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Abstract

While activity recognition is a current focus of research
the challenging problem of fine-grained activity recognition
is largely overlooked. We thus propose a novel database of
65 cooking activities, continuously recorded in a realistic
setting. Activities are distinguished by fine-grained body
motions that have low inter-class variability and high intra-
class variability due to diverse subjects and ingredients. We
benchmark two approaches on our dataset, one based on
articulated pose tracks and the second using holistic video
features. While the holistic approach outperforms the pose-
based approach, our evaluation suggests that fine-grained
activities are more difficult to detect and the body model
can help in those cases. Providing high-resolution videos
as well as an intermediate pose representation we hope to
foster research in fine-grained activity recognition.

1. Introduction

Human activity recognition has gained a lot of interest
due to its potential in a wide range of applications such
as human-computer interaction, smart homes, elderly/child
care, or surveillance. At the same time, activity recognition
still is in its infancy due to the many challenges involved:
large variety of activities, limited observability, complex
human motions and interactions, large intra-class variabil-
ity vs. small inter-class variability, etc. Many approaches
have been researched ranging from low level image and
video features [0, 15, 38], over semantic human pose de-
tection [33], to temporal activity models [12, 22, 32].

While impressive progress has been made, we argue that
the community is still addressing only part of the overall ac-
tivity recognition problem. When analyzing current bench-
mark databases, we identified three main limiting factors.
First, many activities considered so far are rather coarse-
grained, i.e. mostly full-body activities e.g. jumping or
waving. This appears rather untypical for many application
domains where we want to differentiate between more fine-
grained activities, e.g. cut (Figure 1a) and peel (Figure 1f).
Second, while datasets with large numbers of activities ex-
ist, the typical inter-class variability is high. This seems
rather unrealistic for many applications such as surveil-

Figure 1. Fine grained cooking activities. (a) Full scene of cut
slices, and crops of (b) take out from drawer, (c) cut dice, (d) take
out from fridge, (e) squeeze, (f) peel, (g) wash object, (h) grate

lance or elderly care where we need to differentiate between
highly similar activities. And third, many databases address
the problem of activity classification only without looking
into the more challenging and clearly more realistic prob-
lem of activity detection in a continuous data stream. No-
table exceptions exist (see Sec. 2) even though these have
other limitations such as small number of classes.

This paper therefore proposes a new activity dataset that
aims to address the above three shortcomings. More specif-
ically we propose a dataset that contains 65 activities that
are for the most part fine-grained, where the inter-class vari-
ability is low, and that are recorded continuously so that we
can evaluate both classification and detection performance.
More specifically, we consider the domain of recognizing
cooking activities where it is important to recognize small
differences in activities as shown in Figure 1, e.g. between
cut (Figure la,c) and peel (Figure 1f), or at an even finer
scale between cut slices (1a) and cut dice (1c¢).

Our contribution is twofold: First, we introduce a novel
dataset which distinguishes 65 fine-grained activities. We
propose a classification and detection challenge together
with appropriate evaluation criteria. The dataset includes
high resolution image and video sequences (jpg/avi), ac-
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cls, classes clips: sub- # reso-
Dataset det videos  jects frames lution
Full body pose datasets
KTH [31] cls 6 2,391 25 200,000 160x120
USC gestures [21] cls 6 400 4 740x480
MSR action [43] cls,det 3 63 10 320x240
Movie datasets
Hollywood2 [19] cls 12 1,707:69
UCF50 cls 50 >5,000
HMDBSI [13] cls 51 6,766 height:240
Coffee and Cigarettes [17]  det 2 264:11
High Five [24] cls,det 4 300:23
Surveillance datasets
PETS 2007 [11] det 3 10 32,107 768x576
UT interaction [28] cls,det 6 120 6
VIRAT [23] det 23 17 1920x1080

Assisted daily living datasets

TUM Kitchen [36] det 10 20 4 36,666 384x288
CMU-MMAC [14] cls,det >130 26 1024x768
URADL [20] cls 17 150:30 5 < 50,000 1280x720
Our database cls,det 65 5,609:44 12 881,755 1624x1224

Table 1. Activity recognition datasets: We list if datasets allow
for classification (cls), detection (det); number of activity classes;
number of clips extracted from full videos (only one listed if iden-
tical), number of subjects, total number of frames, and resolution
of videos. We leave fields blank if unknown or not applicable.

tivity class and time interval annotations, and precomputed
mid level representations in the form of precomputed pose
estimates and video features. We also provide an anno-
tated body pose training and test set. This allows to work
on the raw data but also on higher level modeling of ac-
tivities. Second, we evaluate several video descriptor and
activity recognition approaches. On the one hand we em-
ploy a state-of-the-art holistic activity descriptor based on
dense trajectories [38] using a trajectory description, HOG
and HOF [16], and MBH [7]. On the other hand we pro-
pose two approaches based on body pose tracks, motivated
from work in the sensor-based activity recognition commu-
nity [44]. From the experimental results we can conclude
that fine grained activity recognition is clearly beyond the
current state-of-the-art and that further research is required
to address this more realistic and challenging setting.

2. Related work

We first discuss related datasets for activity recognition,
and then related approaches to the ones benchmarked on our
dataset. [1] gives an extensive survey of the field.

Activity Datasets Even when excluding single image ac-
tion datasets such as [8], the number of proposed activity
datasets is quite large ([2] lists over 30 datasets). Here, we
focus on the most important ones with respect to database
size, usage, and similarity to our proposed dataset (see
Tab. 1). We distinguish four broad categories of datasets:
full body pose, movie, surveillance, and assisted daily liv-
ing datasets — our dataset falls in the last category.

The full body pose datasets are defined by actors per-
forming full body actions. KTH [31], USC gestures [21],
and similar datasets [33] require classifying simple full
body and mainly repetitive activities. The MSR actions [43]
pose a detection challenge limited to three classes. In con-
trast to these full body pose datasets, our dataset contains
many and in particular fine-grained activities.

The second category consists of movie clips or web
videos with challenges such as partial occlusions, camera
motion, and diverse subjects. UCF50" and similar [18, 22,

] datasets focus on sport activities. Kuehne et al.’s evalu-
ation suggests that these activities can already be discrimi-
nated by static joint locations alone [13]. Hollywood2 [19]
and HMDBS51 [13] have very diverse activities. Especially
HMDBS51 [13] is an effort to provide a large scale database
of 51 activities while reducing database bias. Although it
includes similar, fine-grained activities, such as shoot bow
and shoot gun or smile and laugh, most classes have a large
inter-class variability and the videos are low-resolution. Al-
though our dataset is easier in respect to camera motion and
background it is challenging with respect to a smaller inter-
class variability.

The Coffee and Cigarettes [17], High Five [24] are dif-
ferent to the other movie datasets by promoting activity
detection rather than classification. This is clearly a more
challenging problem as one not only has to classify a pre-
segmented video but also to detect (or localize) an activity
in a continuous video. As these datasets have a maximum of
four classes, our dataset goes beyond these by distinguish-
ing a large number of classes.

The third category of datasets is targeted towards surveil-
lance. The PETS [11] or SDHA2010? workshop datasets
contain real world situations form surveillance cameras in
shops, subway stations, or airports. They are challenging
as they contain multiple people with high occlusion. The
UT interaction [28] requires to distinguish 6 different two-
people interaction activities, such as punch or shake hands.
The VIRAT [23] dataset is a recent attempt to provide a
large scale dataset with 23 activities on nearly 30 hours
of video. Although the video is high-resolution people are
only of 20 to 180 pixel height. Overall the surveillance ac-
tivities are very different to ours which are challenging with
respect to fine-grained body-pose motion.

For the domain of Assisted daily living (ADL) datasets,
which also includes our dataset, only recently datasets have
been proposed in the vision community. The University of
Rochester Activities of Daily Living Dataset (URADL) [20]
provides high-resolution videos of 10 different activities
such as answer phone, chop banana, or peel banana. Al-
though some activities are very similar, the videos are pro-
duced with a clear script and contain only one activity each.

Uhttp://vision.eecs.ucf.edu/data.html
Zhttp://cvrc.ece.utexas.edu/SDHA2010/



In the TUM Kitchen dataset [36] all subjects perform the
same high level activity (setting a table) and rather simi-
lar actions with limited variation. [14, 26] are recent at-
tempts to provide several hours of multi-modal sensor data
(e.g. body worn acceleration and object location). But un-
fortunately people and objects are (visually) instrumented,
making the videos visually unrealistic. In [14] all subjects
prepare the identical five dishes with very similar ingredi-
ents and tools. In contrast to this our dataset contains 14 di-
verse dishes, where each subject uses different ingredients
and tools in each dish.

Overall our dataset fills the gap of a large database with
realistic, fine-grained activities, posing a classification and
detection challenge in high resolution video sequences.

Holistic approaches for activity recognition Most ap-
proaches for human activity recognition in video focus on
using holistic video features, some use the human body
pose as a basis. To create a discriminative feature repre-
sentation of a video many approaches first detect space-
time interest points [6, 15] or sample them densely [39]
and then extract diverse descriptors in the image-time vol-
ume, such as histograms of oriented gradients (HOG) and
flow (HOF) [16] or local trinary patterns [42]. Messing
et al. [20] found improved performance by tracking Har-
ris3D interest points [15]. The second of the two bench-
mark approaches we evaluate (see Sec. 4.2), is based on this
idea: Wang et al. [38] track dense feature points and extract
strong video features (HOG, HOF, MBH [7]) around these
tracks. They report state-of-the art results on KTH [31],
UCF YouTube [ 18], Hollywood?2 [ 19], and UCF sports [25].
Other directions include template based approaches [25]
or segmenting the space-temporal data and constructing a
graph from this [5]. Another direction is to detect activities
with a body-worn camera [34].

Body pose for activity recognition Many human activ-
ities such as sitting, standing, and running are defined in
terms of body poses and their motion. However, with a few
exceptions [10, 33], there exist little work on visual activ-
ity recognition based on articulated pose estimation. Pose-
based activity recognition appears to work particularly well
for images with little clutter and fully visible people as in
the gesture dataset from [33]. Estimates of people poses
were also used as auxiliary information for activity recog-
nition in single images [40]. However, these systems have
not shown to be effective in complex dynamic scenes with
frequent occlusions, truncation and complex poses. So far,
action recognition in such scenes was addressed only by
holistic feature-based methods such as [16] due to the diffi-
culty of reliable pose estimation in the complex real-world
conditions.

Sung et al. [35] use depth information from a Kinect to
estimate pose and distinguish 12 activities. However, in an

initial test we found that the Kinect sensor has difficulties to
capture fine grained activities due to limited resolution.

3. Fine grained human activities database

For our dataset of fine grained activities we video
recorded participants cooking different dishes. Videos are
annotated with activity categories on time intervals and a
subset of frames was annotated with human pose.

3.1. Database recording

We recorded 12 participants performing 65 different
cooking activities, such as cut slices, pour, or spice. To
record realistic behavior we did not record activities indi-
vidually but asked participants to prepare one to six of a
total of 14 dishes such as fruit salad or cake containing sev-
eral cooking activities. In total we recorded 44 videos with
a total length of more than 8 hours or 881,755 frames.

In order to get a variation in activities we always told a
participant beforehand to prepare a certain dish (e.g. salad),
including a set of ingredients (cucumber, tomatoes, cheese)
and potential tools (grater) to use. Instructions were given
verbally and frequently participants diverted from the in-
structions by changing tools, and/or ingredients adding to
the variability of the activities. Prior to recording partici-
pants were shown our kitchen and places of the required
tools and ingredients to feel at home. During the record-
ing participants could ask questions in case of problems
and some listened to music. We always start the record-
ing prior to the participant entering the kitchen and end it
once the participant declares to be finished, i.e. we do not
include the final cleaning process. There was a variety of
14 dishes, namely sandwich, salad, fried potatoes, potato
pancake, omelet, soup, pizza, casserole, mashed potato,
snack plate, cake, fruit salad, cold drink, and hot drink.
Within these dishes each person used different ingredients
resulting in very dissimilar videos, e.g. some participants
cooked a packet soup while others prepared it from scratch.
Dish preparation time varies from 3 to 41 minutes. For
statistics on the activities see Table 5. Most participants
were university students from different disciplines recruited
by e-mail and publicly posted flyers and paid; cooking ex-
perience ranging from beginner cookers to amateur chefs.

We recorded in our kitchen (see Figure 1(a)) with a 4D
View Solutions system using a Point Grey Grashopper cam-
era with 1624x1224 pixel resolution at 29.4fps and global
shutter. The camera is attached to the ceiling, recording
a person working at the counter from the front. We pro-
vide the sequences as single frames (jpg with compression
set to 75) and as video streams (compressed weakly with
mpeg4v2 at a bitrate of 2500).



upper arm lower arm

Method Torso Head r 1 r 1 All
Original models

CPS [29] 67.1 00 534 486 473 370 422
FMP [41] 63.9 721 602 59.6 42.1 467 574
PS [3] 58.0 455 505 572 433 388 489
Trained on our data

FMP [41] 79.6 67.7 607 60.8 50.1 503 615
PS [3] 80.1 800 678 69.6 439 496 66.0

FPS (our model) 78.5 794 619 641 624 61.0 679

Table 2. Comparison of 2D upper body pose estimation methods,
percentage of correct parts (PCP).

3.2. Database annotations

Activities were annotated with a two-stage revision
phase by 6 people with start and end frame as well as the
activity categories (see Tab. 5) using the annotation tool Ad-
vene [4]. The dataset contains a total of 5,609 annotations
of 65 activity categories. This includes a background activ-
ity for the detection task which is generated automatically
for all intervals without any other manual annotation for at
least 30 frames (1 second), e.g. because the person is not
(yet) in the scene or doing an unusual activity which is not
annotated.

A second type of annotation is articulated human pose.
A subset of frames has been annotated with shoulder, elbow,
wrist, and hand joints as well as head and torso. We have
1,071 frames of 10 subjects for training (5 subjects are from
separate recordings). For testing we sample 1,277 frames
from all activities with the remaining 7 subjects.

We also provide intermediate representations of holistic
video descriptors, human pose detections, tracks, and fea-
tures defined on the body pose (Sec. 4). We hope this will
foster research at different levels of activity recognition.

4. Approaches

To better understand the state-of-the-art for the challeng-
ing task of fine-grained activity recognition we benchmark
two approaches on our new dataset. The first (Sec. 4.1) uses
features derived from an upper body model motivated by the
intuition that human body configurations and human body
motion should provide strong cues for activity recognition
in general but particularly for fine-grained activity recogni-
tion. The second (Sec. 4.2) is a state-of-the-art method [38]
that has shown promising results on various datasets.

4.1. Pose-based approach

The first approach is based on estimates of human body
configurations. The purpose of this approach is to inves-
tigate the complexity of the pose estimation task on our
dataset and to evaluate the applicability of state-of-the-art
pose estimation methods in the context of activity recogni-
tion.

Figure 2. Examples of correctly estimated 2D upper body poses
(left) and typical failure cases (right).

Although pose-based activity recognition approaches
were shown to be effective using inertial sensors [44], they
have not been evaluated when the poses are estimated from
monocular images. Inspired by [44] we build on a similar
feature set, computing it from the temporal sequence of 2D
body configurations. In the following we first evaluate the
state-of-the-art in 2D pose estimation in the context of our
dataset. We then introduce our pose-based activity recogni-
tion approach that builds on the best performing method.

2D human pose estimation In order to identify the best
2D pose estimation approach we use our 2D body joint
annotations (see Sec. 3.2). We compare the performance
of three recently proposed methods: the cascaded pictorial
structures (CPS) [29], the flexible mixture of parts model
(FMP) [41] and the implementation of pictorial structures
model (PS) of [3]. Notice that these methods are designed
for generic 2D pose estimation. In particular they do not
rely on background subtraction or strong assumptions on
the appearance of body limbs (e.g. skin color).

For evaluating these methods we adopt the PCP measure
(percentage of correct parts) proposed in [ 1 0] that computes
the percentage of body parts correctly localized by the pose
estimation method. A body part is considered to be lo-
calized correctly if the predicted endpoints of the part are
within half of the part length from their ground-truth posi-
tions. We first compare the implementations and pre-trained
models made publicly available by the authors. Results are
shown in the upper part of Tab. 2. The FMP model performs
best, likely due to its ability to handle foreshortening of the
body parts that occurs frequently in our data.

To push the performance further we retrain the two best
performing models (FPM and PS) on our training set, which
results in improvements from 57.4 to 61.5 PCP for the FMP
model and from 48.9 to 66 PCP for the PS model (Tab. 2,
last column). While demonstrating best results, the PS
model is still defined in terms of rigid body parts, which
is suboptimal for our task. In order to address that we de-
fine a flexible variant of the PS model (FPS) that instead
of 6 parts used in the original model, consists of 10 parts
corresponding to head, torso, as well as left and right shoul-



Figure 3. Sample tracks for different activities. Backward tracks
in green, forward tracks in red and initial pose in cyan. First row,
(left to right): peel, stir, wash objects, open egg, Second row (left
to right): cut slices, cut dice, take out from drawer, open egg,

der, elbow, wrist and hand. While overall the extended FPS
model improves over PS model only by 1.9 PCP (66.0 PCP
for PS models vs. 67.9 PCP for FPS), it improves the de-
tection of lower arms by more than 11 PCP which are most
important for fined-grained activity recognition. Based on
this comparison we rely on the FPS model in the subsequent
steps of our pose-based activity recognition pipeline. Fig-
ure 2 visualizes several examples of the estimated poses for
FPS. Notice that we can correctly estimate poses for a vari-
ety of activities and body configurations while maintaining
precise localization of the body joints.

To extract the trajectories of body joints, an option is to
extend our pose estimation to the temporal domain. How-
ever, temporal coupling of joint positions significantly com-
plicates inference and approaches of this kind have only re-
cently begun to be explored in the literature [30]. Moreover,
our dataset consists of over 800,000 frames and to deal with
this sheer complexity of estimating human poses for this
dataset we choose a different avenue which relies on search
space reduction [10] and tracking. To that end we first esti-
mate poses over a sparse set of frames (every 10-th frame in
our evaluation) and then track over a fixed temporal neigh-
borhood of 50 frames forward and backward. For track-
ing we match SIFT features for each joint separately across
consecutive frames. To discard outliers we find the largest
group of features with coherent motion and update the joint
position based on the motion of this group. In order to re-
duce the search space further we use a person detector [9]
and estimate the pose of the person within the detected re-
gion with 50% border around.

This approach combines the generic appearance model
learned at training time with the specific appearance (SIFT)
features computed at test time. When initialized with suc-
cessful pose estimates it provides reliable tracks of joints in
the local temporal neighborhood (see Figure 3).

Body model and FFT features Given the body joint tra-
jectories we compute two different feature representations:
Manually defined statistics over the body model trajecto-
ries, which we refer to as body model features (BM) and
Fourier transform features (FFT) from [44] which have
shown effective for recognizing activities from body worn
wearable sensors.

For the BM features we compute the velocity of all
joints (similar to gradient calculation in the image domain)
which we bin in a 8-bin histogram according to its direction,
weighted by the speed (in pixels/frame). This is similar to
the approach in [20] which additionally bins the velocity’s
magnitude. We repeat this by computing acceleration of
each joint. Additionally we compute distances between the
right and corresponding left joints as well as between all 4
joints on each body half. For each distance trajectory we
compute statistics (mean, median, standard deviation, mini-
mum, and maximum) as well as a rate of change histogram,
similar to velocity. Last, we compute the angle trajectories
at all inner joints (wrists, elbows, shoulders) and use the
statistics (mean etc.) of the angle and angle speed trajecto-
ries. This totals to 556 dimensions.

The FFT feature contains 4 exponential bands, 10 cep-
stral coefficients, and the spectral entropy and energy for
each x and y coordinate trajectory of all joints, giving a to-
tal of 256 dimensions.

For both features (BM and FFT) we compute a separate
codebook for each distinct sub-feature (i.e. velocity, accel-
eration, exponential bands etc.) which we found to be more
robust than a single codebook. We set the codebook size
to twice the respective feature dimension, which is created
by computing k-means from all features (over 80,000). We
compute separately both features for trajectories of length
20, 50, and 100 (centered at the frame where pose was de-
tected) to allow for different motion lengths. The result-
ing features for different trajectory lengths are combined
by stacking and give a total feature dimension of 3,336 for
BM and 1,536 for FFT. We will provide the features for the
dataset as well as code for computing these features.

4.2. Holistic approach

Most approaches for activity recognition are based on a
bag-of-words representations. We pick a recently suggested
approach [38] which extracts histograms of oriented gradi-
ents (HOG), flow (HOF) [16], and motion boundary his-
tograms (MBH) [7] around densely sampled points, which
are tracked for 15 frames by median filtering in a dense op-
tical flow field. The x and y trajectory speed is used as
a fourth feature. Using their code and parameters which
showed state-of-the-art performance on several datasets we
extract these features on our data. Following [38] we gener-
ate a codebook for each of the four features of 4,000 words
using k-means from over a million sampled features.



4.3. Activity classification and detection

We train classifiers on the feature representation de-
scribed in the previous section given the ground truth in-
tervals and labels. We train one-vs-all SVMs using mean
SGD [27] with a x? kernel approximation [37]. While we
use ground truth intervals for computing classification re-
sults we use a sliding window approach to find the correct
interval of a detection. To efficiently compute features of
a sliding window we build an integral histogram over the
histogram of the codebook features. We use non maximum
suppression over different window lengths and start with the
maximum score and remove all overlapping windows. In
the detection experiments we use a minimum window size
of 30 with a step size of 6 frames; we increase window and
step size by a factor of /2 until we reach a window size of
1800 frames (about 1 minute). Although this will still not
cover all possible frame configurations, we found it to be
a good trade-off between performance and computational
costs.

5. Evaluation

We propose the following experimental setup for our
dataset and include evaluation scripts with the dataset. We
have a total of 12 subjects, of which 5 subjects are used
to train the body pose model. The remaining 7 subjects
are used to perform leave-one-person-out cross-validation.
That means that for the 7 cross-validation rounds, training
of the activity recognition approaches can use the data from
the other 11 subjects.

We report multi-class precision (Pr) and recall (Rc), as
well as single class average precision (AP), taking the mean
over all test runs. If there is no ground truth label for a
certain activity for a given test run (=subject), we ignore
this subject when computing mean AP for that particular
activity. For detection we use the midpoint hit criterion to
decide on the correctness of a detection, i.e. the midpoint of
the detection has to be within the groundtruth. If a second
detection fires for one groundtruth label, it is counted as
false positive. We provide evaluation scripts for comparable
results.

5.1. Classification results

Tab. 3 summarizes the classification results. The first
section of the table shows results for the approaches based
on the articulated pose model (see Sec. 4.1), while the
second section shows results of the state-of-the-art holistic
dense trajectories [38] feature representation (see Sec. 4.2).
Overall we achieve a mean multi-class recall or accuracy
(Tab. 3, second last column), between 21.8% and 45.1%
which should be compared to chance level of 1.6% for the
64 classes (we exclude the background class for classifica-
tion).

Multi-class per class
Approach Precision Recall AP
Pose-based approaches
BM 221 218 27.4
FFT 234 224 30.4
Combined 28.6 28.7 34.6
Holistic approaches
Trajectory 354 333 42.0
HOG 39.9 340 529
HOF 433  38.1 53.4
MBH 446 405 52.0
Combined 494 44.8 59.2
Pose + Holistic 504 45.1 579

Table 3. Classification results, in % (see Sec. 5.1)

We first examine the pose-based approaches. The body
model features on the joint tracks (BM) achieve a multi-
class precision (Pr) of 22.1%, a recall (Rc) of 21.8% and
a mean average precision (AP) of 27.4%. When compar-
ing this to the FFT features, we observe that FFT performs
slightly better, improving over BM regarding Pr, Rc, and
AP by 1.3%, 0.6%, and 3.0%, respectively. A low-level
combination of BM and FFT features (Tab. 3, line 3) yields
a significant improvement, reaching 28.6% Pr, 28.7% Rc,
and 34.6% AP. We attribute this to the complementary infor-
mation encoded in the features: While BM encode among
others velocity-histograms of the joint-tracks and statistics
between tracks of different joints, FFT features encode FFT
coefficients of individual joints.

Next we compare the results of the holistic approaches
(Sec. 2, Tab. 3) based on dense trajectories [38]. Trajec-
tory has the lowest performance with 35.4% Pr, 33.3% Rec,
and 42.0% AP. In line with results reported by [38] for
other datasets HOG, HOF, and motion boundary histograms
(MBH) improve over this performance. MBH achieves
44.6% Pr, 40.5% Rc, and 52.0% AP. Combining all holis-
tic approaches again significantly improves performance by
more than 4% to 49.4% Pr, 44.8% Rc and 59.2% AP.

It is interesting to note that the pose-based approaches
achieve significantly lower performance than the holistic
approaches. This may be attributed to the rather sparse joint
trajectories of the pose-based approach, while the holis-
tic approach benefits from HOF, HOG, and MBH features
around the dense tracks. Additionally we found that pose-
estimation does not always give correct results, especially
for non-frontal poses or self-occlusion, making the result-
ing tracks and features fail.

A low-level combination of pose and holistic approaches
(Tab. 3, last line) shows slight improvement over the holis-
tic approach (Tab. 3, second last line). We achieve 50.4%
multi-class precision, 45.1% multi-class recall (or accu-
racy), and 57.9% AP (slightly dropped). Although we be-
lieve this is an encouraging first result, it shows that fine-
grained activity recognition is indeed difficult.

A more detailed class level evaluation based on the con-



Multi-class per class
Approach Precision Recall AP
Pose-based approaches
BM 6.7 16.1 13.0
FFT 63 183 15.0
Combined 8.6 213 17.7
Holistic approaches
Trajectory 10.7 252 284
HOG 15.0 322 355
HOF 151 299 36.1
MBH 162 377 39.6
Combined 17.7 403 44.2
Pose + Holistic 198 402 45.0

Table 4. Detection results, in % (see Sec. 5.2)

fusion matrix (not shown) reveals that fine-grained activities
with low inter-class variability are highly confused (e.g. dif-
ferent cut activities) while less fine-grained activities such
as wash objects or take out from drawer are hardly con-
fused. This underlines the difficulty of fine-grained activity
recognition vs. full- or upper-body activities.

Examining the intermediate representation of 2D tracks
we found that the tracks for fine-grained activities peel
vs. cut slices (Figure 3, first column) can distinguish fine-
grained movements (sideways hand movement vs. vertical
movement) highlighting the potential benefit of using body-
pose features.

5.2. Detection results

Tab. 4 shows detection results and Tab. 5 results per class
of the respective combined approaches. Overall perfor-
mance ranges from the combined pose-based approaches of
17.7% AP (8.6% Pr, 21.3% Rc) over 44.2% AP (17.7% Pr,
40.3% Rc) for the holistic approaches to 45.0% AP (19.8%
Pr, 40.2% Rc) when combining pose-based and holistic.
The improvements of the combination, similar to the classi-
fication results, underlines the complementary nature of the
two approaches. Even though overall the performance for
the detection task (Tab. 4) is lower than for classification
(Tab. 3) the relative performances are similar: pose-based
approaches perform below holistic approaches and combin-
ing individual approaches improves performance, respec-
tively. In all cases multi-class precision is significantly
lower than recall, indicating a high number of false posi-
tives. Frequently short activity fragments score very high
within other longer fragments or sometimes one ground
truth label is fragmented into several shorter ones. We hope
this dataset will provide a base for exploring how to best
attack these multi-class activity detection challenges.

Tab. 5 provides detailed per-class detection results. We
note a general trend when examining the combined pose +
holistic approach (Tab. 5, column 5): Fine-grained activi-
ties such as cut apart (15.7% AP), screw close (31.2% AP),
or stir (52.2% AP) tend to achieve lower performance than
less fine-grained activities such as dry (94.8% AP), take

Pose Hol Pose + Holistic
category # AP AP AP Pr  Rc
Background activity 1861.0 31.6 47.1 48.8 169 85.0
change temperature 72.0 21.1 37.6 494 7.8 88.9
cut apart 164.0 4.2 16.0 15.7 8.4 38.1
cut dice 108.0 10.1 25.1 23.8 1.8 5.0
cut in 12.0 0.5 22.8 11.1 00 0.0
cut off ends 46.0 1.1 74 6.0 1.3 74
cut out inside 59.0 7.3 16.3 14.6 55 595
cut slices 179.0 22.7 42.0 39.8 248 33.0
cut stripes 45.0 23.1 27.6 359 235 333
dry 58.0 44.8 95.5 948 543 96.2
fill water from tap 9.0 67.2 75.0 583 333 66.7
grate 37.0 25.5 329 40.2 9.0 78.9
lid: put on 20.0 1.6 2.0 3.5 0.0 0.0
lid: remove 24.0 0.1 1.9 1.7 00 0.0
mix 8.0 0.3 36.8 35.7 00 0.0
move from X to Y 144.0 2.3 15.9 13.8 9.7 25.7
open egg 14.0 0.4 45.2 27.2 0.0 0.0
open tin 17.0 9.5 79.5 79.3 444 57.1
open/close cupboard 30.0 255 54.0 54.2 189 389
open/close drawer 90.0 6.1 38.1 37.9 154 379
open/close fridge 13.0 62.3 73.7 73.8 333 875
open/close oven 8.0 20.0 25.0 100.0 0.0 0.0
package X 22.0 1.2 31.9 43.0 00 0.0
peel 104.0 42.0 65.2 60.7 585 375
plug in/out 11.0 1.5 54.7 56.4 333 333
pour 88.0 9.3 542 50.0 16.0 70.9
pull out 7.0 24 87.5 87.5 16.7 75.0
puree 15.0 40.2 67.1 65.1 242 66.7
put in bowl 215.0 79 18.8 16.0 37 31
put in pan/pot 58.0 2.8 15.3 26.0 1.8 7.1
put on bread/dough 257.0 14.4 42.1 423 285 302
put on cutting-board 94.0 3.0 7.1 11.6 83 8.6
put on plate 102.0 1.7 11.0 6.1 22 1.8
read 23.0 1.3 345 49.6 9.5 25.0
remove from package 46.0 6.3 39.1 35.6 100 6.7
rip open 17.0 0.3 5.8 1.7 0.0 0.0
scratch off 14.0 0.5 3.8 2.8 0.0 0.0
screw close 72.0 22 36.3 31.2 19.4 477
screw open 73.0 3.7 19.1 26.1 69 15.6
shake 94.0 23.7 335 36.7 185 542
smell 20.0 0.3 24.8 22.4 44 150
spice 44.0 7.6 29.3 32.1 20.0 60.0
spread 24.0 3.6 11.2 139 500 16.7
squeeze 27.0 52.7 90.0 894  28.6 100.0
stamp 13.0 2.6 73.3 70.8 135 625
stir 95.0 19.0 50.0 522 18.0 632
strew 53.0 11.4 39.6 37.8 16.0 10.0
take & put in cupboard 25.0 23.8 372 38.9 00 0.0
take & put in drawer 14.0 0.9 37.6 31.8 00 0.0
take & put in fridge 30.0 442 54.6 592 316 66.7
take & put in oven 9.0 34.5 100.0 100.0  66.7 66.7
t. & put in spice holder 22.0 28.4 80.2 78.6 18.8 46.2
take ingredient apart 57.0 33 17.5 20.7 37 256
take out from cupboard 130.0 61.5 81.5 70.5 64.8 80.7
take out from drawer 258.0 48.2 79.7 70.2 63.0 70.8
take out from fridge 70.0 56.5 73.6 755 373 824
take out from oven 7.0 2.1 83.3 83.3 37.5 100.0
t. out from spice holder 31.0 10.0 67.0 71.3 85 50.0
taste 21.0 0.9 18.2 288 286 154
throw in garbage 87.0 50.0 84.4 859 434 8406
unroll dough 8.0 0.6  100.0 833  66.7 66.7
wash hands 56.0 35.7 459 506 412 3l1.1
wash objects 139.0 515 67.1 722 28.8 90.1
whisk 19.0 40.6 70.0 60.8 152 71.8
wipe clean 20.0 55 10.6 7.7 53 10.0
Mean over all classes 86.3 17.7 442 45.0 19.8 40.2

Table 5. Detection results per class in % (see Sec. 5.2).
Column 2: total number of annotations; columns 3 to 5: AP for
(the combined version of) pose-based, holistic, and pose
+ holistic approaches; column 6,7: multi-class precision and

recall for the Combined pose + holistic approach.



out from fridge (75.5% AP) or wash objects (72.2% AP).
This underlines our assumption that fine-grained activities
are very challenging, which seem to be neglected in many
other dataset.

6. Conclusion

Many different activity recognition datasets have been
proposed. However, this new dataset goes beyond previ-
ous datasets by posing a detection challenge with a large
number of fine-grained activity classes as required for many
domains such as assisted daily living. It provides a realis-
tic set of 65 activity classes with low inter-class and large
intra-class variability.

We benchmark two approaches on this dataset. The
first is based on human body joint trajectories and the sec-
ond on state-of-the-art holistic features [38]. Combined
they achieve 45.1% mean multi-class recall or accuracy and
57.9% mean average precision on the classification task
and 45.0% mean average precision on the detection task.
Individually the pose-based approach is outperformed by
the dense trajectories which can be attributed to limitations
of current articulated pose estimation approaches and the
sparser and weaker feature representation. Our analysis of
the detection task suggests that especially fine-grained ac-
tivities are very difficult to detect.

To enable diverse directions of future work on this
dataset, we provide the dataset on our website, together with
intermediate representations such as body pose with trajec-
tories to allow working on different levels of the problem of
fine-grained activity recognition.

Acknowledgement: We would like to thank Ulf Blanke
for code and discussions on activity recognition.
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