
RALF: A Reinforced Active Learning Formulation for Object Class Recognition

Sandra Ebert Mario Fritz Bernt Schiele
Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract

Active learning aims to reduce the amount of labels re-
quired for classification. The main difficulty is to find a
good trade-off between exploration and exploitation of the
labeling process that depends – among other things – on
the classification task, the distribution of the data and the
employed classification scheme. In this paper, we analyze
different sampling criteria including a novel density-based
criteria and demonstrate the importance to combine explo-
ration and exploitation sampling criteria. We also show
that a time-varying combination of sampling criteria often
improves performance. Finally, by formulating the criteria
selection as a Markov decision process, we propose a novel
feedback-driven framework based on reinforcement learn-
ing. Our method does not require prior information on the
dataset or the sampling criteria but rather is able to adapt
the sampling strategy during the learning process by expe-
rience. We evaluate our approach on three challenging ob-
ject recognition datasets and show superior performance to
previous active learning methods.

1. Introduction

Many computer vision algorithms require large quanti-
ties of training data to achieve good performance. For ex-
ample, in object class recognition a significant number of
training samples is necessary to capture the intra-class vari-
ability and often a strong correlation is postulated between
the number of training samples and the final recognition
performance. Given these requirements and the complex
structure of our target classes, the traditional approach to
randomly request labels during training appears insufficient
as there is an increasing risk that many draws will result
in redundant rather than complementary information. Ac-
tive learning is a promising research direction to tackle this
problem by proposing strategies which label to request next
and in turn reducing the total labeling effort.

A popular approach in this area is pool-based active
learning [17] that considers the entire data as a pool from
which most informative examples given a certain criteria
are selected for labeling. Usually, a single criteria is used
that limits significantly the performance of active learning

also known as the exploitation-exploration dilemma. A pure
exploitative (uncertainty-based) criteria leads often to a se-
rious sampling bias as it only focuses on regions that are dif-
ficult to learn. This problem is more prominent in a multi-
class scenario when some classes are more often requested
while other classes are completely overlooked, or on chal-
lenging datasets when one class consists of many spatially
separated dense regions (e.g., front and side view of a car).
In contrast, a pure explorative (density-based) criteria cov-
ers the entire data space but needs too many iterations be-
fore a good decision boundary is found.

Consequently, methods have been proposed that address
this problem by combining different criteria [3, 2, 15].
However, we argue that the proposed combinations are un-
satisfactory as they usually combine only two criteria and in
practice these criteria are difficult to balance. Additionally,
the combination is a fixed one [3, 2] instead of time-varying
and it is not obvious how to generalize them to multi-class
scenarios. Finally, as we will show empirically in the pa-
per, there is no single, pre-determined combination scheme
that does work well across all datasets with differing prop-
erties such as varying number of classes, different training
set size, and data clustering structure.

However, there is valuable information which has gone
largely overlooked in previous active learning approaches:
Feedback from the classifier can be used to learn from pre-
vious active learning rounds and guide the next label re-
quest. In this fashion we learn to trade-off not only between
exploration and exploitation but also between different cri-
teria in a time-varying manner. Since we get feedback in
each round from the classifier about the label uncertainty it
seems a natural choice to use the entire sequence in a re-
inforcement learning framework to learn the right strategy
during the labeling process. To the best of our knowledge
there is few prior work [1, 15] that has touched upon the idea
of incorporating this type of feedback. In addition, previous
approaches are limited in the range of possible strategies
they can achieve and also face computational challenges.
In this work, we consider the active learning process as a
Markov decision process (MDP) that gives us the flexibil-
ity to handle more than two criteria while simultaneously
achieving an adaptive and time-varying trade-off.

To appear in the Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Providence, Rhode Island, June 2012.

c© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Outline. First, we propose a new sampling criteria (Sec.
3) to find representative samples and empirically analyze
different sampling criteria (Sec. 5). In Sec. 6, we discuss
a common active learning framework that addresses the
exploitation-exploration-dilemma and suggest various en-
hancements for more generality. We explore different com-
binations of two criteria with fixed and time-varying trade-
offs, and show that time-varying trade-offs often work bet-
ter than fixed trade-offs. Finally, we introduce a reinforced
active learning formulation (RALF) in Sec. 7 that deals with
different number of criteria as well as different trade-offs
and shows improved results across different datasets.

2. Related work

Sampling strategies can be divided into exploitative
(uncertainty-based), explorative (density-based), or a com-
bination of both. Most frequently used are exploitative cri-
teria that query for the least certain data point [17]. There
are various techniques exploring this direction in the con-
text of SVMs [16, 19], with graph-based label propagation
[25, 23], or for object detection [20]. Recent progress was
achieved towards multi-class active learning [12, 11, 21].
Despite the success of these methods, they can run into
problems by not providing enough coverage of the whole
domain or focusing on outliers or inherently ambiguous
parts of the data due to their discriminative nature.

In contrast, exploration-driven methods consider the un-
derlying data distribution of the unlabeled data and find
more representative samples. There are several algorithms
that use clustering to ensure a minimum distance between
two requested samples [14, 5]. Another approach uses lo-
cally linear reconstructions to find samples that best recon-
struct the entire dataset [22]. The drawback of using ex-
ploration criteria alone is the missing feedback during the
labeling process since their main goal is to sample evenly
the data space without looking at the classification uncer-
tainty. Consequently, many label requests are required to
converge to a good solution.

There are several approaches that combine exploitation
and exploration. In [3], the authors propose a weighted
combination of two criteria, [18] switches randomly be-
tween uncertainty sampling and random sampling, and [6]
construct a bound to modulate a mixing strategy. More re-
cently we have seen a trend towards dynamically balanc-
ing this tradeoff by estimating the gain for the next itera-
tion [2, 10] or by using a feedback-driven method [1, 15].
In [1], they use a multi-armed bandit (MAB) formulation
to switch among three single criteria and [15] reformulates
this work into a simpler but less flexible one. Despite the
strong progress of more holistic models, these approaches
often come with high computational costs, difficult config-
urable parameters, unbalanced terms, and missing flexibil-
ity in terms of more criteria or time-varying trade-offs.

Our work addresses these issues by proposing a rein-

forced active learning formulation (RALF) that considers
the entire active learning sequence as a process. Our ap-
proach can deal with multiple criteria, is able to have time-
varying trade-offs between exploration and exploitation,
and is fast and efficient due to a compact parameterization
of the model without dataset-specific tuning.

3. Sampling criteria
A central part of active learning are the sampling criteria.

These criteria rank unlabeled data and request a label for
the sample with highest rank. In this section, we discuss
two exploitation and three exploration criteria including our
new density-based criteria.

3.1. Exploitation
Given n = l + u data points with l labeled exam-

ples L = {(x1, ŷ1), ..., (xl, ŷl)} and u unlabeled examples
U = {xl+1, ..., xn} with xi ∈ Rd. We assume c classes and
denote ŷ ∈ L = {1, ..., c} the labels.

Entropy (Ent) over the class posterior is the most com-
mon criterion for exploitation [1, 12, 15]:

Ent(xi) = −
c∑
j=1

P (yij |xi) logP (yij |xi) (1)

where
∑
j P (yij |xi) = 1 are predictions of a classifier.

Margin (Mar) measures the difference between best ver-
sus second best class prediction [12, 17]:

Mar(xi) = P (yik1 |xi)− P (yik2 |xi) (2)

such that P (yik1 |xi) ≥ P (yik2 |xi) ≥ ... ≥ P (yikc |xi).
In each iteration, label x∗ = argminxi∈UMar(xi) is re-
quested.

Entropy captures the overall uncertainty of one example
belonging to a class. In practice, it tends to also sample
uninformative ones [12]. In contrast, margin focus more on
the decision boundaries between two overlapping classes so
that the samples are more representative.

3.2. Exploration
Criteria for exploration are mostly used in combination

with an exploitation criteria. They usually consider only
the overall data distribution and do not get feedback from
the classifier during the labeling process. These criteria are
computed once at the beginning while exploitation criteria
are recomputed after each label. Although this feedback
for exploitation is limited as it only considers the current
label situation and not the entire sequence it leads often to a
slightly better performance when using these criteria alone.

Node potential (Nod) finds dense regions based on a
Gaussian weighting function [3]:

Nod(xi) =

n∑
j=1

e−αd
2(xi,xj) (3)

with α = 4
r2a

, ra the neighborhood of a node, and Eu-
clidean distance d. After choosing a sample xi the neigh-
borhood of this image is downweighted with Nod(xj) =

Nod(xj)−Nod(xi)e−βd(xi,xj)
2

, β = 4
r2b

. In principle this
measure requests samples from dense regions. However,
adjusting the parameters can be difficult. When the neigh-
borhood is too small multiple samples are drawn from the
same dense region, whereas when the neighborhood is too
large the approach tends to sample outliers. We use the sug-
gested setting of [3], e.g., ra = 0.4 and rb = 1.25ra.

Kernel farthest first (Ker) searches for most unexplored
regions given the set of already labeled data [1, 15]. First, it
computes the minimum distance of an unlabeled sample to
all labeled data

Ker(xi) = min
xj∈L

d(xi, xj), (4)

with Euclidean distance d. Then, it requests the label for
the farthest sample x∗ = argmaxiKer(xi). This criteria
works well for datasets with a smooth manifold structure as
it samples evenly the entire data space. As soon as there are
more complex datasets, this measure selects many outliers.

Graph density (Gra) is our novel sampling criteria that
uses a graph structure to identify highly connected nodes.
We build a k-nearest neighbor graph with P̂ij = 1 if
d(xi, xj) is one of the k smallest distances of xi with
Manhattan distance d and k = 10 for the number of
nearest neighbors. This graph is symmetric, i.e., Pij =

max(P̂ij , P̂ji), and weighted with a Gaussian kernel

Wij = Pij exp

(
−d(xi, xj)

2σ2

)
. (5)

This weight matrix is used to rank all data points accord-
ing to their representativeness. The intuition behind this is
that representative data points for one class are usually well
embedded in this graph structure and thus have many edges
(� k) with high weights. To distinguish among data points
with many small weighted neighbors, we normalize these
weights by the number of edges:

Gra(xi) =

∑
iWij∑
i Pij

. (6)

Similar to the node potential, we reduce the weights
of direct neighbors of the currently selected node xi with
Gra(xj) = Gra(xj) − Gra(xi)Pij . This avoids that the
same dense region is selected multiple times. Our criteria
focuses on representative regions due to the normalization
factor, it avoids sampling of outliers, and is more robust than
node potential due to the underlying k-NN graph structure.

4. Experimental setup
In this section, we briefly describe the datasets we used

in this work. After that, we explain the classifier that are

Figure 1. ETH (first row), C-PASCAL (second row), and Caltech
101 (third row)

applied in this active learning framework. We use a semi-
supervised label propagation algorithm as well as a super-
vised SVM.

Datasets and representation We analyze three datasets
with increasing number of object classes and different diffi-
culty. Example images are shown in Fig. 1.

ETH-80 (ETH) [13] contains 3,280 images divided in 8
object classes with 10 instances per class. Each instance
is photographed from 41 viewpoints in front of a uniform
background.

We introduced Cropped PASCAL (C-PASCAL) in [7].
Bounding box annotations of the PASCAL VOC challenge
2008 training set [8] are used to extract the objects such that
classification can be evaluated in a multi-class setting. The
resulting data set contains 4,450 images of aligned objects
from 20 classes but with varying object poses, challenging
appearances, background clutter, and truncation.

Caltech 101 [9] is a dataset with 9,144 images and 102
object classes. Objects are mostly centered but there is still
background clutter and a large intra-class variability. For
the data representation of all datasets, we use a HOG [4]
representation.

Label propagation (LP). We follow the method by [24].
Based on a k nearest neighbor graph (Eq. 5) a normalized
graph Laplacian S = D−1/2WD−1/2 with degree matrix
Dii =

∑
jWij is computed. For learning, we split our

multi-class problem into c binary problems and get a pre-
diction matrix Y ∗ ∈ Rn×c that is composed of c vectors
one for each class computed by an iterative procedure,

Y (t+1)
m = αSY (t)

m + (1− α)Y (0)
m , (7)

with 1 ≤ m ≤ c and Y ∗m the limit of this sequence.
The initial label vector is set as follows Y

(0)
m =

(ym1 , ..., y
m
l , 0, ..., 0) with ymi ∈ {−1, 1}. Parameter α ∈

(0, 1] controls the influence of the original labels. Fi-
nally, the prediction of the data Ŷ ∈ L is obtained by
Ŷ = argmax1≤m≤cY

∗
m.

SVM. We use libSVM to calculate results for a SVM
with RBF kernel. Parameters are empirically determined
(C = 100, and γ = 1). Finally, we use probability esti-
mate to make the predictions comparable in our multi-class
setting similar to [12].

ETH C-PASCAL Caltech 101 mean
criteria SVM LP SVM LP SVM LP SVM LP
random 74.3 74.8 26.5 27.7 30.4 33.4 43.7 45.3

exploitation
Ent 79.8 81.6 26.7 28.1 28.7 33.5 45.1 47.8
Mar 78.8 81.7 27.6 30.2 29.5 34.4 45.3 48.8

exploration
Nod 57.3 66.2 17.1 18.0 17.8 23.8 30.7 36.0
Ker 74.6 71.0 21.2 22.6 27.3 29.3 41.0 41.0
Gra 66.8 71.8 28.7 29.9 35.5 38.9 43.6 46.9

Table 1. Overall accuracy for all single criteria and random sam-
pling after max(5c, 100) iterations.

5. Analysis of single criteria

In this section, we show results of single criteria.
We compare to a random baseline where samples are
drawn with a uniform distribution. Overall accuracy after
max(5c, 100) iterations with c number of classes are shown
in Tab. 1 for all three datasets. The lower bound of 100
ensures for each dataset a minimum of labels. In all exper-
iments, we start with one randomly drawn label per class.
We document results for label propagation (LP) as well as
SVM. Finally, we average over all datasets shown in the last
two columns.

We make the following observations: (1) LP is always
better than SVM due to the small amount of labels. (2)
The ordering of criteria according to the performance is the
same for both SVM and LP.1 When comparing the different
criteria Gra works best for Caltech 101 with 35.5% (SVM)
and 38.9% (LP). In average, Mar has best performance with
45.3% (SVM) and 48.8% (LP). (3) Differences between
SVM and LP are larger the better the underlying criteria.
For example, the difference for random sampling between
SVM with 43.7% and LP with 45.3% is only 1.6% while
for the best criteria Mar this difference increase to 3.5% be-
tween SVM and LP. This illustrates the potential of SSL if
the commonly used random sampling is replaced by a more
appropriate choice.

(4) In average, exploitation criteria work better than ex-
ploration criteria due to the local feedback after each la-
beling iteration. But given this drawback, our Gra works
remarkably well. The more difficult the dataset the larger
the benefit from this criteria. For Caltech 101, our criteria
is with 38.9% even better than Mar with 34.4%.

(5) Finally, there is no criteria that works best across all
datasets. Mar that has in average best performance over
all datasets shows indeed best performance for ETH and
C-PASCAL but it lose almost 5% for Caltech 101. To con-
clude this section, all of the criteria have their strengths and
weaknesses and it is hard to choose one criteria that works
consistently best for all datasets.

1As this holds true for this and all subsequent experiments of this paper
we will report results on LP only for the remainder of this paper.

6. Fixed and time-varying combination
In this section, we analyze different combinations of ex-

ploration and exploitation criteria. We first explain our
framework that allows a fixed as well as a time-varying
trade-off between exploration and exploitation. Finally, we
show in the experiments that there is a consistent improve-
ment compared to the previous section.

Method. Our framework is inspired by [3] that combines
exploration and exploitation with a parameter β:

H(xi) = βU(xi) + (1− β)D(xi) (8)

where U ∈ {Ent,Mar}, D ∈ {Nod,Ker,Gra}, and β ∈
[0, 1]. In addition, we introduce two new improvements.
First, we use a ranking function r : R→ {1, ..., u}

r(F (xi)) = mi, where F (xi) ≤ F (xj)⇔ mi ≥ mj (9)

with m ∈ {1, ..., u} for all l + 1 ≤ i, j ≤ n and F ∈
{−Ent,−Mar,Nod,Ker,Gra}. This maps the contin-
uous values of D and U to a natural number and makes
both terms more comparable among each other and across
all datasets. Otherwise the range of values of D and U is
strongly dependent on the given dataset and requires a non-
trivial adjustment of β.

Our second improvement replaces the fixed β by a se-
quence over time, i.e., β(t) : {1, ...T} → [0, 1] with T
the maximal number of queried labels. This allows us to
have a constant trade-off as well as a time-varying trade-
off. The main idea is that some datasets might need more
exploration at the beginning and more exploitation at the
end while other datasets might need a constant trade-off.

The final active learning framework is of the following
form:

H(xi) = β(t)r(U(xi)) + (1− β(t))r(D(xi)) (10)

In each iteration we request the label for the sample with
the minimal score argminxi∈UH(xi).

Experiments. We investigate different forms of β(t)
ranging from constant to concave and convex shapes. Simi-
lar to the previous section we document overall accuracy for
max(5c, 100) samples per dataset. Fig. 2 shows all com-
binations with different constant functions from β(t) = 0
(pure exploration) to β(t) = 1 (pure exploitation). For the
time-varying function, we use log(t) and t that represents
the strategy of exploration at the beginning followed by
more exploitation, and −log(t) and −t as the complement.
These values are rescaled such that β(t) ∈ [0, 1]. Tab. 2
contains all results. As fixed combination, we show results
for β(t) = 0.5 that in average is among the best-performing
fixed combinations (see Fig. 2). Finally, we compute the
average over all datasets shown in Tab. 3.

We observe: (1) Combinations consistently improve sin-
gle criteria. This can be seen in Fig. 2 where best values of

ETH C-PASCAL Caltech 101
fixed time-varying fixed time-varying fixed time-varying

combination 0.5 log(t) t -log(t) -t 0.5 log(t) t -log(t) -t 0.5 log(t) t -log(t) -t
Mar+Nod 81.5 82.9 82.5 78.5 81.0 27.0 29.3 28.7 25.3 27.9 29.5 32.0 28.8 25.8 29.1
Mar+KFF 78.9 81.0 80.6 74.2 77.3 26.9 29.8 26.3 26.5 28.6 34.4 35.2 34.9 30.6 33.6
Mar+Gra 83.9 83.1 83.4 77.6 82.5 30.1 33.6 34.5 34.6 36.2 39.5 37.9 39.7 39.5 39.1
Ent+Nod 82.5 81.5 82.0 79.0 81.0 26.3 31.5 30.8 26.7 30.3 33.5 34.2 35.0 26.7 32.8
Ent+Ker 78.7 82.3 81.6 75.1 78.0 23.6 27.3 25.9 24.8 25.3 33.2 32.4 33.3 30.4 32.2
Ent+Gra 83.0 81.8 82.3 78.2 82.3 31.4 34.9 35.5 34.4 36.6 39.8 36.0 39.9 39.7 39.1

Table 2. Overall accuracy for β(t) = 0.5 and four different time-varying combinations.

Figure 2. Simple mixtures with different constant β for all datasets and the comparison to random sampling.

mean over all datasets
fixed time-varying

combination 0.5 log(t) t -log(t) -t
Mar+Nod 46.0 48.0 46.7 43.2 46.0
Mar+KFF 46.7 48.7 47.2 43.8 46.5
Mar+Gra 51.1 51.5 52.5 50.5 52.6
Ent+Nod 47.4 49.1 49.3 44.2 48.0
Ent+Ker 45.2 47.4 46.9 43.4 45.2
Ent+Gra 51.4 50.9 52.6 50.8 52.7

Table 3. Overall accuracy for β(t) = 0.5 and four different time-
varying combinations.

solid lines are usually in the range of 0 < β(t) < 1. (2) Al-
most all combinations are better than random sampling. For
C-PASCAL, we improve LP with random sampling from
27.7% to 36.6% with Ent+Gra. (3) Our Gra criteria works
always best for all datasets in combination either with Ent
(red curve) or with Mar (yellow curve). This improvement
is more pronounced the more difficult the dataset. (4) A
time-varying scheme is across all datasets (Tab. 3) better
than a fixed combination. For Mar+Gra, we improve the
fixed combination of β(t) = 0.5 from 51.1% to 52.5%
when using β(t) = t. (5) Different datasets need a dif-
ferent trade-off (see Fig. 2). While all curves for ETH have
a tendency to increase toward β(t) = 1, the two top-curves
of Caltech 101 are decreasing, i.e., need more exploration
than exploitation. In average over all datasets Ent+Gra with
β(t) = −twork best with 52.7%. But when we look at each
specific dataset this only holds true for C-PASCAL. ETH
shows best performance with Mar+Gra and β(t) = 0.5 and
Caltech 101 with Ent+Gra and β(t) = t.

Again, there is no single strategy that works best across

all datasets. Consequently, we propose a new dataset-
specific method in the next section that allows time-varying
combinations as well as different combinations of criteria.

7. Adaptive strategies for active learning

A combination of two criteria as well as a time-varying
trade-off between exploration and exploitation are key in-
gredients to improve active learning. But there is no single
strategy that works best across all datasets. The question
arises how can we find a good trade-off and combination of
criteria without prior knowledge on the dataset and its in-
terplay with the criteria? To address this challenge, we con-
sider the entire active learning sequence as a process that is
optimized by learning a strategy from feedback “on the fly”.
This constitutes a challenging meta-learning problem only
allowing for indirect and approximative observations. In the
following, we investigate different proxies for the true gain
in performance in each stage and how they can be used to
guide the next label query. A crucial difference to the pre-
vious methods is that we now aim at modeling the progress
of the learnt classifier and exploit this information to con-
trol the trade-off between different individual criteria. In
the second part we propose a model to aggregate feedback
over time and learn an effective strategy from experience
over multiple active learning rounds. Hence, we phrase the
problem as learning to perform active learning. The integra-
tion of multiple criteria which are combined in this flexible
and adaptive fashion shows excellent performance across 3
challenging datasets without any need to inform the method
about the specifics of the dataset or the available criteria.

7.1. Feedback by approximative performance
Inspired by [15], we explore feedback after each labeling

iteration to update a probability

p = max(min(pλ exp(r(t)), 1− ε), ε) (11)

that is used to switch randomly between exploration and
exploitation with reward r(t) and p ∈ [ε, 1 − ε]. ε ensures
minimal exploration (resp. exploitation). The higher p the
higher the probability that exploration is selected for the
next iteration. Parameter λ is the learning rate that con-
trols the influence of the reward. Feedback r(t) is given by
the change of the previous hypothesis Y (t−1) (Eq. 7) to the
current hypothesis Y (t)

r(t) =
〈Y (t−1), Y (t)〉
‖Y (t−1)‖‖Y (t)‖

. (12)

This feedback is rescaled with r(t) ← 3 − 4r(t) otherwise
exploration dominates exploitation.

Our first improvement integrates p in our active learning
framework that means β(t) = 1−p so that there is always a
mixture of two criteria. Second, we propose a more general
rescaling function s : R 7→ I = [−1, 1] as the previous
mentioned rescaling turns out to not generalize well to new
datasets. Instead, we consider all observed rewards until
iteration t to map these values into an interval I ,

s(rt) = r̃(t)
max(I)−min(I)

maxi r(i) −mini r(i)
−min(I) (13)

with 1 ≤ i ≤ t and r̃(t) = r(t) −mini r
(i).

Third, we propose a new reward function r(t) that is
more closely related to the actual performance of the clas-
sifier compared to the mere change in the prediction. While
classification accuracy on the whole dataset is obviously not
available during learning, we propose to use the difference
in the overall entropy of the class posteriors between two
time steps as a proxy for measuring the learning progress,

r
(t)
Ent =

u∑
i=1

Ent(t−1)(xi)−
u∑
i=1

Ent(t)(xi). (14)

with Ent(t)(xi) the entropy of unlabeled sample xi at iter-
ation t. This reward is rescaled with our function s from
Eq. 13 to get positive as well as negative feedback.

7.2. Reinforced active learning formulation (RALF)
The previous method proposes a first way to incorporate

feedback. But there is no learning involved yet. Therefore
we suggest a method that accumulates feedback over time
and is also capable to deal with more than one criteria.

We address this problem by formulating active learn-
ing as a Markov decision process (MDP). Fig. 3 shows
on the left side a simple MDP for two criteria. In this

a) general b) specific for 3 criteria and 4 actions

Figure 3. Simple Markov decision process with a) 1 state S =
{U + D} with U ∈ {Mar,Ent} and D ∈ {Nod,Ker,Gra},
and n actions A = {βi(t) = ai} with ai ∈ [0, 1]; b) 2
states S = {Ent + Gra,Mar + Gra} and 4 actions A =
{0.25(stay), 0.5(stay), 0.75(stay), 0.5(switch)}

MDP denoted by a 4-tuple (S,A,Q,R), there is only one
state S = {U + D} with U ∈ {Mar,Ent} and D ∈
{Nod,Ker,Gra} a mixture of two sampling criteria. Fur-
ther, there are n actions that represent n different fixed
trade-offs, i.e., A = {β1(t) = a1, β2(t) = a2, ..., βn(t) =
an} with ai ∈ [0, 1]. Note, although actions have a fixed
β(t) this does not contradict our previous assumption of us-
ing a time-varying trade-off because we are always able to
switch among different actions. R is the reward for execut-
ing action ai in state sj . We use the overall entropy from
Eq. 13. Finally, Q are the transition weights that action ai
is selected in state sj . Even though each state consists of
a mixture of two criteria it is still possible to have single
criteria by choosing action βi(t) = 0 or βi(t) = 1.

This simple MDP can be naturally extended to a larger
state space with more sampling criteria. On the right side
of Fig. 3 there is an example for three criteria, i.e., U ∈
{Ent,Mar}, D ∈ {Gra}, and three different mixtures.
Additional to the three actions of changing the trade-off
there are now m actions for each new state to switch the
state with m different trade-offs.

To learn this MDP, we use the model-free method Q-
Learning as we have no prior knowledge about the un-
derlying model. Q-Learning is a fast and adaptive rein-
forcement learning algorithm that learns our transition table
Q ∈ R|S|×|A| online during the active learning process. Af-
ter each transition s(t−1) → a → s(t) entry Q(s(t−1), a) is
updated given the current reward r(t), i.e,

Q(s(t−1), a) ← Q(s(t−1), a) + λ(r(t) + (15)

γmax
ai

Q(s(t), ai)−Q(s(t−1), a)).

Parameter λ is the learning rate that controls the influence
of the current reward r(t), and 0 ≤ γ ≤ 1 is the discount
factor that weights the future reward. When γ = 0 only
the current reward r(t) is considered for updating and any
previous experience with this state-action-pair are ignored.
During the active learning process, we decide for action
a = maxai Q(s(t−1), ai) and use mixture of state s(t) with

trade-off a to request the next label.
In summary, our model has two parameters for Q-

Learning that are obtained from previous reinforcement
learning papers. In addition, there are the number of states
and actions that should be kept as small as possible to speed
up the initialization. All parameters are the same across all
datasets. There is no tuning to one specific dataset.

Initialization. One challenge we face is initialization
of the method as we start with an empty Q table. Ideally,
we visit each state-action-pair once or twice but this is in-
tractable for a large state and action space. The number of
iterations are limited and we would try out many transitions
that are harmful for our learning process.

Therefore, we propose a guided initialization phase in-
spired by [21]. We compute the expected entropy reduction
r̂
(t)
i for all actions ai. Each action ai requests a label for

sample xi. As we do not know the label for this sample, we
apply our classifier for each class and calculate the overall
entropy. These entropies are weighted by our current pre-
diction probability p(yij |xi), i.e.,

r̂
(t)
i =

c∑
j=1

p(yij |xi)
n∑
k=1

Entj(xk). (16)

Entj is the entropy after running our classifier with label j
for sample xi. Finally, we select the next action with a =

argmaxir̂
(t)
i . Of course, this is a time-consuming step but

we use this only for the first few iterations. Also, we can
reduce the number of classes for estimation with threshold
p(yij |xi) > 0.01. Usually, there are only 2 to 4 classes left.

We set ε = 0.05 and we fix γ = 1 as we want as much as
possible benefit from our previous experience. Finally, we
want a time-varying also called non-stationary model. So
we set λ = 0.5 as otherwise it converges to a fixed solution
and later changes are almost impossible.

ETH C-PASCAL
combination [15] s(rt) r

(t)
Ent RALF [15] s(rt) r

(t)
Ent RALF

Mar+Nod 81.4 82.9 83.2 81.8 31.3 32.5 32.1 31.7
Mar+KFF 81.5 81.2 82.8 80.0 31.2 33.2 30.5 31.6
Mar+Gra 82.0 83.2 83.6 83.8 32.1 32.8 34.2 36.5
Ent+Nod 80.9 82.1 81.6 82.5 27.6 30.0 29.4 31.2
Ent+Ker 81.5 81.9 81.9 82.1 27.8 29.9 30.1 29.8
Ent+Gra 81.5 81.8 82.3 83.6 28.4 31.9 33.7 37.3

Caltech 101 mean over all datasets
combination [15] s(rt) r

(t)
Ent RALF [15] s(rt) r

(t)
Ent RALF

Mar+Nod 35.1 35.8 35.4 30.5 49.3 50.4 50.2 48.0
Mar+KFF 34.6 35.8 35.4 35.1 49.1 49.9 49.6 48.9
Mar+Gra 35.0 35.4 35.9 39.8 49.7 50.5 51.2 53.4
Ent+Nod 33.0 33.1 33.6 33.9 47.1 48.4 48.2 49.2
Ent+Ker 33.4 33.4 33.6 33.1 47.6 48.4 48.5 48.3
Ent+Gra 33.6 33.7 33.8 40.2 47.9 49.1 49.9 53.7

Table 4. Accuracy for [15], our rescaling function (Eq. 13), the
entropy-based reward (Eq. 14), and our MDP-based method.

Experiments. In Tab. 4, we show results for all
feedback-driven methods with two criteria. The first col-

umn of each block shows performance of the method by
[15]. The second and third columns contain our improve-
ments for this method from Eq. 13 and 14. The last col-
umn shows our MDP method with one state S = {U +D}
for each combination and three different trade-offs A =
{β(t) = 0.25, β(t) = 0.5, β(t) = 0.75}. As before, we
document overall accuracy after T = max(100, 5c) itera-
tions, and start with one label per class.

All our proposed methods outperform [15]. Moreover,
for our best combination Ent+Gra, there is a consistent in-
crease in performance from the first column to the last col-
umn across dataset. C-PASCAL, e.g., get a performance of
28.4% with [15]. It is then increased to 31.9% with our gen-
eral scaling function s(r(t)), and to 33.7% with our entropy-
based reward function. Finally, we improve up to 37.3%
when using our MDP-based method that outperforms the
best time-varying combination from Tab. 2 β(t) = −t with
36.6%. This observation also holds true for the mean over
all datasets where we increase Ent+Gra from 47.9% to
53.7%.

In the last part of this section, we demonstrate the flex-
ibility of our MDP-based model. In Tab. 5, we add con-
secutively states to our model starting with 2 states S =
{Ent + Gra} and ending with 4 states S = {Ent +
Gra,Mar + Gra,Ent + Ker,Mar + Ker}, i.e, 4 cri-
teria. In addition, we compare our results to the baseline of
randomly switch between all state-action-pairs to show that
our model goes beyond this baseline.

ETH C-PASCAL Caltech 101
|S| criteria rand QL diff rand QL diff rand QL diff
2 Ent, Gra 82.2 83.6 +1.5 36.2 37.3 +1.1 36.0 40.2 +3.7
3 +Mar 81.5 83.2 +1.7 35.7 36.7 +1.0 35.2 38.3 +3.1
4 +Ker 81.7 82.9 +1.2 34.1 36.2 +2.1 34.3 36.3 +2.1

Table 5. Accuracy for our MDP-based approach with 2 to 4 states
compared to randomly switching among those action-state-pairs,
and the difference to the later one.

We observe a slight decrease in performance due to the
larger number of states. Both initialization and the time-
varying trade-off are more difficult to learn. Nevertheless,
all results are better than the random-state-transition base-
line. This illustrates once more that our model benefits from
the accumulated knowledge represented by the Q table. Af-
ter a short initialization, our algorithm makes use of the col-
lected experience so far, and picks a good state-action pair
given the current Q table. For the |S| = 4 where we use 4
different sampling criteria, our algorithm favors after only a
few iterations either Mar+Gra or Ent+Gra that is in agree-
ment with our results from the previous section.

8. Conclusion
In this work, we model active learning as a feedback-

driven Markov decision process that can change over time
and find a successful strategy for each individual dataset.

ETH C-PASCAL CALTECH mean
strategy LP diff LP diff LP diff LP diff
random 74.8 27.7 33.4 45.3

single criteria
margin 81.7 +6.9 30.2 +2.5 34.4 +1.0 48.8 +3.5
graph density 71.8 -3.0 29.9 +2.2 38.9 +5.5 46.9 +1.6

fixed and time-varying trade-off
β(t) = 0.5 83.0 +8.2 31.4 +3.7 39.8 +6.4 51.4 +6.1
β(t) = −t 82.3 +7.5 36.6 +8.9 39.1 +5.7 52.7 +5.7
β(t) = t 82.3 +7.5 35.5 +7.8 39.9 +6.5 52.6 +7.3

Feedback-driven
our RALF 83.6 +8.8 37.3 +9.6 40.2 +6.8 53.7 +8.4

Table 6. Summary: Random sampling, best single exploitation and
exploration criteria, best combination with fixed and time-varying
trade-off, our RALF approach, and differences to random sam-
pling.

This proposed model is based on our findings from the first
part of this paper where we analyze different sampling cri-
teria as well as different combinations of exploration and
exploitation. We argue that different datasets need different
sampling strategies in a time-varying manner.

In Tab. 6, we summarize the main findings of this paper.
The first row contains results for random sampling when se-
lecting samples with a uniform distribution. In all following
lines, we calculate the difference to these numbers (column
diff). The next two rows show best single criteria for ex-
ploitation, i.e., margin and exploration, i.e., graph density
our novel criteria that works best across all datasets. Al-
most all these numbers are better than random sampling. In
average, exploitation works slightly better than exploration
due to the local feedback after each labeling iteration.

Below, we list three different fixed and time-varying
trade-offs that work best across all datasets. As can be seen,
time-varying strategies are better than fixed strategies. Sur-
prisingly, not the common sense strategy β(t) = t with a
short exploration at the beginning and a long exploitation at
the end is the best time-varying trade-off but rather the op-
posite strategy with β(t) = −t in particular for C-PASCAL.
In the last line, we show results of our MDP-based method
that outperforms all previous methods and leads to a final
improvement of 9.6% for C-PASCAL and in average to
8.4% across all datasets. This underlines the capabilities of
our model to adapt to different dataset and learn an effective
active learning strategy “on the fly”.

For future work, we intend a faster initialization of this
model by incorporating domain knowledge or other prior
knowledge as we observe even better performance when us-
ing a previous learned transition table.

References
[1] Y. Baram, R. El-yaniv, and K. Luz. Online Choice of Active

Learning Algorithms. JMLR, 5:255–291, 2004. 1, 2, 3
[2] A. Bondu, V. Lemaire, and M. Boullé. Exploration vs. ex-

ploitation in active learning: a Bayesian approach. In IJCNN,
2010. 1, 2

[3] N. Cebron and M. R. Berthold. Active learning for ob-
ject classification: from exploration to exploitation. DMKD,
18(2):283–299, 2009. 1, 2, 3, 4

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005. 3

[5] S. Dasgupta and D. Hsu. Hierarchical sampling for active
learning. In ICML, 2008. 2

[6] P. Donmez and J. Carbonell. Dual strategy active learning.
In ECML, 2007. 2

[7] S. Ebert, D. Larlus, and B. Schiele. Extracting Structures in
Image Collections for Object Recognition. In ECCV, 2010.
3

[8] M. Everingham, L. Van Gool, and C. K. Williams. The PAS-
CAL VOC, 2008. 3

[9] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of
object categories. TPAMI, 28(4):594–611, 2006. 3

[10] S. Huang, R. Jin, and Z. Zhou. Active Learning by Querying
Informative and Representative Examples. In NIPS, 2010. 2

[11] P. Jain and A. Kapoor. Active learning for large multi-class
problems. In CVPR, 2009. 2

[12] A. J. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class
active learning for image classification. In CVPR, 2009. 2, 3

[13] B. Leibe and B. Schiele. Analyzing Appearance and Contour
Based Methods for Object Categorization. In CVPR, 2003.
3

[14] H. T. Nguyen and A. Smeulders. Active learning using pre-
clustering. In ICML, 2004. 2

[15] T. Osugi and S. Scott. Balancing Exploration and Exploita-
tion: A New Algorithm for Active Machine Learning. In
ICDM, 2005. 1, 2, 3, 6, 7

[16] G. Schohn and D. Cohn. Less is more: Active learning with
support vector machines. ICML, 2000. 2

[17] B. Settles and M. Craven. An analysis of active learning
strategies for sequence labeling tasks. In EMNLP, 2008. 1,
2

[18] S. B. Thrun and K. Moeller. Active Exploration in Dynamic
Environments. In NIPS, 1992. 2

[19] S. Tong and D. Koller. Support Vector Machine Active
Learning with Applications to Text Classification. JMLR,
pages 45–66, 2001. 2

[20] S. Vijayanarasimhan and K. Grauman. Large-Scale Live Ac-
tive Learning : Training Object Detectors with Crawled Data
and Crowds. In CVPR, 2011. 2

[21] R. Yan, J. Yang, and A. Hauptmann. Automatically labeling
video data using multi-class active learning. In ICCV, 2003.
2, 7

[22] L. Zhang, C. Chen, J. Bu, D. Cai, X. He, and T. S. Huang.
Active Learning based on Locally Linear Reconstruction.
PAMI, 6(1), 2007. 2

[23] B. Zhao, F. Wang, C. Zhang, and Y. Song. Active model
selection for graph-based semi-supervised learning. In
ICASSP, 2008. 2

[24] D. Zhou, O. Bousquet, and T. Lal. Learning with local and
global consistency. In NIPS, 2004. 3

[25] X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active
learning and semi-supervised learning using Gaussian fields
and harmonic functions. In ICML, WS, 2003. 2

