cameras are for object detection in 3D
space. There exists several prior works which use registered color/intensity im-
ages to improve 3D object detection: E.g. [1] shows that using two cameras can
improve performance. [19] detects cars, buses, and people on street scenes with
six cameras, while [4] localizes objects in 3D from four X-Ray cameras. [4] uses,
similar to us, a voting based approach to combine multiple views. Multiple cam-
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era views have also been used for marker-less motion capture, e.g. [13] is able
to distinguish two interacting people in a studio (green box) scenario. 3D ob-
ject detection can be achieved from a single monocular camera using video and
structure from motion [14, 25].

Our work is most similar to [7], that detects and classifies objects in an indoor
environment using multiple camera views. In a follow up work the authors use
depth information to estimate which object is an occluder of another object [14].
In contrast to this we build a feature representation on the depth information
and use not only depth from each view individually but use registered 3D point
cloud data from multiple cameras in addition to color images. Furthermore we
distinguish 9 object categories while [7, 14] only distinguish 4 and 2, respectively.

Fusing point cloud videos from a single moving Kinect has previously been
used to build high-resolution 3D representations [9] but without the direction of
object detection but rather interaction and rendering. With a similar use case,
[24] uses multiple Kinects to increase the interaction space.

Finally we will discuss the most relevant and related datasets: The Multi-
View RGB-D Object dataset provides object classification and object detection
task [12]. The dataset includes 51 classes with color image, depth image, and 3D
point cloud data. While for the classification challenge there exist multiple views
per object, the detection scenes are only recorded from a single camera/view.
Another dataset of 75 scenes with over 50 classes was recently proposed [10]. In
contrast to these datasets our dataset contains test scenes recorded by multiple
depth (and RGB) cameras.

The UBC VRS dataset [7] is most similar to ours. In an indoor detection set-
ting, recordings from multiple view-points of four object categories in 26 scenes
have to be distinguished. In [14] a few scenes with Kinect recordings of mugs
and bowls have been added. In contrast to our dataset the recordings are per-
formed from a mobile robot platform exploring the room, while our cameras are
installed statically. Our dataset contains more object categories (9) but a similar
number of scenes (33).

3 Approaches for recognition with multiple Kinects

In this section we first introduce how we perform object classification on point
clouds from a single and multiple cameras, and then we discuss several ap-
proaches to perform 3D object detection.

3.1 Object classification on 3D data

We represent depth information as point clouds, i.e. as a set of points with 3D
coordinates. This allows easy aggregation if depth information is available from
multiple registered cameras views.

For a given bounding box we extract the 3D point cloud descriptor viewpoint
feature histogram (VFH) [20]. We do this for the single-camera and multi-camera
setting. For the multi-camera setting we first register multiple object point clouds
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of different cameras into a single point cloud (see Section 4.2). Only for experi-
ments on the RGB-D dataset we combine multiple views by averaging classifiers
scores due to the unavailability of registration information.

3.2 3D object detection

We use the deformable part model (DPM) [3] to detect objects in 2D color
images. To detect objects in 3D we distinguish three approaches. The first is a
baseline based on DPM, in the second we verify single camera DPM detections
with the 3D VFH object classifier, while the third combines DPM detections
from multiple RGB cameras and depth-based VFH verification.

sDPM (single-camera DPM): As a baseline we evaluate the detection score from
a single camera and compute the 3D bounding box by using the 3D information
from the depth image of the same camera.

sDPM+mVFH (single-camera DPM + multi-camera VFH): In this approach
we first detect the object in the 2D color image with DPM and back-project
the detected bounding box into 3D space as described above. We then verify
the detection bounding box by using the 3D VFH object classifier computed on
the registered point cloud from multiple cameras. For a given hypothesis h we
combine the DPM scores s;ppas(h) and the nearest neighbor distance of the 3D
VFH classifier d,,,y g (h) with the following function, setting & = 2 and 8 = 100
to provide a similar score range.

diFH(h)> (1)

ssppM+mvFEH(R) = ssppar(h) + cexp (— 3
mDPM+mVFH (multi-camera DPM + multi-camera VFH): Finally we want
to benefit from both, multi-camera color and multi-camera depth information.
We combine the sSDPM+mVFH hypotheses from multiple cameras by voting for
a 3D location.

The single-camera hypotheses are given in 2D bounding boxes. Fusing these
2D bounding boxes in 3D space forms polyhedrons, which are not simple to work
with. Therefore, we use the center point of each object, which is defined by the
center pixel of the 2D bounding box and the depth value at the corresponding
pixel in the depth image. We transform all hypotheses from different cameras
into a single 3D coordinate system. Each hypothesis votes for all its neighbors
N, which are closer than a threshold ¢ with 50% of its own score. Thus the
accumulated score of a hypothesis is given by:

SmpPM+mvFH(R) = Ssppvymvir(h) +0.5 Z sspPM+mVFH (D) (2)
ic{jeN ()| Ih—3lI<t}

We then perform 3D non-maximum suppression with the distance thresh-
old t in 3D space to yield the final set of hypotheses. We set ¢ = 10cm in all
experiments.



6 Wandi Susanto, Marcus Rohrbach, and Bernt Schiele

= R

avocado bowl coffee box container
nutella can plate soup powder can sponge

Fig. 2. Sample object images for each class in the MPII Multi-Kinect dataset.

4 MPII Multi-Kinect dataset

Our MPII Multi-Kinect dataset is collected with four Kinect cameras at training
and test time in the same kitchen as [18]. We recorded RGB color and depth
images as well as 3D point clouds per camera and registered multi-view point
clouds computed from the depth images. The dataset consists of 9 classes of
kitchen objects shown in Fig. 2. Class bow! and cup have two instances, all others
only one. Each class in the dataset is captured in different locations and poses.
The dataset consists of two parts. In the first part (classification challenge) only
one object is present at a time. There are 560 shots taken from 4 cameras giving
a total of 2240 pairs of color and depth images (Note we have a 10%" class, namely
orange, is this first part of the dataset). The second part (detection challenge)
is again recorded from 4 camera views. Here we recorded six to ten objects
in each of a total of 33 scenes, which partially/fully occlude each other, see
Fig. 3 for an example scene. We annotate each object with a bounding-polygon,
providing a segmentation of the object in all RGB camera views. The dataset is
publicly available on our web page including the annotations. In our detection
experiments we use the camera installed on top of the scene only for ground
truth as it contains no occlusions. We evaluate the multi-camera detections with
a distance-based criterion with a threshold of 20 cm between the detection center
and the ground truth center in 3D space (the largest extension of objects in the
dataset range from 10-25 cm).

4.1 Data preprocessing

We found the depth data provided by Kinect to be very noisy and incomplete.
Noisy refers to variations between 2 to 4 different discrete depth levels. We
smooth the depth data by taking the mean over 9 depth frames. For incomplete
regions we median-filter with a 5x5 pixel window.
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Fig. 3. Example scene from four different views in our MPII Multi-Kinect dataset.

4.2 Calibration

We calibrate the extrinsic matrix between different Kinect cameras using ICP
from the PCL [21]. We choose one camera as reference to which we calibrate
the other cameras. Since the cameras look at the scene from very different view-
points, we initialize the transformation matrix between two cameras by manually
rotating the point clouds before running ICP. Due to the noisy, inaccurate depth
data, and position of our Kinect cameras, we found the different calibrated views
can still disagree by up to about 13 cm in 3D space. The active light patterns
of multiple Kinects might potentially interfere with each other. However, during
our experiments we could not observe any disturbance between different Kinects,
most likely due to the large angle between the different Kinects.

5 Evaluation

First, in Section 5.1, we present four initial experiments: (1) we extract the VFH
descriptor from point clouds and compare it to related work on the RGB-D
dataset [12]; (2) we repeat this for the DPM detector on color image scenes; (3)
we show the benefit of multi-camera information for classification on the RGB-D
dataset; and (4) on our dataset using registered point clouds.

In Section 5.2, after having shown the effectiveness of our individual compo-
nents, we test our detection approaches (detailed in Section 3) using multi-view,
depth, and color information on our multi-camera color and depth dataset.

5.1 Initial experiments

We first evaluate object classification performance using VFH as a descriptor
for point clouds on the RGB-D dataset [12]. We achieve a classification accuracy
of 57.8% with nearest-neighbors [15] and 59.4% with x? kernel SVM [23], while
[12] reports 64.7% using Spin Image [11] with a Gaussian kernel SVM. We note
that there is a drop in performance from Spin Image to VFH, but we found VFH
faster to compute and to work very well on registered point clouds from multiple
camera views as we will see below.

Second, we evaluate the DPM [3] detector on the RGB-D dataset. Not sur-
prisingly DPM outperforms HOG (with sliding window) used in [12] on the depth



8 Wandi Susanto, Marcus Rohrbach, and Bernt Schiele

—
o
s - oo
o = £
§ ge 5s
s g ]
€0 50
1 a
recall number of camera views number of camera views
(a) DPM vs. HOG detection, (b) multi-camera classification (c) multi-camera classification
class mug, RGB-D dataset [12]. on RGB-D dataset [12]. on our dataset

Fig. 4. Initial experiments, evaluating features and multiple cameras.

(see blue vs. green in Fig. 4(a) for class mug) and on the color/intensity (violet
vs. red) channel. In the following we use DPM as detector on the color image.

In a third experiment we use multi-view object information in the classifica-
tion RGB-D dataset by taking the mean of the scores from different views. There
is a significant improvement from 53.7% (1 view) to 74.9% (8 views) accuracy
(Fig. 4(b)) and hardly any improvement for more than 8 views.

The second object classification evaluation is performed on our MPII Mulit-
Kinect dataset, classification challenge. Here we register the point clouds from
different views into a single point cloud. We improve the classification accuracy
from 42.6% (1 view) to 61.0% (4 views) with linear SVM and from 45.5% (1
view) to 64.2 (4 views) with a nearest neighbors classifier, as can be seen in
Fig. 4(c). In the following we will use the nearest neighbors classifier for VFH.

5.2 Detection with multiple Kinects

For the 3D object detection challenge in our MPII Multi-Kinect dataset, we use
three cameras for detection and one as ground truth as shown in Fig. 3.

In Table 1 we compare a DPM-baseline to our approaches introduced in Sec. 3
for all classes. We first examine the DPM-baseline present in the first three
columns, comparing the mean performance in the last row. Evaluated on the
color image of a single camera DPM achieves a detection mean average precision
(AP) of 49.1%, 74.2%, and 61.8% for cameras A, B, and C, respectively. The
benefit of camera B (see Fig. 3) is of being the one with steepest angle witnessing
the least occlusion of all cameras.

Our first multi-camera approach, sSDPM+mVFH, uses still single camera
DPM, but verifies hypotheses with the multi-camera 3D object classifier. This
significantly improves the performance of each camera to 54.9%, 85.0%, and
68.4% by 5.8%, 10.8%, and 6.6%, respectively. This consistent improvement
shows the strength of adding depth information aggregated from multiple cam-
eras.

In our second multi-camera approach we combine all cameras from the previ-
ous approach by voting for a 3D location and achieve 92.4% which is an increase
by 7.4% compared to the best SDPM+mVFH (85.0% AP) and an increasy by
18.2% compared to the best DPM-baseline (74.2% AP). This shows again the
benefit of multiple cameras.
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(a) Single-camera DPM fails (b) Multi-camera voting approach (c) Multi-camera voting
to detect an occluded sponge. successfully detects locates the sponge inaccurately.
the occluded sponge.

Fig. 5. Multi-camera voting approach successfully detects an occluded object.

sDPM (baseline) sDPM+mVFH mDPM+mVFH
Class cam A cam B cam C|cam A cam B cam C|multi-cam voting
avocado 50.7 85.0 56.9| 54.6 100.0 81.4 100.0
bowl 3.0 75.1 48.5 2.1 76.1 512 87.0
coffee box 68.7 69.1 63.0] 76.7 785 67.2 80.0
container 85.7 76.5 48.0| 89.3 89.8 42.1 89.6
cup 35.7 77.3 72.6| 33.2 83.6 73.5 100.0
nutella can 80.9 83.4 83.6| 82.0 838 84.1 89.2
plate 15.4 78.1 80.2| 14.6 80.2 82.5 90.2
soup powder can| 70.2 65.4 62.7| 69.7 75.3 70.5 98.5
sponge 31.3 581 40.9] 71.7 97.5 63.2 97.0
mean 49.1 74.2 61.8] 54.9 85.0 68.4 92.4

Table 1. 3D detection using multiple cameras, color, and depth (AP in %). Single-
camera DPM, single-camera DPM + multi-camera VFH, multi-camera DPM+VFH.

In Fig. 5 we show the detection of a highly occluded sponge fails for the
single-camera DPM (a), while we can detected it using multi-camera and depth
information (b). However, the multi-view approach sometimes does not provide
very accurate detections (c).

6 Conclusion

In this work we explored the benefit of using multiple Kinects providing color
and depth information, compared to just single color cameras. In comparison to
the DPM baseline we found adding point clouds from multiple depth cameras
we achieve a performance increase from 74.2% AP to 85.0% for the best camera
view. Adding additionally all RGB cameras further increases the performance
to 92.4% improving by 18.2% AP over the best single RGB camera view. This
shows that multi-view and depth information can be very beneficial for 3D object
detection.

As part of future work we plan to add the recently proposed and improved
point cloud descriptors [16]. We are also interested in the important direction of
human-object interactions which will further increase occlusion and thus require
multiple cameras.
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