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Abstract. Popular visual representations like SIFT have shown broad
applicability across many task. This great generality comes naturally
with a lack of specificity when focusing on a particular task or a set of
classes. Metric learning approaches have been proposed to tailor gen-
eral purpose representations to the needs of more specific tasks and have
shown strong improvements on visual matching and recognition bench-
marks. However, the performance of metric learning depends strongly on
the labels that are used for learning. Therefore, we propose to combine
metric learning with an active sample selection strategy in order to find
labels that are representative for each class as well as improve the class
separation of the learnt metric. We analyze several active sample selec-
tion strategies in terms of exploration and exploitation trade-offs. Our
novel scheme achieves on three different datasets up to 10% improve-
ment of the learned metric. We compare a batch version of our scheme
to an interleaved execution of sample selection and metric learning which
leads to an overall improvement of up to 23% on challenging datasets for
object class recognition.

1 Introduction

Similarity metrics are a core building block of many computer vision meth-
ods e.g. for object detection [12] or human pose estimation [15]. Consequently,
their performance critically depends on the underlying metric and the resulting
neighborhood structure. The ideal metric should produce small intra-class dis-
tances and large inter-class distances. But standard metrics often have problems
with high dimensional features due to their equal weighting of dimensions. This
problem is particularly prominent in computer vision where different feature di-
mensions are differently affected by noise e.g. due to signal noise, background
clutter, or lighting conditions.

A promising direction to address this issue is metric learning [6, 11, 9]. E.g.,
pairwise constraints from labeled data are used to enforce smaller intra-class
distances. But this strategy can be problematic [18, 2] if only few labels are
available that might be not informative enough to learn a better metric. For ex-
ample, outliers may completely distort the metric while redundant samples may
have little effect on metric learning. In this paper, we combine active sampling
of labels with metric learning to address these problems.

In general, active learning methods [3, 8] use sample selection strategies to
request uncertain as well as representative samples so that a higher classification
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performance can be achieved with only a small fraction of labeled training data.
However, the success of active learning critically depends on the choice of the
sample selection strategy. Therefore the first main contribution of this paper is
to analyze which sampling strategy is best suited to improve metric learning.
The analysis is done for three different datasets and in particular for settings
where only a small number of labels is available. The second main contribution
is to propose two methods that combine active sampling with metric learning
leading to a performance improvements of up to 23%.

2 Related work

Supervised metric learning is a promising direction to improve the neighborhood
quality of representations for computer vision. Frequently used are methods that
learn a global Mahalanobis distance [6, 11, 9] based on pairwise constraints. One
advantage of these methods is the kernelized optimization so that multiple ker-
nels can be optimized at the same time [11] and the run time depends only on the
number of labels instead of the dimensions. However, a large number of labeled
pairs is required to learn a good Mahalanobis distance [10].

In contrast, active learning is a successful strategy to reduce the amount of la-
bels by preserving the overall performance. Methods of active learning can be di-
vided into exploration-driven (density-based), exploitation-driven (uncertainty-
based), or a combination of both. Exploitative strategies focus mainly on uncer-
tain regions [14, 16] while explorative methods sample more representative labels
by considering the underlying data distribution [13, 5]. But it turns out that a
combination of both strategies leads often to a better solution [3, 8].

But there are only few methods that try to reduce the number of required la-
bels [2, 18]. In [18], the authors improve a Bayesian framework for metric learning
by a pure exploitation-driven criteria. [2] refines a pairwise constrained cluster-
ing by incorporating a pure exploration-driven criteria. However, the previous
work lacks an analysis of active sampling methods and there is no attempt to
combine active sampling with metric learning in an interleaved framework.

3 Methods

In this section, we introduce the employed metric learning algorithm [6] as well
as our active sampling procedure [8] including several criteria for exploration
and exploitation. These criteria can be used either separately or in combination
within our framework. Finally, we briefly introduce three different classification
algorithms that are used with our active metric learning, i.e., k nearest neighbor
classifier (KNN), SVM, and the semi-supervised label propagation (LP) [19].

3.1 Metric learning

We use the information-theoretic metric learning (ITML) proposed by [6]. ITML
learns a global metric by optimizing the Mahalanobis distance,
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dA(xi, xj) = (xi − xj)TA(xi − xj), (1)

between two labeled points xi, xj ∈ R with a Mahalanobis matrix A such that
intra-class distances are small and inter-class distances are large, i.e.,

min Dld(A,A0)

s.t. dA(xi, xj) ≤ u (i, j) ∈ S (2)

dA(xi, xj) ≥ l (i, j) ∈ D

with LogDet loss Dld and the original data space A0. u and l are upper and lower
bounds of similarity and dissimilarity constraints. S and D are sets of similarity
and dissimilarity constraints based on the labeled data. This linear optimization
can be easily transformed into a kernelized optimization by K = XTAX to
speed up the learning.

3.2 Active sample selection

In this work, we explore two exploration and two exploitation criteria. Let us as-
sume, we have n = l+u data points with l labeled examples L = {(x1, ŷ1), ..., (xl, ŷl)}
and u unlabeled examples U = {xl+1, ..., xn} with xi ∈ Rd. We denote ŷ ∈ L =
{1, ..., c} the labels with c the number of classes.

Exploitation. Entropy (Ent) is the most common criteria for exploitation
[1] that uses the class posterior:

Ent(xi) = −
c∑
j=1

P (yij |xi) logP (yij |xi) (3)

where
∑
j P (yij |xi) = 1 are predictions of a classifier. This criteria focuses more

on examples that have a high overall class confusion.
Margin (Mar) computes the difference between best versus second best class

prediction [14]:
Mar(xi) = P (yik1 |xi)− P (yik2 |xi) (4)

such that P (yik1 |xi) ≥ P (yik2 |xi) ≥ ... ≥ P (yikc |xi). In each iteration, label
x∗ = argminxi∈UMar(xi) is queried. In contrast to Ent, this criteria concentrates
more on the decision boundaries between two classes.

Exploration. These criteria are often used in combination with exploitation
criteria as they do not get any feedback about the uncertainty during the active
sample selection so that more labels are required to obtain good performance.

Kernel farthest first (Ker) captures the entire data space by looking for the
most unexplored regions given the current labels [1, 2] by computing the mini-
mum distance from each unlabeled sample to all labels

Ker(xi) = min
xj∈L

d(xi, xj), (5)
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and then requesting the label for the farthest sample x∗ = argmaxiKer(xi). This
criteria samples evenly the entire data space but often selects many outliers.

Graph density (Gra) [8] is a sampling criteria that uses a k-nearest neighbor
graph structure to find highly connected nodes, i.e.,

Gra(xi) =

∑
iWij∑
i Pij

. (6)

with the similarity matrix Wij = Pij exp
(
−d(xi,xj)

2σ2

)
and the adjacency matrix

Pij . After each sampling step, the weights of direct neighbors of sample xi are
reduced by Gra(xj) = Gra(xj)−Gra(xi)Pij to avoid oversampling of a region.

Active sampling. We use our time-varying combination of exploration and
exploitation introduced in [8], i.e.,

H(xi) = β(t)r(U(xi)) + (1− β(t))r(D(xi)) (7)

with U ∈ {Ent,Mar}, D ∈ {Ker,Gra}, β(t) : {1, ..., T} → [0, 1], and a ranking
function r : R→ {1, ..., u} that uses the ordering of both criteria instead of the
values itself. We set β(t) = log(t) that means more exploration at the beginning
followed by exploitation at the end of the sampling process. Finally, we request
the label for the sample with the minimal score argminxi∈UH(xi).

3.3 Classification algorithms

In the following, we explain the use of three different classifier in our active
sampling framework because not all classifier provide a class posterior that can
be immediately used for Ent or Mar.

1) KNN. Similar to [11], we show results for the k nearest neighbor classifier
with k = 1 because it shows consistently best performance. For the class posterior
p(yij |xi), we use the confusion of the 10 nearest labels for each unlabeled data
point weighted by their similarity and finally normalized by the overall sum.

2) SVM. We apply libSVM [4] with our own kernels in a one-vs-one clas-
sification scheme. The accumulated and normalized decision values are used as
the class posterior. Parameter C is empirically determined but is quite robust.

3) Label propagation (LP). For semi-supervised learning, we use [19] that
propagates labels through a k nearest neighbor structure, i.e.,

Y
(t+1)
j = αSY

(t)
j + (1− α)Y

(0)
j (8)

with 1 ≤ j ≤ c, the symmetric graph Laplacian S = D−1/2WD−1/2 based
on the similarity matrix W from above, the diagonal matrix Dii =

∑
jWij ,

the original label vector Y
(0)
j consisting of 1,−1 for labeled data and 0 for the

unlabeled data. Parameter α ∈ (0, 1] that controls the overwriting of the original

labels. The final prediction is obtained by Ŷ = argmaxj≤cY
(t+1)
j . For the class

posterior, we use the normalized class predictions P (yij |xi) =
y
(t+1)
ij∑c

j=1 y
(t+1)
ij

.
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4 Active metric learning

By requesting more informative and representative training examples, we ex-
pect that metric learning achieves better performance given the same amount of
training data or – respectively – achieve equal performance already with signifi-
cantly less annotated data. Therefore, we explore two different ways to combine
active sampling with metric learning.

4.1 Batch active metric learning (BAML)

Our first approach starts by querying the desired number of labeled data points
according to the chosen sample selection strategy and learns a metric based on
this labeled data. As the metric is learnt only once across the whole pool of
labeled data points, we call this approach batch active metric learning (BAML).
While this method obtains good performance, it does not get any direct feedback
involving the learnt metric during sampling. To improve the coupling between
the two processes we propose a second version of our method which interleaves
active sampling and metric learning.

4.2 Interleaved active metric learning (IAML)

The second active metric learning approach alternates between active sampling
and metric learning. We start with active sampling in order to have a minimum
of similarity constraints for metric learning. In our experiments, we apply metric
learning each mc iterations with 2 ≤ m ≤ |L|, c the number of classes, and |L|
the average number of requested labels per class. After metric learning we use
the learned kernel to request the next batch of labels with active sampling. In
each iteration we learn the metric based on the original feature space with the
current available labels and all pairwise constraints. We found experimentally
that using the original feature space is less susceptible to drift than incrementally
updating the learnt metric.

5 Datasets and representation

In our experiments, we analyze three different datasets for image classification
with increasing number of classes and difficulty. Fig. 1 shows sample images.

ETH-80 consists of 8 classes (apple, car, cow, cup, dog, horse, pear, and
tomato) photographed from different viewpoints in front of a uniform back-
ground. This dataset contains 3, 280 images.

C-PASCAL is subset of the PASCAL VOC challenge 2008 data used in [7] in
a multi-class setting. Single objects are extracted by bounding box annotations.
The resulting dataset consists of 4, 450 images of aligned objects from 20 classes
but with varying object poses, background clutter, and truncations.

IM100 is a subset ImageNet 2010 that consists of 100 classes similar to
Caltech 101. IM100 contains 100 images per class resulting in a dataset with
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ETH C-PASCAL IM100

Fig. 1. Sample images for ETH (left), C-PASCAL (middle), and IM100 (right).

10, 000 images. Objects can be anywhere in an image and images often contain
background clutter, occlusions, or truncations.

Representation. In the experiments, we show results for a dense SIFT Bag-
of-Words representation. SIFT-features are extracted using the implementation
by [17], sampled on a regular grid, and quantized into 1, 000 visual words.

6 Experiments

In our experimental section, we first analyze in Sec. 6.1 different sampling criteria
and their combinations in terms of representativeness for metric learning. We
focus on the 1-NN classification performance as it reflects the change of the
underlying metric. Then, we explore in Sec. 6.2 if these insights transfer also to
other algorithms. Finally in Sec. 6.3, we show further improvements by applying
our interleaved active metric learning (IAML) framework.

6.1 Different sampling criteria for metric learning

In this subsection, we analyze several sampling criteria and mixtures of those in
comparison to random sampling and their influence on the entire metric. For this
purpose, we look at the 1-NN accuracy as this measure gives a good intuition
about the learned neighborhood structure. Tab. 1 shows results before and after
metric learning for different average number of labels per class |L|. We request
at most 10% labels, i.e., for ETH we vary |L| from 5 to 25 and for IM100 from
3 to 10. Rand is our baseline using random sampling where we draw exactly |L|
labels per class with a uniform distribution. Last line in each table is the average
performance over the whole column. All results are averaged over 5 runs.

Before metric learning (Tab. 1, top), we notice large differences between
several sampling criteria. In average, we observe a performance of 29.7% for
random sampling while for single active sampling criteria the accuracy vary
from 26.2% for Ker to 31.4% for Mar. Both Mar and Gra are better than Rand.
Ent and Ker are worse than Rand due to their tendency to focus more on
low density regions. Then we look at each specific dataset, Mar performs best
for ETH that contains a smooth manifold structure. In contrast, Gra tends to
oversample dense regions, e.g., pear, leading to worse performance in comparison
to Ker. On more complex datasets such as C-PASCAL or IM100, Gra clearly
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Accuracy before metric learning

Single criteria Mixture of two criteria
|L| Rand Ent Mar Gra Ker M+G M+K E+G E+K

ETH

5 50.6 45.9 57.0 51.1 46.0 59.8 43.3 55.0 49.1
15 69.1 59.7 69.7 62.6 64.0 71.0 65.1 62.0 60.5
25 74.2 62.7 74.4 69.8 72.4 77.3 72.1 66.2 66.4

C-PASCAL

5 12.6 11.3 16.1 17.8 9.8 19.1 11.1 17.1 10.3
15 17.5 19.8 21.0 24.1 12.4 23.2 14.9 21.8 17.5
25 19.3 21.8 23.4 27.5 13.9 24.8 17.7 24.5 19.7

IM100

3 6.3 5.1 5.6 8.2 5.1 8.2 5.4 7.2 5.2
5 7.6 6.0 6.8 9.3 5.6 9.3 6.2 8.1 5.9

10 9.8 7.3 8.6 10.5 7.0 10.6 7.9 9.0 7.0

Overall average

29.7 26.6 31.4 31.2 26.2 33.7 27.1 30.1 26.8

Accuracy after metric learning

Single criteria Mixture of two criteria
|L| Rand Ent Mar Gra Ker M+G M+K E+G E+K

ETH

5 61.6 59.3 67.7 52.7 67.5 70.0 63.3 62.7 65.8
15 79.8 67.9 82.2 69.1 80.0 83.0 82.0 70.7 76.3
25 82.8 74.6 84.5 78.1 83.5 86.3 86.1 73.3 79.4

C-PASCAL

5 16.9 19.4 22.4 23.5 17.1 25.7 20.0 26.2 18.9
15 25.2 32.5 32.6 34.4 18.5 34.5 22.4 33.2 29.1
25 28.8 37.9 39.0 36.9 22.5 38.4 29.6 38.4 36.6

IM100

3 6.7 6.4 7.4 9.3 6.8 10.6 7.0 9.6 6.8
5 11.4 8.6 9.6 10.7 8.0 13.0 9.2 11.7 8.6

10 15.9 12.6 14.6 12.5 11.1 16.3 14.6 15.3 12.4

Overall average

36.6 35.5 40.0 36.4 35.0 42.0 37.1 37.9 37.1

Table 1. 1-NN accuracy before (1st table) and after (2nd table) metric learning for
single criteria and the mixtures Ent+Gra (E+G), Ent+Ker (E+K), Mar+Gra (M+G),
and Mar+Ker (M+K).

outperforms all other single criteria. For C-PASCAL with 25 labels per class
we achieve a performance of 27.5% for Gra while Mar shows a performance of
23.4% and Ker achieves only 13.9% accuracy. Finally, the combination Mar+Gra
outperforms with 33.7% in average the best single criteria with 31.2%. All other
combinations are strongly limited to the power of the combined criteria that
means using Gra shows better performance than using Ker, and mixtures with
Mar are in average better than mixtures with Ent.
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Label propagation

ETH C-PASCAL IM100

SVM

Fig. 2. LP and SVM accuracy of all three datasets and different number of labels for
random sampling and the mixture Mar+Gra with and without metric learning.

After metric learning (Tab. 1, bottom), we observe a consistent improvement
to the previous table that means metric learning always helps. For example,
Rand is overall improved by 6.9% from 29.7% without metric learning to 36.6%
with metric learning and our best combination Mar+Gra is increased in average
by 8.3% from 33.7% to 42.0%. From these improvements we see also that there
is a larger benefit when using our BAML in comparison to Rand with metric
learning. This observation also holds true for most other active sampling selection
methods, e.g., Ent+Ker is improved by 10.3% from 26.8% to 37.1% that is
better than Rand after metric learning. Another important insight results from
the comparison of the influence of active sample selection on metric learning.
Obviously, metric learning has a larger impact on the overall performance than
active sample selection that means Rand is improved from 29.7% to 33.7% with
Mar+Gra and to 36.6% with metric learning alone. But if we combine both
strategies we achieve a final performance of 42.0% that corresponds to an overall
increase of 12.3% across three datasets.

To conclude this subsection, metric learning benefits significantly from labels
that are more representative. In average, Mar+Gra is the best sampling strategy
for our BAML. Finally, metric learning combined with active sample selection
achieves consistent improvements over random sampling of up to 12.3%.

6.2 BAML on LP and SVM

In this subsection, we explore if our insights from the previous subsection trans-
late to more complex classification schemes such as label propagation (LP) or
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ETH C-PASCAL IM100
|L| BAML IAML diff BAML IAML diff BAML IAML diff

5 70.0 68.0 -2.0 25.7 23.3 -2.4 10.6 10.5 -0.1
10 77.4 79.8 +2.4 30.6 32.1 +1.5 11.5 12.0 +0.5
15 83.0 82.6 -0.4 34.5 40.7 +6.2 13.0 13.0 0.0
20 85.1 87.2 +2.1 36.7 41.7 +5.0 14.2 14.9 +0.7
25 86.3 90.3 +4.0 38.4 43.5 +5.1 16.3 17.1 +0.8

Table 2. Interleaved active metric learning (IAML) in comparison to the batch active
metric learning (BAML) both for Mar+Gra sampling.

SVM. Fig. 2 shows accuracy for random sampling (Rand) and Mar+Gra – the
best sampling strategy from Sec. 6.1 – before and after metric learning. The first
row contains results of LP and the second row for SVM. Again, we show the
average over 5 runs including standard deviation for different number of labels.

We also observe a consistent improvement for LP and SVM when applying
BAML. For IM100 with 10 labels per class, we increase our performance with
LP from 15.9% (Rand) to 17.5% (Mar+Gra) to 19.9% (Rand+ML) to 20.7%
(Mar+Gra), and with SVM from 17.1% (Rand) to 19.2% (Mar+Gra) to 21.7%
(Rand+ML) to 23.3% (Mar+Gra+ML). For datasets with a small number of
classes, i.e., ETH and C-PASCAL, active sampling is more important than met-
ric learning that is contrary to the previous subsection. The reason is that these
methods benefit from their regularization during the learning while the KNN per-
formance is directly connected to the neighborhood structure. But for datasets
with a large number of classes like IM100, metric learning is still more important
because there are more constraints to fulfill. Another interesting point turns out
when looking at the SVM results. For a small number of labels, SVM benefits
more from metric learning although this algorithm learns a metric by itself. This
can be seen in particular for ETH and IM100.

6.3 Interleaved active metric learning (IAML)

In this subsection, we show 1-NN results in Tab. 2 for the interleaved active
metric learning (IAML) when using our best active sampling strategy Mar+Gra.
In average, we observe an additional improvement that tends to be higher the
more labels we use. For example, C-PASCAL with 15 labels is increased by 6.2%
from 34.5% (BAML) to 40.7% (IAML). In few cases, we also observe a decrease
in performance in particular for a small number of labels that can be explained
by a drifting effect. In all experiments we recover from these issues for |L| > 15.

7 Conclusion

We present an active metric learning approach that combines active sampling
strategies with metric learning. While a first version (BAML) of the approach
operates in batch mode and already allows to learn better metrics from fewer
training examples, our second version (IAML) interleaves active sampling and
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metric learning even more tightly which leads to further performance improve-
ments by providing better feedback to the active sampling strategy. Our analysis
of different sampling criteria and their influence on the KNN performance shows
the importance of choosing an appropriate sampling scheme for metric learn-
ing. While we show consistent improvements over a random sample selection
baseline, a combination of density and uncertainty-based criteria performs best
on average. Finally, we improve also results for different supervised as well as
semi-supervised classification algorithms. All our experiments are carried out
on three challenging object class recognition benchmarks, where our new ap-
proaches consistently outperform random sample selection strategies for metric
learning leading to improvements of up to 23% for KNN.
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