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Abstract— In this work, we present novel warping algorithms
for full 2D pixel-grid deformations for face recognition.

Due to high variation in face appearance, face recognition
is considered a very difficult task, especially if only a single
reference image, for example a mug-shot, per face is available.

Usually model-based approaches with additional training
data are used to cope with several types of variation occurring
in facial imaging. Image warping contrarily yields a distance
measure which is invariant with regard to several types of
variation. This allows for precise recognition even using only
very few reference observations. Due to the computationally
complex problem of optimal 2D warping, pseudo-2D warping-
based approaches in the past represented strong approximations
of the original problem, and were mainly successful on data
with low variability or rectified images.

We propose a novel 2D warping method which is globally
optimal and makes no prior assumtions on the data variability
besides two-dimensional smootheness constraints which both
avoid local mirroring and gaps and significantly speed up the
optimization. Furthermore, we show that occlusion handling is
imperative to obtain smooth warpings in a variety of domains.

We evaluate our novel algorithm on various well known
databases, such as the AR-Face and CMU-PIE database, and
provide a detailed comparison to existing warping approaches.
We show that by using simple relative 2D constraints, strong
local features and a kernel, which is robust w.r.t. occlusions,
our computationally complex approaches outperform state-of-
the-art results for recognizing faces under varying expressions,
occlusions and poses. Most interestingly, we achieve higher
accuracy using fewer training instances per class compared
to methods learning a model of the 3D shape.

I. INTRODUCTION

Recognising faces is a hard task due to the image vari-

ability both stemming from the natural variability of the face

which results from temporal changes, different expressions

or occlusions, and from global variations in illumination

or pose (c.f. Fig. 2). Furthermore, in many domains as

for example records of criminals, only a limited number

of images per individual are given as references. In the

most extreme case, only one frontal mug-shot is available,

making it necessary to acquire additional external data if

one aims at training a model which captures the natural

variability. Since this is not always possible, we propose to

use two-dimensional warping (2DW) algorithms in order to

obtain a deformation-invariant dissimilarity measure which

can be used for nearest-neighbour classification. In contrast

to related to feature matching approaches [10, 27, 5, 35, 13,

7], our approach uses dense information and incorporates

(a) test (b) (c) (d) reference

Fig. 1. Query image (a), mug-shot reference image (d), and deformed
reference image (b) using our smooth global deformation algorithm. (c)
shows the deformation grid, where dark blue areas correspond to small
absolute deformations and dark red corresponds to strong absolute
deformations.

structural dependencies. This leads to smooth deformations,

which can handle crucial appearance changes resulting from

different poses and expressions (c.f. Fig. 1) and is also robust

with regard to occlusions.

Face recognition techniques can be divided into two

groups by discriminating between methods using global

or local information. Concerning local information, lots of

research has been performed in finding an appropriate feature

descriptor which is a priori invariant to certain transforma-

tions [20, 1, 36, 3] or can be learned from suitable training

data [27, 14, 30]. On the other hand, it is possible to train

global variability models using parametric shape models,

such as elastic graph bunch matching [34], active shape [6]

and active appearance models [8], or by imposing domain

knowledge to infer 3D models from 2D images. For the

latter, [37] generate virtual pose images which can be used

as additional reference images and [25] learn pose variability

from data and marginalise over poses.

Recently, increased research has been performed w.r.t.

image warping methods, which stem from dynamic time

warping in speech recognition. In 2D, approximations like

pseudo-two-dimensional warping (P2DW) have been used

for face recognition [9]. They can be calculated efficiently

using decoupled hidden Markov models (HMMs), but can

not find good warpings in the presence of strong non-

linear variations (and can not even cope with rotations).

Therefore, stronger warping methods have been proposed

[2, 19, 24, 31, 11].

We will give an overview of the different approaches

along with a motivation for our approach in Sec. II. Then,

we recapitulate two successful alignment models which we

enhance by directly implementing geometric constraints. In



Sec. IV, we directly implement geometric constraints in

a tree-based warping method, leading to a novel efficient

warping algorithm. Finally, we discuss a few practical as-

pects w.r.t. computational efficiency before evaluating our

model and compare it thoroughly with other image warping

methods and competing approaches.

II. PROBLEM STATEMENT

Aligning facial images is crucial for a large number

of face recognition algorithms. Several methods for face

detection and cropping [33], eye detection and subsequent

rectification have been proposed. Using these methods, basic

global transformations can be coped with, but it was shown

that in addition strong features must be used in matching

algorithms [10]. Matching algorithms try to find a matching

local descriptor in the reference image for each item in a

sparse or dense set of local descriptors representing the test

image. In order to disallow arbitrary matchings, matches are

usually searched for only in a relative local neighbourhood,

which has to be defined in advance, as for example in

[13]. Including relative spatial information leads to so called

warping algorithms, where matches of local descriptors are

not only found through local similarity, but also through

pairwise smoothness which capture geometrically similar

matchings of neighbouring pixels. Due to the loopy nature

of the resulting optimisation problem, it is NP-complete to

find a global optimum [16]. However, several methods exist

for example using interior trust regions [24] or data driven

iterations [31]. Additionally, maximum aposteriori inference

(MAP) in Markov random fields (MRF) is receiving in-

creased attention [19, 2, 11]. Here, efficient optimisation

algorithms like sequential tree-reweighted message passing

(TRW-S) [18] allow for finding good optima with a huge

number of labels.

In order to obtain robust algorithms with suitable run-

times, approximations and heuristics are introduced by hi-

erarchical approaches [2], splitting of horizontal and vertical

displacements which leads to less tight lower bounds, or ab-

solute restrictions of the displacement [23] which implicitly

assumes prior knowledge on the variability of the data. Also,

it is unclear in what magnitude using an approximation of

the global optimum for a given energy function influences

the classification performance. In this work, we therefore

investigate in and contribute to the following topics:

• We directly compare globally optimal and approxima-

tive warping algorithms

• We present a novel warping algorithm which is globally

optimal and uses structural constraints

• We evaluate several warping approaches on data with

strong variations such as poses and occlusions

• We show that for warping in highly variable domains

occlusions must and can be handled efficiently

We show that the direct implementation of geometry-

preserving constraints in both relaxations of the depen-

dencies, represented by tree-serial dynamic programming

(TSDP) [23], and approximative alignment models, such as

tree-reweighted sequential message passing (TRW-S) [18],

(a) test (b) reference

Fig. 2. (a) Local and global face variability caused by changes in facial
expressions and partial occlusions (top row), and changes in pose
(bottow row). Self-occlusions produced by e.g. closed eyes or changes
in pose are common. (b) Only one reference image per person is
available

allows to efficiently calculate alignments which lead to very

good recognition results. Very similar to our approach is the

work of [2], who use tree-based energy minimisation [18]

for pose-invariant face recognition with local binary patterns

(LBP), although using a model with a less tight lower bound,

less strict constraints and no occlusion handling.

III. TWO-DIMENSIONAL WARPING

In this section, we give a short introduction on 2DW,

which can be defined as an alignment problem where each

pixel ij of a test image X ∈ F I×J is aligned to a position

wij = (uij , vij) located in a reference image R ∈ FU×V .

Here, F is an arbitrary feature descriptor of dimension D.

A complete alignment {wij} then defines a dissimilarity or

energy E as follows:

E(X, R, {wij})

=
∑

ij

[

d(Xij , Rwij
) +

∑

n∈N (ij)

Tn,ij(wn, wij)
]

. (1)

Here, d(Xij , Rwij
) is the distance at feature level and T is

a smoothness function in which geometrical dependencies

and constraints between neighboring pixels N can be im-

plemented. Given this notation, one is interested in finding

the alignment which minimises E. This optimal alignment

does not change when the smoothness is only computed w.r.t.

horizontal and vertical predecessors, changing Eq. (1) to

E(X,R, {wij}) =
∑

ij

[

d(Xij , Rwij
)+Th(wi−1,j , wij)+Tv(wi,j−1, wij)

]

, (2)

where Th, Tv are horizontal and vertical smoothness terms.

As mentioned before, directly optimizing this criterion is

NP-complete and therefore suitable approximations are nec-

essary. In the most simple approximation the smoothness

function is replaced by a term T∆(ij, wij) which penalizes

the absolute deviation of ij from wij and restricts the

maximum displacement in horizontal and vertical direction to

∆. We call this approach zero-order warping (ZOW), which

has been introduced e.g. as Image Distortion Model in [17].

Approximative Energy Minimisation. Markov random

field (MRF) inference can be used to find a minimum of

Eq. (2). Here, we shortly present the tree-reweighted mes-

sage passing algorithm (TRW-S) by [18], which guarantees

convergence to a (local) optimum and gives a lower bound



TABLE I. Structural constraints as presented in [32].

constraints monotonicity continuity

horizontal 0 ≤ ui,j − ui−1,j ≤ 2 |vi,j − vi−1,j | ≤ 1

vertical 0 ≤ vi,j − vi,j−1 ≤ 2 |ui,j − ui,j−1| ≤ 1

on the energy which can be exploited for pruning nearest-

neighbor (NN) search (c.f. Sec. VI). TRW-S iteratively

approximates this lower bound, which is a dual of the LP-

relaxation of Eq. (2). TRW-S extends regular tree-reweighted

message passing (TRW) by using sequential updates which

guarantee a monotonic increase of the lower bound and work

on subproblems which form monotonic chains. TRW com-

putes min-marginals Φij(wij), which are forced to be equal

among subproblems, and performs re-parameterization by

passing messages between neighbouring nodes. Exploiting

the structure of the subproblems, these computations can be

efficiently combined in TRW-S.

A. Tree-Based Optimisation

Tree-serial dynamic programming [23] relaxes 2DW by

representing the two-dimensional pixel grid as a series of

individual pixel neighborhood trees. Each pixel tree i∗ has

its own assignment stem, but shares the horizontal branches

with other trees. As each tree i∗ is optimized independently

from the others, the optimisation problem in Eq. (2) breaks

up into a series of partial tree-like ones:

Ei∗(X, R, {wij}) =
∑

j

[

∑

i

[d(Xij , Rwij
)

+Th(wi−1,j , wij)+T∆(ij, wij)]+Tv(wi∗,j−1, wi∗j)
]

. (3)

The solution for Eq. (3) can be efficiently found by dy-

namic programming (DP) and the final global alignment

is a composition of the alignments of the separate column

stems. It should be noted that [23] impose no hard pairwise

geometrical constraints in the binary smoothness function. In

order to keep the complexity of the optimisation feasible, the

authors penalise the absolute deviation of ij and wij by the

term T∆(·), s.t. T∆(·) = 0 iff deviation ≤ ∆ and T∆(·) = ∞
otherwise. Therefore, we refer to this version of TSDP as

TSDP-∆. Furthermore, simply summing up energies Ei∗

disproportionately emphasizes the horizontal penalty terms.

Hence, we use the alignments obtained by minimising Eq. (3)

to compute the energy using Eq. (2).

IV. STRUCTURAL CONSTRAINTS

It has been shown by [32] that obeying specific hard

constraints is necessary for obtaining a structure-preserving

alignment. To this end, constraints ensuring the monotonicity

and continuity of an alignment have been proposed which

prevent large gaps and mirroring. They are conceptually

similar to 0-1-2 HMMs in speech recognition, and replace

the smoothness terms Th, Tv by constrained versions T c
h, T c

v ,

which return infinity if the constraints, which are given in

Tab. I, are violated.

In addition, it has been shown in [11] that using hard

constraints in a warping scheme approximating the optimal

(a) reference (b) (c) (d) test

Fig. 3. Comparing TSDP without (top row) and with (bottom row)
structural constraints on an example of the CMU-PIE poses database.
Note that for poses, the alignment direction is reversed because of
inaccurate cropping of the test images (c.f. Sec. VII-C). The alignment
using hard structural constraints is much smoother, while the original
implementation contains obvious discontinuities both in the aligned
reference image and the alignment grid. The alignment has been
computed using SIFT features and applied to gray images.

solution is necessary in order to find good local optima. It is

not clear, however, whether the improvements in error rates

stem from the reduced search space, or whether the changed

criterion itself leads to a more discriminative energy.

We propose to extend the TSDP approach by the same

structural constraints. The main difference here is that TSDP

computes an optimal solution for a slightly simplified crite-

rion. This allows to better deduce the optimality of solutions

derived by approximative methods. Furthermore, implement-

ing hard geometric constraints in TSDP leads to a significant

speed up and allows for much greater displacements.

We will shortly summarise the constrained TRW-S

(CTRW-S) as proposed by [11], and then show how the

constraints can be implemented in TSDP, leading to a more

efficient formulation.

A. TRW-S with Structural Constraints

Updating messages in TRW-S involves finding a local

minimum w.r.t. a pixel alignment pair (w, w′). According

to [11], this minimum does not change when only pairs

with T c
{h/v}(w, w′) < ∞ are considered, therefore these

allowed pairs can be pre-computed and the minimisation can

be restricted to these pairs. Since updating messages is the

speed bottleneck of TRW-S with a complexity in O((UV )2),
the reduction to O(9 ·UV ) due to the hard constraints given

in Tab. I provides a significant speed up.

B. TSDP with Structural Constraints

In TSDP, replacing Tv, Th with T c
h, T c

v allows to discard

the absolute position penalty term T∆ since the optimisation

becomes much more efficient, leading to the criterion:

Ei∗(X, R, {wij}) =
∑

j

[

∑

i

[d(Xij , Rwij
)

+ T c
h(wi−1,j , wij)] + T c

v (wi∗,j−1, wi∗j)
]

. (4)

As the optimisation breaks down into trees, DP can be used

to find a global optimum. Given the hard constraints in



the smoothness terms, paths in the DP recursion contain-

ing violated constraints have an infinite cost and will be

discarded at the top level. Therefore, similar to CTRW-S,

we can discard any recursion containing violated constraints

or conversely, just recurse through trees with allowed label

combinations. DP can easily be implemented by dedicated

loops, leading to a complexity in O(IJUV ), while the

complexity of the original TSDP-∆ is in O(IJ∆4). The

latter rapidly outgrows the former for increasing ∆, because

for each alignment wij all (2∆+1)2 possible alignments of

neighboring positions have to be considered. To account for

the structural constraints, we denote this version of TSDP

as CTSDP. We visually compare alignments resulting from

TSDP-∆ with ∆ = 17 and CTSDP in Fig. 3, which shows

that the alignment becomes much smoother using the hard

structural constraints. Here, we deform the test image (d)

to best fit the reference (a) and show both the deformed test

image in (b) as well as the deformed regular pixel grid in (c).

It can be seen that without using structural constraints, large

artifacts are visible in the deformed test image due to some

very huge displacement inconsistencies which are allowed

in the original TSDP formulation, although penalised. It

should be noted, that in our new CTSDP warping algorithm,

constraints between vertically neighbouring pixels can be

violated due to the independent optimisation of the column

trees. This is not very likely though, since all column trees

use the same horizontal branches.

Comparing the runtime of CTSDP to CTRW-S, the op-

timisation of CTSDP has an equal complexity to a single

forward pass of CTRW-S. Since the latter has to perform both

a forward and a backward pass, and additionally multiple

iterations in order to converge, the runtime of CTSDP is at

least two times as fast as one single iteration of CTRW-S.

V. OCCLUSION MODEL

One big obstacle to finding a dense alignment between

local features are occlusions in images. In general, occlusions

can be created by something as simple as sunglasses or a

scarf, but also non-visible parts of the face due to closed

eyes or rotation of the head may also be present (c.f. Fig. 2).

Two kinds of difficulties arise with occlusions:

1) If either the pixel at ij or wij is occluded, the lo-

cal distance between this pair does not contain dis-

criminatory information but can in fact misguide the

recognition. This can be seen in Fig. 4(d), where the

thresholded, blue areas are likely similar through all

reference images and therefore do not contribute to

the discriminative part of the distance.

2) Occluded pixels often have high distances to possible

matching candidate positions and may not only enforce

a bad local alignment, but also propagate it to neigh-

boring pixels due to the structural constraints. Fig. 4(c)

exemplifies this, where the warping using thresholding

is much smoother in the area of the sunglasses.

It is possible to explicitly model occlusions in the warping

algorithm, for instance by introducing higher-order con-

nected graphs or by using an additional void or unaligned

(a) test (b) (c) (d) (e) reference

Fig. 4. 2D warping of reference to test image without (top row) and with
(bottom row) thresholding on an example from the AR-Face occlusion
database. (b) is the aligned reference, (c) is the deformation grid and
(d) is the local similarity map between the test and the aligned
reference image. Dark blue pixels denote low similarity and red pixels
denote high similarity.

label. This introduces huge additional (computational) com-

plexities and modelling difficulties. Therefore, we propose to

use a local distance thresholding in order to deal with local

occlusions, namely d̃τ (Xij , Rwij
) = min(τ, d(Xij , Rwij

))
with a threshold τ . This has several advantageous properties.

On the one hand, it can be directly implemented in the

local distance computation which is of minor complexity

in comparison to the optimization. On the other hand, it

both reduces the impact of occluded pixels on the total

distance and allows the optimization algorithms to more

easily align non-occluded pixels while keeping influence

of the occluded pixels low. It can be seen in Fig. 4 that

thresholding produces a much smoother alignment and in

addition local distances are influenced much less by occluded

areas, since thresholded areas should be roughly the same

for all reference images. The alignment has been computed

using CTRW-S, SIFT features and applied to gray images.

VI. PRACTICAL ISSUES

Despite using hard-coded geometric constraints in the

optimisation algorithm, the computational complexity is still

high. Therefore, we shortly describe two means of acceler-

ating the recognition.

a) Caching: In this work, we use PCA-reduced SIFT

feature descriptors which will be described in more detail

in Sec. VII. For speedup, we cache all pairwise distances

during an initialisation phase. In addition, we extend the local

distance d to include the local context of a pixel pair ij, wij .

Assuming a context of 5 × 5, the context-size normalized

local distance becomes

d5×5(Xij , Rwij
)

=
1

25

∑

∆x

∑

∆y

d(Xi+∆x,j+∆y
, Ruij+∆x,vij+∆y

), (5)

with ∆x and ∆y ∈ −2, · · · , 2. At image borders, the

usable context and therefore the normalisation term becomes

smaller. Naively replacing d with d5×5 in Eq. (2) leads

to a huge computational overhead, since local contexts of

neighboring pixels strongly overlap and local distances are

computed multiple times. Therefore, we cache all local

distances on the fly.



b) Pruning: As presented in [11], optimising the defor-

mation between a query and reference image can be stopped

or even completely omitted a lower bound on the energy of

the current comparison surpasses the lowest energy found

so far. It was shown that the lower bound of TRW-S can

be exploited without loosing accuracy due to its guaranteed

monotonicity. For all other optimization algorithms, a weak

lower bound is the sum of the lowest local distances for

all coordinates ij. This sum can be computed during the

distance pre-computation and speeds up the NN search,

especially if a good match can be found early.

VII. RESULTS

In this section, we present experimental results which

show that using geometric constraints alongside with the

proposed occlusion model improves recognition accuracy for

three major face recognition tasks. We will shortly give an

overview of the used face databases and the setup used for

the experiments. Then we present the results on the three

different tasks, namely recognising faces from databases with

mug-shot images while test images vary in occlusion, facial

expression and head pose.

AR-Face. The database [21] contains frontal view face

images with different facial expressions, illumination con-

ditions, and occlusions (sun glasses and scarf). The images

correspond to 126 persons: 56 women and 70 men. Each

individual participated in two sessions separated by 14 days.

During each session 13 pictures per person were taken under

the same conditions. Similar to the work of [10], only a

subset of 110 individuals for which all variability is available

is used in our experiments.

CMU-PIE. The database [26] consists of over 41000 images

of 68 individuals. Each person is shown under 43 different

illumination conditions, 13 poses and 4 various facial expres-

sions. We only use the subset of all persons imaged under

13 poses in neutral facial expression.

Experimental Setup. The original face images from both

datasets were manually aligned by eye-center locations [12].

The images were rotated such that the eye-centre locations

are in the same row and cropped to 64 × 64 gray valued

pixels. Some sample preprocessed images from both AR-

Face and CMU-PIE datasets are shown in Fig. 2 (top row)

and Fig. 2 (bottom row), respectively. At each position,

we extract a 128-dimensional SIFT feature descriptor [20],

which is reduced to 30 dimensions using PCA as proposed

by [15] which is estimated on the respective training data

and subsequently normalised to unit length. Classification is

performed using a NN-classifier with the deformation energy

as dissimilarity measure and the L1 norm as local feature

distance. Since no separate development set is available for

these databases, we estimated parameter settings for each

task on the most difficult test subset. We found that for

each algorithm, parameter settings generalised extremely

well over all tasks, making hardly any adjustments necessary.

We use our own implementations of ZOW [36], P2DW

[9], TSDP [23] and CTRW-S [11] in order to have fully

 0

 5

 10

 15

 20

 25

 0  0.2  0.4  0.6  0.8  1  1.2

E
rr

o
r 

[%
]

threshold

P2DW
TSDP-Delta

CTRW-S
CTSDP

Fig. 5. Error rates on the AR-Face task, session 2, sunglasses using the
original and novel formulation of TSDP and CTRW-S with different
levels of distance thresholding.

comparable results 1.

A. AR-Face Occlusions

We evaluate the ability of the presented approaches to

recognise partially occluded faces from the occlusion subset

of the AR-Face database (c.f. Fig. 2). We use the neutral

expression, non-occluded images from Session 1 as reference

images and all occluded face images from Sessions 1 and 2

as test images leading to 440 test and 110 reference images.

A suitable occlusion threshold (τ = 0.7) value was found

on the sunglasses occlusion subset of session 2 alongside

with ∆ = 10 for TSDP-∆ and ZOW. Results for different

threshold values and algorithms are presented in Fig. 5.

Interestingly, the optimal threshold value leads to a very

strong decrease in error rate and is very similar for all

algorithms, and therefore most probably just depends on

the feature descriptor respective the distribution of the local

distances. Too small thresholds lead to very high error rates

since too much discriminative information is filtered out.

From Tab. II, it can be seen that warping algorithms

with stricter dependencies and constraints suffer worse from

occluded parts of the face. Using thresholding all algorithms

despite ZOW produce nearly equally excellent recognition

result with our novel warping algorithm, CTSDP, giving the

best overall result. Two things should be noted:

1) CTSDP which implements structural constraints per-

forms superior to the original version with absolute

constraints despite being much more general and ef-

ficient. For TSDP-∆, the warp range ∆ = 10, while

CTSDP models deformations of arbitrary magnitude.

2) The surprisingly good performance of P2DW can be

accounted to pre-aligned face images, in which virtu-

ally no rotations are present. Additionally, despite of

the occlusions the variability is very low, allowing very

good performance even for baseline warping methods.

In comparison to state-of-the-art approaches, it can be

seen that our method clearly outperforms the competition.

Since they are all outperformed even by the ZOW despite

using zero-order-like matching algorithms themselves, it can

be concluded that the SIFT descriptor in combination with

occlusion modelling already provides a significant advantage.

1Implementations will be made available at
http://www.hltpr.rwth-aachen.de/w2d/



TABLE II. Recognition error rates [%] on the AR-Face occlusion task
using warping algorithms with and without occlusion modelling.

Model Occlusion handling

no yes

No warping 39.22 38.10

ZOW 6.79 2.46
P2DW 7.21 1.91
CTRW-S 8.27 1.69
TSDP-∆ 6.79 1.69

CTSDP 9.45 1.48

SURF [7] 10.54 -
DCT [10] 3.59 -
Partial Dist. [30] ∗4.67 -
Stringface [4] 13.00 -
PWCMr [14] - 16.00
LGBPHS [36] 16.00 -
SOM [29] 25 -

∗ used only a subset of occlusions

TABLE III. Recognition error rates [%] on AR-Face expression using the
proposed warping algorithms with occlusion handling and
comparison to state-of-the-art.

Model Session 1 Session 2 Avg.

smile anger scream smile anger scream

No warping 2.73 9.10 37.27 5.45 6.36 52.73 18.23

ZOW 0.00 0.00 3.64 0.91 1.82 17.27 3.94
P2DW 0.00 0.00 3.64 0.91 0.91 19.09 4.09
TSDP-∆ 0.00 0.00 3.64 0.91 1.82 17.27 3.94
CTRW-S 0.00 0.00 3.64 0.91 0.91 16.36 3.64

CTSDP 0.00 0.00 4.55 1.82 0.91 13.64 3.49

Partial Dist. [30] 0.00 3.00 7.00 12.00 14.00 37.00 12.00
Aw-SpPCA [28] 0.00 2.00 12.00 12.00 10.00 36.00 12.00
SOM [29] 0.00 2.00 12.00 12.00 10.00 36.00 12.00
SubsetModel [22] 3.00 10.00 17.00 26.00 23.00 25.00 17.00

Here, [10] uses DCT features extracted from non-overlapping

blocks, LGBPHS [36] use local Gabor binary pattern his-

tograms and [7] evaluates both SURF and SIFT features

using a locally restricted matching scheme. Another two

non-learning approaches, namely Stringface [4] and Partial

Distance [30], employ matching procedure for recognition

and hence are similar to our method: the former one is

inspired by a string-based matching after representing a face

as an attribute string, while the latter one uses nonmetric

partial similarity measure. In opposite to our approach, the

remaining two methods build a model from the training data,

where SOM [29] learns a suitable self-organising map feature

representation from data and PWCMr [14] learns occlusion

masks in order to reconstruct invisible parts from other faces

where corresponding regions are not occluded. It is worth to

point out that being model-free and hence very general, our

approach is able to achieve much better results, especially in

comparison to the learning-based methods.

B. AR-Face Expressions

Varying expressions pose additional challenges for recog-

nition algorithms. Not only is it necessary to correctly align

the facial image, but strong non-linear deformations have

to be compensated. In order to show the capabilities of the
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Fig. 6. Detailed plot of recognition accuracy [%] of the proposed
algorithms across poses. Vertical grid lines divide between near profile
(leftmost & rightmost) and near frontal (centre division) poses as used
in Tab. IV. It can be seen that all algorithms perform similar on near
frontal poses, while the performance an near profile poses increases
with thresholding and obeyed constraints in the models.

discussed warping algorithms, we use a subset of the AR-

Face database containing three different expressions taken

in each of the two sessions and use the neutral expression

of Session 1 as reference images. A detailed quantitative

analysis is presented in Tab. III. Clearly, both temporal and

strong non-linear variation due to the scream expression

poses the most difficult recognition task. All warping al-

gorithms greatly outperform the un-aligned distance, while

again the proposed extensions give small but noticeable

improvements with CTSDP consistently achieving the best

performance. In comparison to state-of-the-art methods the

proposed extensions achieve significantly better recognition

results. This is interesting since all of competitive approches

except for already mentioned Partial Distance [30] method

use a significantly larger amount of training data in order to

learn a representative subspace via Gaussian mixtures [22]

and self-organising maps [28, 30] which can not compete

with the performance of the presented warping algorithms,

but are probably more efficient.

C. Multi-Pose Recognition

One of the biggest challenges for face recognition are

varying poses, which result in two-dimensional projections of

three-dimensional transformations. Without considering 3D

models, all variability has to be inferred in 2D space. In

order to present the results of the warping algorithms, we

use the CMU-PIE database where 68 subjects have been

pictured from 13 viewpoints. The frontal image is used

as reference image and all of the remaining 12 poses are

used for testing. Two peculiarities of this database should be

noted. At first, the frontal and hence reference images are

much more accurately cropped, while a lot of background

is visible in near profile shots. Therefore, it is best practise

to reverse the alignment procedure and thus “deform” the

test image to the reference image, which minimizes the

impact of background pixels [2]. Second, since in profile

shots only half of the face is visible, it is convenient to



TABLE IV. Average error rates [%] on CMU-PIE groups of poses of our
algorithms with occlusion handling and state-of-the-art methods.

Model near frontal near profile avg.

ZOW 0.49 31.61 16.05
P2DW 0.25 17.63 8.94
TSDP-∆ 0.98 25.36 13.17
CTRW-S 0.49 6.37 3.43

CTSDP 0.25 7.35 3.80

Hierarchical matching [2] 1.22 10.30 5.76
3D shape modeling [37] 0.00 ∗∗14.40 ∗∗6.55
Prob. learning [25] ∗ 7 ∗ 32 19.30

Numbers with ∗ are estimated from graphs, ∗∗ denotes
missing poses and different setups

automatically generate and additionally use the left and right

half of the reference face images as proposed in [2]. We use

a slightly larger threshold τ = 1.1 for this task because of

the higher background variability. Also, ∆ for ZOW and

TSDP-∆ has to be increased to 17, which leads to a notable

increase in complexity. For TSDP-∆, a further increase of

∆ might decrease error rate, but is infeasible because of

the quadric complexity . Fig. 6 shows the results of our

novel warping algorithm, CTSDP, in comparison with the

original formulation and also exemplifies the impact of the

occlusion handling. As can also be seen in Fig. 3, obeying

strict geometric constraints leads to a large improvement

in recognition accuracy shown by the superior accuracy of

CTSDP in comparison to TSDP-∆. Also, CTSDP is roughly

ten times as fast as TSDP-∆ (33s vs. 350s) and also gives

an 1.5 times speed increase compared to one iteration of

CTRW-S (45s).

Comparing the achieved results with state-of-the-art results

in Tab. IV, it is convenient to discriminate between recog-

nition performance on the easy near-frontal poses and the

much more difficult near-profile poses.

Here, it becomes clear that using geometric constraints

and an occlusion model is imperative for achieving excellent

recognition error rates, which is underlined by the fact that

CTRW-S with occlusion handling outperforms all weaker

warping algorithms as well as the hierarchical matching

algorithm presented by [2], which does not use occlusion

modelling. Also, they decouple horizontal and vertical dis-

placements, which allows fast distance transforms but leads

to a less tight lower bound. Zhang et al. [37] use an

additional profile shot (pose 22) as reference image and

generate virtual intermediate pose images using a 3D model.

Since they use more training data and omit the most difficult

pose in the recognition, their experiments are not entirely

comparable. The method of [25] performs well despite using

automatically cropped images, which is also an interesting

task to be tackled with warping algorithms.

D. Discussion

The quantitative results indicate that strong neighbourhood

dependencies lead to improved recognition accuracies. For an

in-depth analysis, we show qualitative deformation results for

faces with variability from occlusions, expressions and poses

in Tab. V. For each task, we give a query image and resulting

deformations to the reference image of the correct class

and to a reference image of a competing class. It is clearly

visible, that warping methods not using structural constraints

or thresholding tend to reconstruct the query image more

strictly. This obviously affects the classification performance,

since it becomes harder to discriminate between the correct

and competing classes. This is important, since in general

the dissimilarity measure obtained by the warping algorithms

is not optimised for discriminativeness, but tries to find the

most similar transformation of the reference. Here it shows

that a suitable geometric model as introduced by the Sakoe

constraints [32] is imperative to obtain a discriminative

distance measure as well as visually smooth warpings.

VIII. CONCLUSIONS

In this work, we have shown that using warping algorithms

on local features provide a very general and qualitatively

excellent approach for recognising faces under strong vari-

ability from just one training example. Although the compu-

tational demands are still high, the efficiency of both globally

optimal as well as approximative warping methods is greatly

increased by the introduction of hard geometric constraints,

where our novel CTSDP warping algorithm performs on

par with the CTRW-S method while being at least 1.5

times faster. In comparison with other warping approaches,

it becomes clear that variability induced by projections of

3D transforms can be less reliably coped with using weaker

smoothness paradigms. While results on the expressions and

occlusion tasks do not vary strongly over different warping

approaches, very significant differences can be observed

on the CMU-PIE database. On the other hand, it became

clear that, especially for the warping methods which obey

the image geometry more strictly, occlusions handling is

imperative and can be done efficiently using thresholding.
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