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This supplementary material provides further details concerning the implementation of STL-SDCA and MTL-SDCA
solvers, their runtime analysis, and visualization of selected prediction results. All source code and the scripts for running
experiments are available at http://github.com/mlapin/cvpr14mtl.

1. Implementation Details
In this section we discuss certain implementation details of our STL-SDCA and MTL-SDCA solvers. We begin with some

notation and then proceed with technical details for each solver.
Notation: Let {(xi, yit) : 1 ≤ i ≤ n, 1 ≤ t ≤ T} be the input/output pairs of the multitask learning problem, where

xi ∈ Rd, yit ∈ {±1}, T is the number of tasks, and n is the number of training examples per task. We assume that all
tasks have the same training examples even though this can be easily generalized. The standard single task learning (STL)
approach learns linear predictors wt in the original space Rd. In contrast, the proposed multitask learning (MTL) method
learns a matrix U in Rd×k, which is used to map the original features xi into a new representation zi via zi = U>xi. The
linear predictors wt are then learned in the subspace Rk.

Let X in Rd×n be the matrix of stacked vectors xi, Z in Rk×n the matrix of stacked vectors zi, Y in {±1}n×T the matrix
of labels, and W in R·×T the matrix of stacked predictors wt (the dimensionality of wt will be clear from the context). We
define the following kernel matrices: K = KX = X>X , KZ = Z>Z, and M = KW = W>W .

As mentioned in the paper, both solvers use precomputed kernel matrices and work with dual variables αt in Rn. We
define A in Rn×T as the matrix of stacked dual variables for all tasks.

STL-SDCA: The STL optimization problem for a task t is defined as follows:

min
wt∈Rd

1

n

n∑
i=1

max (0, 1− yit 〈wt, xi〉) +
λ

2
‖wt‖22 ,

where λ > 0 is the regularization parameter. This yields the following dual problem, see [1].
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subject to 0 ≤ yitαit ≤ 1 for all i = 1, . . . , n

At step s, a dual variable is updated via α(s)
it = α

(s−1)
it + ∆αit, where the update ∆αit can be computed as [1]:

∆αit = yit max

(
−yitα(s−1)

it ,min

(
1− yitα(s−1)

it ,
1− yit 〈wt, xi〉

1
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2
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))
. (1)

Note that ‖xi‖22 = Kii = KX [i, i] and, since

wt =
1

λn

n∑
i=1

αitxi =
1

λn
Xαt, W =

1

λn
XA, (2)
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one obtains

〈wt, xi〉 =
1

λn

n∑
j=1

αjt 〈xi, xj〉 =
1

λn
K>i αt = K>i α̃t,

where Ki = KX [:, i] is the i-th column of KX and we apply a change of variables α̃it = 1
λnαit. From now on, we always

use the transformed α̃it variables and drop the˜notation for convenience.
The vector Kαt in Rn can be precomputed using the initial α(0)

t and then updated whenever ∆αit 6= 0 as follows:

Kα
(s)
t = Kα

(s−1)
t + ∆αitKi. (3)

Note that this update, as well as the Kαt, can be computed efficiently using BLAS routines xAXPY and xGEMV. Let

h =
1− yitK>i αt

Kii
and C =

1

λn
, (4)

where K>i αt is the i-th element of the precomputed vector Kαt. Then α(s)
it can be computed directly as follows:

α
(s)
it =

max
(

0,min
(
C,α

(s−1)
it + h

))
if yit = +1,

max
(
−C,min

(
0, α

(s−1)
it − h

))
if yit = −1.

(5)

Based on (5), the update (1) can be shown to be 0, i.e. ∆αit = 0, in the following two cases which typically hold for most of
the data points after the first few epochs. Note that if the update is zero, then computation of (3) and (4) is avoided:

∆αit = 0 if
(
α
(s−1)
it = 0 and h ≤ 0

)
or
(
α
(s−1)
it = yitC and h ≥ 0

)
.

The intuition here is that if a point is not a support vector (α(s−1)
it = 0) and there is no loss on this example (h ≤ 0), then

there is no incentive for the data point to become a support vector. Similarly, if there is some non-negative loss (h ≥ 0), but
the point already exerts the maximum force (α(s−1)

it = yitC), then it will not be updated.
Since Kii > 0 (we skip examples with Kii = 0), the conditions h R 0 can be simplified and one obtains

∆αit = 0 if
(
α
(s−1)
it = 0 and yitK>i αt ≥ 1

)
or
(
α
(s−1)
it = yitC and yitK>i αt ≤ 1

)
. (6)

U-SDCA: As discussed in the paper, MTL-SDCA alternates between learning predictors wt via STL-SDCA on Z and
learning the matrix U via an algorithm that we call U-SDCA.

Let W be fixed. The problem of learning a matrix U is formulated as follows:

min
U∈Rd×k

1
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µ

2
‖U‖2F ,

where µ > 0 is the regularization parameter and ‖·‖F is the Frobenius norm. The corresponding dual problem is given below.
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subject to 0 ≤ yitαit ≤ 1 for all i = 1, . . . , n, t = 1, . . . , T

Similarly to STL-SDCA, an update ∆αit can be computed as follows:

∆αit = yit max

(
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Note that ‖xi‖22 = Kii = KX [i, i], ‖wt‖22 = Mtt = KW [t, t] and, since

U =
1

µnT

∑
i,t

αitxiw
>
t =

1

µnT
XAW>, (7)



one obtains 〈
wt, U

>xi
〉

=
1

µnT

∑
j,s

αjs 〈xi, xj〉 〈ws, wt〉 =
1

µnT
K>i AMt = K>i ÃMt,

where Ki = KX [:, i] is the i-th column of KX , Mt = KW [:, t] is the t-th column of KW and we apply a change of variables
α̃it = 1

µnT αit. As before, we always use the transformed α̃it variables and drop the˜notation.
Note that the matrix A now introduces coupling between all tasks and all examples, hence every non-zero update ∆αit

affects all scores
〈
wt, U

>xi
〉
. We experimented with one approach where the whole matrix KAM is precomputed and

then updated via rank-1 updates ∆αitxiw
>
t (using BLAS routine xGER). However, this strategy seemed inferior in terms of

runtime when compared to the approach we present next (most likely due to less efficient memory access pattern).
Instead of sampling both i and t at every iteration, we proceed as follows. At each epoch, we iterate over all tasks in

random order (task IDs are permuted at the beginning of the epoch) and precompute KAMt for a given task t. Then we
iterate over all examples in random order and update the vector KAMt in Rn similar to (3):

KA(s)Mt = KA(s−1)Mt + ∆αitKiMtt.

The formula (5) for α(s)
it remains unchanged, while the h and C are now computed differently:

h =
1− yitK>i AMt

KiiMtt
and C =

1

µnT
,

where K>i AMt is the i-th element of the precomputed vector KAMt. Similarly, the condition (6) becomes

∆αit = 0 if
(
α
(s−1)
it = 0 and yitK>i AMt ≥ 1

)
or
(
α
(s−1)
it = yitC and yitK>i AMt ≤ 1

)
.

MTL-SDCA: We now describe the master problem of the MTL-SDCA algorithm. Recall that the joint problem is non-
convex and we use an STL solution as the initial point, i.e. U (0) = WSTL = XASTL, where ASTL are the dual variables
computed by STL-SDCA on X (using the kernel KX ). It follows that

Z = U (0)>X = A>STLKX and KZ = Z>Z.

MTL-SDCA takes Y , KX , KZ , λ, and µ as input and outputs A and KW . Since U = XAW>, the test scores are given as:

W>Ztst = W>U>Xtst = KWA
>Ktst,

where Ktst = X>Xtst. The procedure is summarized in Algorithm 1.

Algorithm 1 MTL-SDCA

Input: labels Y , Gram matrices KX and KZ , parameters λ and µ, stopping criterion ε
Let: A,Aold, B,Bold = 0 // initialize U-SDCA and STL-SDCA dual variables
loop

Update B via STL-SDCA(Y , KZ , λ)
Let KW = B>KZB // since W = ZB, see (2)
Update A via U-SDCA(Y , KX , KW , µ)
if RMSE ((A,B)− (Aold, Bold)) < ε then

break
end if
Let KZ = KXAKWA

>KX // since Z = U>X and U = XAW>, see (7)
Let Aold = A, Bold = B

end loop
return A, KW

Note that both the STL-SDCA and U-SDCA solvers support warm restart, hence the dual variables A and B are actually
updated rather than recomputed from scratch.



2. Runtime Analysis
To estimate the overhead of the proposed MTL method relative to the standard STL approach, we performed a single run

of the full pipeline for the best performing setting (SIFT+LCS+PN+L2 features, Ntrain=50 examples per class), see Table 3
in the paper. We used a 32 core 64 bit 2.7 GHz Intel CPU machine with 256 GB of RAM. Both solvers were compiled by
GCC version1 4.4 with the -O3 option and linked the Intel MKL library version 11.1 for the vectorized BLAS subroutines.

Table 1 reports the elapsed wall-clock time for various steps of the complete pipeline excluding the model selection step.
Note that most of the time (over 9 hours) is spent in the computation of image descriptors, where the Fisher Vector encoding
step is the most expensive compared to SIFT and LCS feature extraction. MTL-SDCA training takes more time than STL-
SDCA, but is faster than training an encoder, where most of the time is spent in SIFT and LCS extraction and in learning a
visual words vocabulary. Moreover, the MTL time also includes the STL-SDCA training time since STL provides the initial
point in our approach. For further details, see the script matlab/analysis/resProfileTime.m.

Routine STL MTL MTL/STL

Prepare image encoder (fit a GMM for the Fisher Vector) 1.4 hours –
Compute Fisher Vector image descriptors (train and test subsets) 9.3 hours –
Compute train and test kernels 11.1 mins –

Solve SDCA optimization problem (pure training time) 2.2 mins 24.9 mins 11.23
+ compute training kernels + compute MTL initial point 8.0 mins 32.9 mins 4.13
+ compute descriptors for training images 6.2 hours 6.7 hours 1.07

Table 1: Runtime comparison for the standard STL and the proposed MTL methods (Wall-clock time).

Table 2 reports a similar breakdown of the total runtime as measured by CPU time.

Routine STL MTL MTL/STL

Prepare image encoder (fit a GMM for the Fisher Vector) 7.3 hours –
Compute Fisher Vector image descriptors (train and test subsets) 3.3 days –
Compute train and test kernels 2.8 hours –

Solve SDCA optimization problem (pure training time) 15.8 mins 5.8 hours 22.00
+ compute training kernels + compute MTL initial point 1.7 hours 7.5 hours 4.43
+ compute descriptors for training images 2.0 days 2.3 days 1.12

Table 2: Runtime comparison for the standard STL and the proposed MTL methods (CPU time).

We conclude from the presented runtime comparison that the relative overhead of the proposed multitask learning method
is rather small when other steps of the pipeline are taken into account (roughly a factor of 4 when all features are precomputed
and about 12% otherwise).

3. Top-5 Predictions Modulo Human Confusions
We show that the proposed MTL method not only improves the top-K accuracy for varying K, as argued in the paper, but

also tends to produce more “reasonable” confusions in the following sense. Let P 5
STL be a set of top-5 prediction results for

the baseline STL method, similarly, let P 5
MTL be a set of top-5 predictions of the proposed MTL approach, finally, let Phuman

be a set of all classes that AMT workers confused with the given class (i.e. classes of all non-zeros in the corresponding row
of the confusion matrix of “good workers”). Let

fSTL =
∣∣P 5

STL ∩ Phuman

∣∣ , fMTL =
∣∣P 5

MTL ∩ Phuman

∣∣ ,
where |A| is the cardinality of a set A. Figure 1 shows the distribution of ∆f = fMTL − fSTL across all 10 splits of the
SUN397 dataset. Note that ∆f > 0 for more test examples than ∆f < 0, which means there is a tendency for the MTL
method to produce more “human” confusions.

1 MATLAB R2013a requires GCC 4.4, see http://www.mathworks.com/support/compilers/R2013a/index.html?sec=glnxa64.

http://www.mathworks.com/support/compilers/R2013a/index.html?sec=glnxa64
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Figure 1: Comparison of STL and MTL top-5 prediction results modulo human confusions. For each method, the top-5
predictions are intersected with human predictions to count “reasonable” confusions, denoted fSTL/MTL. The plots show the
distribution of fMTL − fSTL over all 10 splits of SUN397. The highlighted (red) bar corresponds to “the best” MTL results,
some of which are visualized in the following section. Left: counts on the log10 scale; Right: normalized distribution.

4. Selected Prediction Results on SUN397
We visualize top-5 predictions of STL and MTL methods on a few selected examples where MTL produces “more human”

confusions (see Figure 1). Human performance is estimated based on the confusion matrix of “good workers” provided by
Xiao et al. [2]. Classifiers are trained using the SIFT descriptor with the Hellinger kernel and Ntrain=20 images per class.

Test image

Ground truth:
dinette, home
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M
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(confidence: 0.42)

2: dinette, home
(confidence: 0.25)
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(confidence: 0.25)
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Figure 2: Multitask learning improves upon single task learning on the given test image. Top five predictions along with
thumbnail images are shown for both approaches. Top row: single task learning results. Middle row: multitask learning
results. Bottom row: confidence scores from the confusion matrix of “good workers”.
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Figure 3: Multitask learning improves upon single task learning on the given test image. Top five predictions along with
thumbnail images are shown for both approaches. Top row: single task learning results. Middle row: multitask learning
results. Bottom row: confidence scores from the confusion matrix of “good workers”.
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Figure 4: Multitask learning improves upon single task learning on the given test image. Top five predictions along with
thumbnail images are shown for both approaches. Top row: single task learning results. Middle row: multitask learning
results. Bottom row: confidence scores from the confusion matrix of “good workers”.
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Figure 5: Multitask learning improves upon single task learning on the given test image. Top five predictions along with
thumbnail images are shown for both approaches. Top row: single task learning results. Middle row: multitask learning
results. Bottom row: confidence scores from the confusion matrix of “good workers”.
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(confidence: 0.10)
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Figure 6: Multitask learning improves upon single task learning on the given test image. Top five predictions along with
thumbnail images are shown for both approaches. Top row: single task learning results. Middle row: multitask learning
results. Bottom row: confidence scores from the confusion matrix of “good workers”.
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Figure 7: Multitask learning improves upon single task learning on the given test image. Top five predictions along with
thumbnail images are shown for both approaches. Top row: single task learning results. Middle row: multitask learning
results. Bottom row: confidence scores from the confusion matrix of “good workers”.
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Figure 8: Multitask learning improves upon single task learning on the given test image. Top five predictions along with
thumbnail images are shown for both approaches. Top row: single task learning results. Middle row: multitask learning
results. Bottom row: confidence scores from the confusion matrix of “good workers”.


