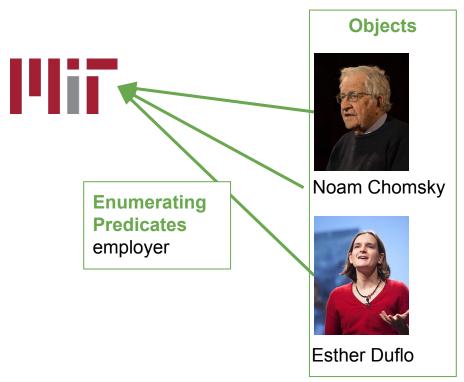
Completeness, Recall and Negation in Open-World Knowledge Bases

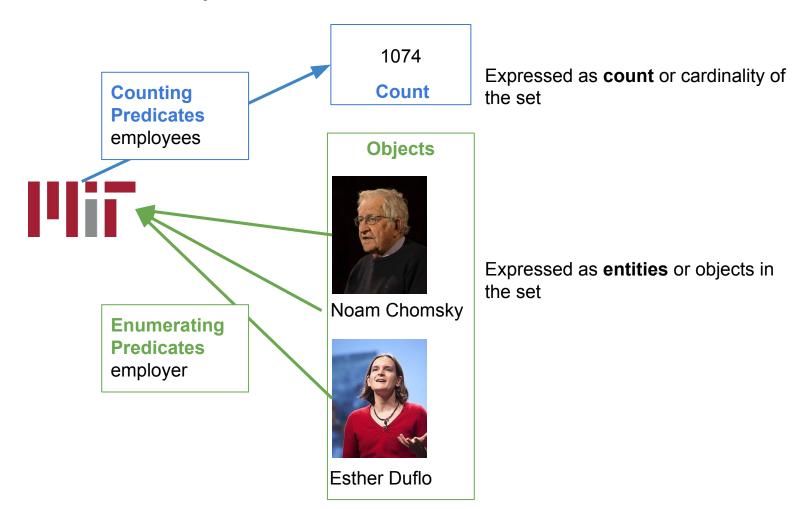
Simon Razniewski, Hiba Arnaout, Shrestha Ghosh, Fabian Suchanek

- 1. Introduction and Foundations (Simon)
- 2. Predictive recall assessment (Fabian)
- 3. Counts from text and KB (Shrestha)
- 4. Negation (Hiba)
- 5. Relative completeness & Wrap-up (Simon)

What is count information?


Relation between an entity and a set of entities

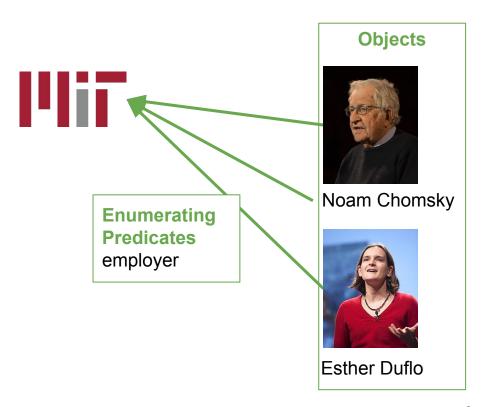
What is count information?


Relation between an entity and a set of entities

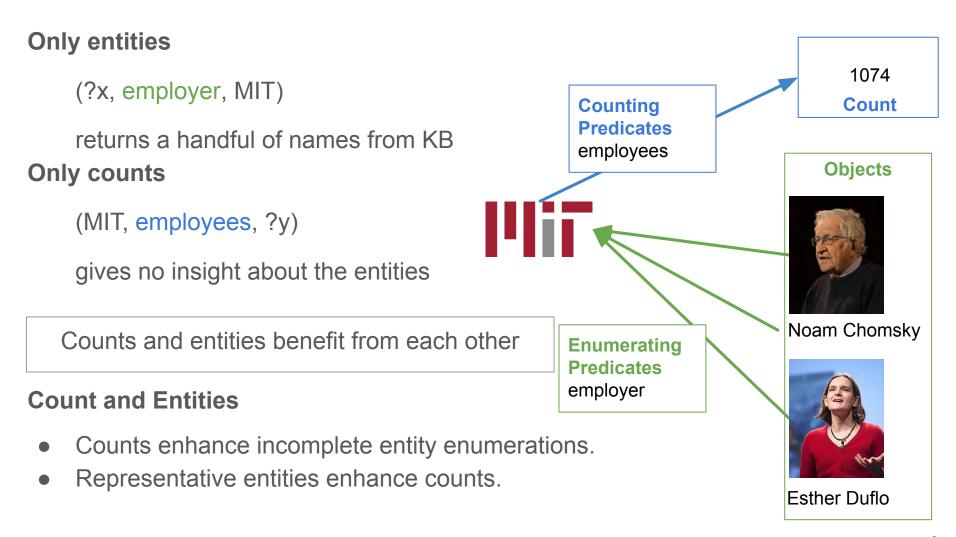
Expressed as **entities** or objects in the set

What is count information?

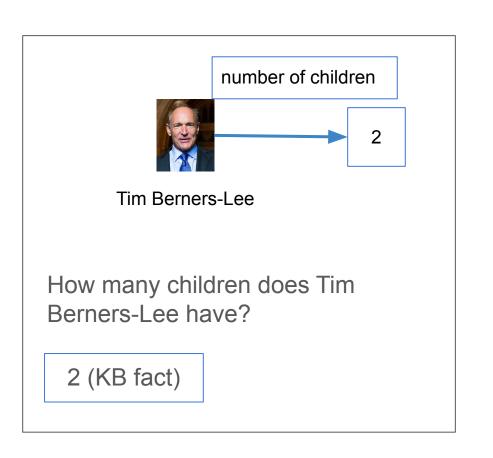
Relation between an entity and a set of entities

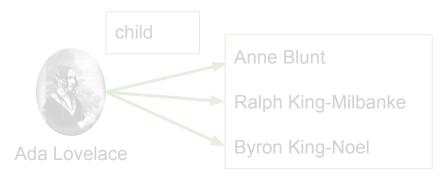

- 1. Count information for recall assessment
- 2. How can we extract count information from text?
- 3. Variants of count information in KB
- 4. How much count information is accounted for?
- 5. Counts for KB curation

Only entities


Counts and entities benefit from each other

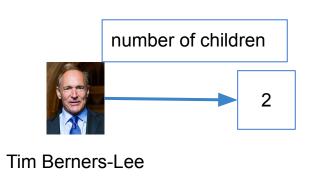
(?x, employer, MIT)


returns a handful of names from KB

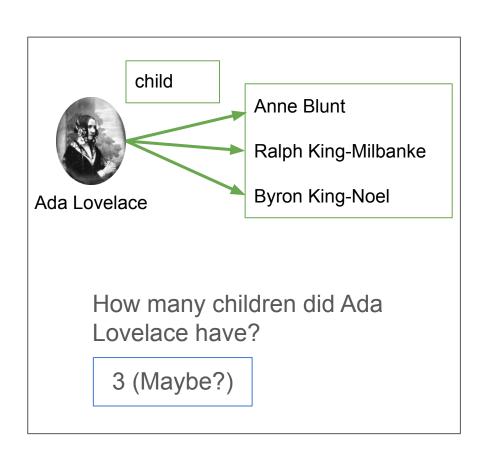


Counts and entities benefit from each other Only entities 1074 (?x, employer, MIT) **Counting** Count **Predicates** returns a handful of names from KB employees Only counts (MIT, employees, ?y) gives no insight about the entities Noam Chomsky employer Esther Duflo

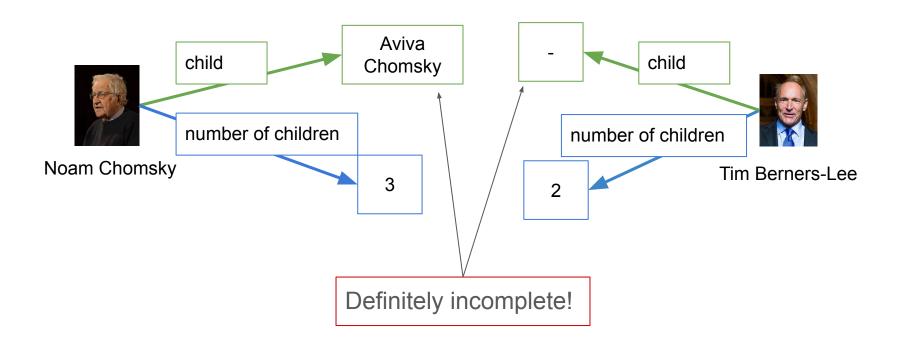
KB mixes counts with standard facts



How many children did Ada Lovelace have?


3 (Maybe?)

KB mixes counts with standard facts


How many children does Tim Berners-Lee have?

2 (KB fact)

Enumeration is often of known entities

Count information can highlight KB inconsistencies

- 1. Count information for recall assessment
- 2. How can we extract count information from text?
- Variants of count information in KB
- 4. How much count information is accounted for?
- 5. Counts for KB curation

Problem: Counting Quantifier Extraction

Input:

- a text about a subject S
- a predicate P

Task: Determine the number of objects in which S stands in relation with P

Subject: Noam Chomsky

Predicate: number_of_children

Chomsky was married to Carol. They had three children together 3

Task 1: Identify the count tokens and the compositional cues.

Sequence Labelling of tokens in a sentence on subject S and predicate P with:

- COUNT for counts
- COMP for compositional cues
- O all other tokens

Subject: Noam Chomsky

Predicate: number_of_children

Task 1: Identify the count tokens and the compositional cues.

Sequence Labelling of tokens in a sentence on subject S and predicate P with:

- COUNT for counts
- COMP for compositional cues
- O all other tokens

Subject: Angelina Jolie

Predicate: number_of_children

Jolie has three sons and three daughters.
O O COUNT O COMP COUNT O

Task 1: Identify the count tokens and the compositional cues.

COUNT tokens are **linguistically diverse**

Cardinals

two sons, three books

Task 1: Identify the count tokens and the compositional cues.

COUNT tokens are **linguistically diverse**

Cardinals

two sons, three books

Ordinals

second son, third book

Task 1: Identify the count tokens and the compositional cues.

COUNT tokens are **linguistically diverse**

Cardinals

two sons, three books

Ordinals

second son, third book

Number-related terms

twins, trilogy

Task 1: Identify the count tokens and the compositional cues.

COUNT tokens are **linguistically diverse**

Cardinals

two sons, three books

Ordinals

second son, third book

Number-related terms

twins, trilogy

Indefinite Articles

a son, the book

Task 1: Identify the count tokens and the compositional cues.

COMP cues for counts occur

- between consecutive count tokens, as
- comma-separated, and-separated counts

Subject: Angelina Jolie

Predicate: number_of_children

Jolie brought her twins, one daughter and three adopted children to the gala.

COMP COMP

Task 2: Consolidate count tokens

Return a single answer per text, given subject-predicate pair

- 1. Sum up compositional cues
- 2. Select prediction per type
- 3. Rank mention types

Task 2: Consolidate count tokens

Return a single answer per text, given subject-predicate pair

1. Sum up compositional cues

6

Jolie brought her six children: twins, one daughter and three adopted children to the gala.

Subject: Angelina Jolie

Predicate: number_of_children

Task 2: Consolidate count tokens

Return a single answer per text, given subject-predicate pair

- 1. Sum up compositional cues
- 2. Select prediction per type

6 (cardinal) 6 (cardinal)

Jolie brought her six children: twins, one daughter and three adopted children to the gala.

Subject: Angelina Jolie 6 (cardinal)

Predicate: number_of_children

Task 2: Consolidate count tokens

Return a single answer per text, given subject-predicate pair

- 1. Sum up compositional cues
- 2. Select prediction per type
- 3. Rank mention types

```
cardinal >> number-related terms >> ordinals >> indefinite article two children >> twins >> second child >> a child
```

Task 2: Consolidate count tokens

Return a single answer per text, given subject-predicate pair

- 1. Sum up compositional cues
- 2. Select prediction per type
- 3. Rank mention types

```
cardinal >> number-related terms >> ordinals >> indefinite article two children >> twins >> second child >> a child
```

Jolie brought her six children: twins, one daughter and three adopted children to the gala.

Subject: Angelina Jolie
Predicate: number_of_children

6 (cardinal)

Training data generation: Incompleteness-aware distant supervision

Input: KB, count predicate P

Output:

- all subjects S and the count
- all sentences about S containing cardinal mentions similar to the KB count

Training data generation: Incompleteness-aware distant supervision

Input: KB, count predicate P

Output:

- all subjects S and the count
- all sentences about S containing cardinal mentions similar to the KB count

all counts tokens

Training data generation: Incompleteness-aware distant supervision

Input: KB, count predicate P

Output:

all subjects S and the count

all sentences about S containing cardinal mentions similar to the KB count

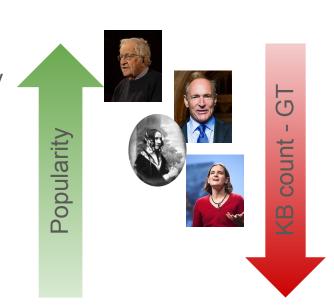
all counts tokens

+ve: equal to or representative of KB count

-ve : otherwise and all non-numerals Ignore: candidate counts > KB counts

Ground Truth

Use KB information as Ground Truth


Challenges

KB incompleteness negatively impacts training quality

Solution

Consider only popular KB entities

Set <u>upper bound</u> for predicate count value = 99th percentile of KB predicate value distribution

Challenge

Counting cardinality when it is Zero

Challenge

Counting cardinality when it is Zero

Solution

Focus on

- i) Negation determiners: 'no' and 'any'
- ii) Non-existence-proving adverbs: 'without' and 'never

Challenge

Counting cardinality when it is Zero

Solution

Focus on

- i) Negation determiners: 'no' and 'any'
- ii) Non-existence-proving adverbs: 'without' and 'never

No training - Labelling only when applying models

```
1. Text preprocessing They didn't have any children \rightarrow They have no children \rightarrow He has never been married \rightarrow He has been married 0 times The marriage was without children \rightarrow The marriage was with no children.
```

2. Textual occurrences of 'no' and '0' → CARDINAL (0)

Relation	Baseline [22]			CINEX-CRF			CINEX-CRF (per type)					
Relation							Cardinals		Numt.+Art.		Ordinals	
	P	Cov	MAE	P	Cov	MAE	P	Contr	P	Contr	P	Contr
containsWork	42.0	29.0	3.7	49.2	29.0	2.6	55.0	33.9	62.5	40.7	20.0	25.4
hasMember	11.8	6.0	3.8	64.3	18.0	1.2	62.5	28.6	65.0	71.4	0	0
containsAdmin	51.8	14.5	7.3	78.6	22.0	1.7	85.7	87.5	33.3	10.7	0	1.8
hasChild	37.0	22.0	2.2	50.0	19.5	2.3	67.3	70.5	6.3	20.5	14.3	9.0
hasSpouse	26.8	11.0	1.3	58.1	12.5	0.5	75.0	18.6	43.8	37.2	63.2	44.2
hasZeroChild				92.3	18.8	-						127
hasZeroSpouse				71.9	13.7	-						

Performance of CINEX in consolidation of counting quantifier mentions on Wikidata.

Paramita Mirza, Simon Razniewski, Fariz Darari, Gerhard Weikum Enriching Knowledge Bases with Quantifiers International Semantic Web Conference (ISWC) 2018.

- 1. Count information for recall assessment
- 2. How can we extract count information from text?
- Variants of count information in KB
- 4. How much count information is accounted for?
- 5. Counts for KB curation

Count information in KB

Problem: Identification of semantically related count predicates

Input:

- a set of KB triples (s,p,o)
- and its inverse predicate triples (s,p⁻¹,o)

Task: Determine counting and enumerating predicates and semantically related predicate pairs.

Objects

Count information in KB

Task 1: Identification of the count predicates - counting and enumerating

Task 1: Identification of the count predicates - counting and enumerating

academic_staff, staff, faculty

List of frequent KB predicates

wins, doubles_titles, singles_titles

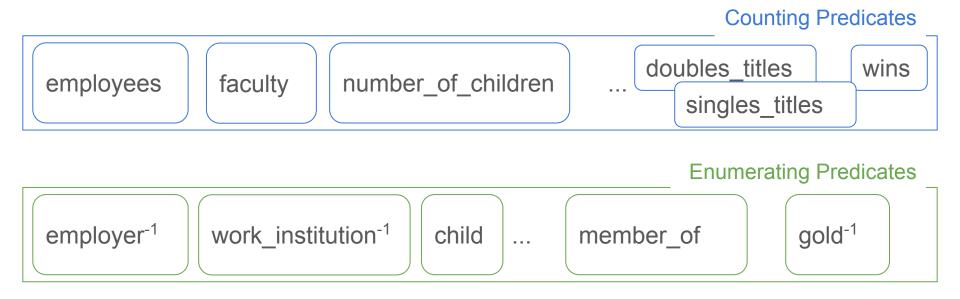
...

work_institution⁻¹, workplace⁻¹, child

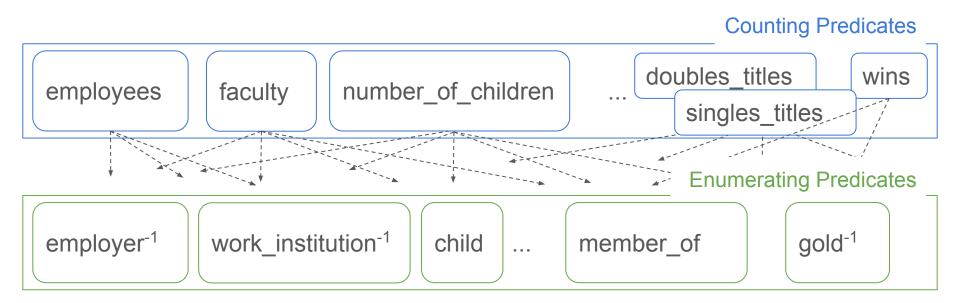
gold⁻¹

Task 1: Identification of the two variants of count predicates

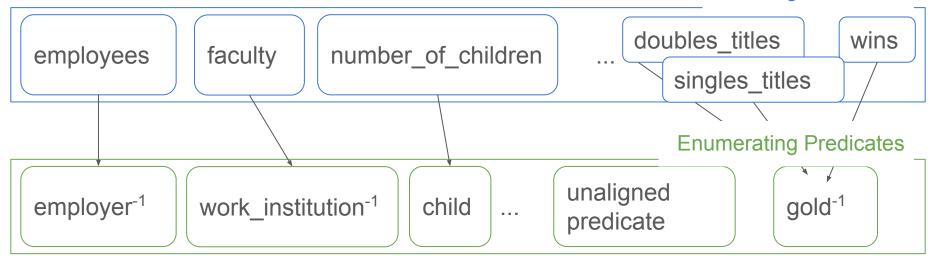
academic_staff, staff, faculty	number_of_children	 wins, doubles_titles, singles_titles
work_institution ⁻¹ , workp	olace ⁻¹ , child	 Enumerating Predicates ¬ gold⁻¹


Task 1: Identification of the two variants of count predicates

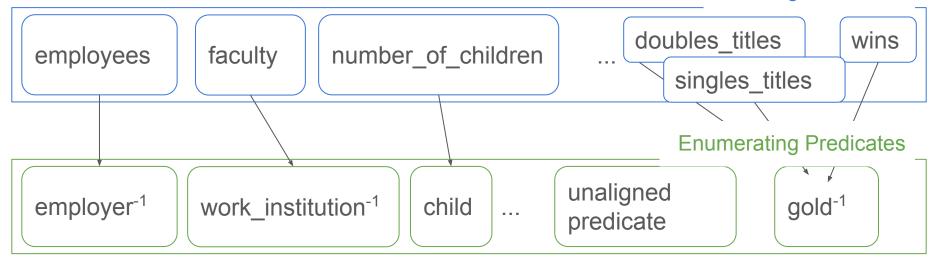
academic_staff, staff, faculty	number_of_children	 wins, doubles_titles, singles_titles
work_institution ⁻¹ , workp	olace ⁻¹ , child	 Enumerating Predicates ¬ gold⁻¹


Supervised Classification using:

- Textual Features count predicates are more often used in singular form
- Type Information classes of subject and objects
- KB statistics #objects per subject, datatype distribution of the objects

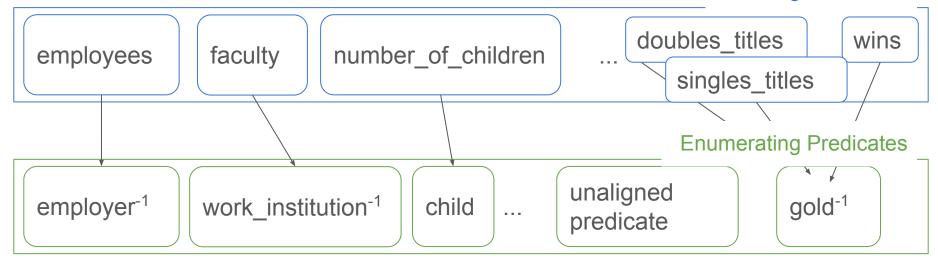

Task 2: Align pairs of counting and enumerating predicates

Task 2: Align pairs of counting and enumerating predicates


Counting Predicates

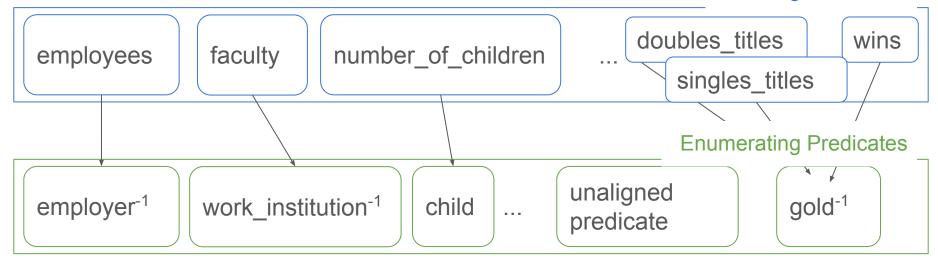
Heuristics used for the predicate pair (e,c), where e stores entities and c counts.

1. Predicate pair co-occurrences - #subjects **e** and **c** co-occur


Counting Predicates

Heuristics used for the predicate pair (e,c), where e stores entities and c counts.

- 1. Predicate pair co-occurrences #subjects **e** and **c** co-occur
- 2. Value distribution number of objects of **e** compared to count in **c**


Counting Predicates

Heuristics used for the predicate pair (e,c), where e stores entities and c counts.

- 1. Predicate pair co-occurrences #subjects **e** and **c** co-occur
- 2. Value distribution number of objects of **e** compared to count in **c**
 - a. is it equal for all subjects?
 - b. is there any correlation?

Counting Predicates

Heuristics used for the predicate pair (e,c), where e stores entities and c counts.

- 1. Predicate pair co-occurrences #subjects **e** and **c** co-occur
- 2. Value distribution number of objects of **e** compared to count in **c**
 - a. is it equal for all subjects?
 - b. is there any correlation?
- 2. Linguistic similarity do **e** and **c** talk share topical similarity?

Training data generation: Crowd-sourced annotation of randomly selected predicate subsets

Challenges: KB predicates rarely have clean values

Training data generation: Crowd-sourced annotation of randomly selected predicate subsets

Challenges: KB predicates rarely have clean values

- Cannot rely only on #triples per subject for enumerating predicates
- Need for human in the loop

Training data generation: Crowd-sourced annotation of randomly selected predicate subsets

Challenges: KB predicates rarely have clean values

- Cannot rely only on #triples per subject for enumerating predicates
- Need for human in the loop

Input: Predicate P, 5 KB triples per predicate

Output:

- Graded relevance score for each P
- +ve: Average score from 3 users is between [0.6, 1.0]
- -ve: Average score between [0, 0.4]

Training data generation: Crowd-sourced annotation of randomly selected predicate subsets

Challenges: KB predicates rarely have clean values

- Cannot rely only on #triples per subject for enumerating predicates
- Need for human in the loop

Input: Predicate P, 5 KB triples per predicate

Output:

to weed out predicates without clear polarity

- Graded relevance score for each P
- +ve: Average score from 3 users is between [0.6, 1.0]
- -ve: Average score between [0, 0.4]

Ground truth data: Crowd-sourced annotation of the top enumerating (counting) predicates aligned to randomly selected counting (enumerating) predicates

Input: Counting predicate C and top aligned predicates of the other set $(E_1, E_2, ...)$

returned by all heuristics.

faculty_size

work_institution⁻¹ works_at⁻¹ employer⁻¹

Ground truth data: Crowd-sourced annotation of the top enumerating (counting) predicates aligned to randomly selected counting (enumerating) predicates

Input: Counting predicate C and top aligned predicates of the other set $(E_1, E_2, ...)$

returned by all heuristics.

Output:

- work institution⁻¹ employer⁻¹ Graded relevance score for each pair (C, E₁), (C, E₂), ...
- Determine top-3 aligned predicates for C

Repeat this for enumerating predicates to get their top-3 aligned counting predicates.

faculty size

works_at⁻¹

Model	Recall	Precision	F1
Random	40.6	40.6	40.6
Logistic	55.6	51.7	53.5
Prior	55.6	51.0	53.5
Lasso	51.1	59.6	55.0
Neural	53.0	49.6	51.2

Model	Recall	Precision	$\mathbf{F1}$
Random	12.8	12.8	12.8
Logistic	51.2	19.0	27.7
Prior	48.7	20.2	28.5
Lasso	71.7	23.3	35.1
Neural	35.8	20.8	26.3

Metric	Counting		Enumerating	
Metric	@1	@3	@1	@3
Ab solute	0.71	0.56	0.62	0.63
Jaccard	0.76	0.61	0.69	0.67
$Conditional_{C}$	0.71	0.56	0.68	0.67
$Conditional_E$	0.76	0.68	0.62	0.63
P'wiseMI	0.73	0.58	0.71	0.70
P'fectMR	0.70	0.57	0.73	0.72
Correlation	0.77	0.69	0.62	0.61
P'tile VM	0.72	0.57	0.65	0.65
Cosine Sim	0.79	0.61	0.74	0.73
Combined	0.84	0.67	0.75	0.75

Scores for predicting i) Enumerating ii) Counting predicates

NDCG scores for predicate alignment

Shrestha Ghosh, Simon Razniewski, Gerhard Weikum <u>Uncovering Hidden Semantics of Set Information in Knowledge Bases</u> Journal of Web Semantics (JWS) 2020.

- 1. Count information for recall assessment
- How can we extract count information from text?
- 3. Variants of count information in KB
- 4. How much count information is accounted for?
- 5. Counts for KB curation

Counts from text

173k new count facts increasing KB knowledge by 77%

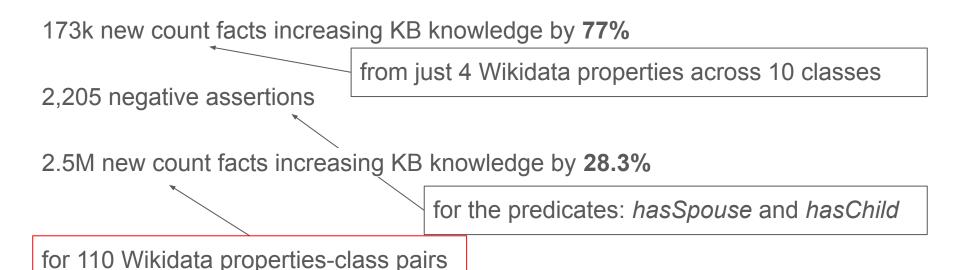
from just 4 Wikidata properties across 10 classes

2,205 negative assertions

2.5M new count facts increasing KB knowledge by 28.3%

Counts from text

173k new count facts increasing KB knowledge by 77%


from just 4 Wikidata properties across 10 classes

2,205 negative assertions

2.5M new count facts increasing KB knowledge by 28.3%

for the predicates: hasSpouse and hasChild

Counts from text

Paramita Mirza, Simon Razniewski, Fariz Darari, Gerhard Weikum Enriching Knowledge Bases with Quantifiers International Semantic Web Conference (ISWC) 2018.

КВ	Enumerating	
DBpedia-raw	4,090	
DBpedia mapped	308	
Wikidata-truthy	203	
Freebase	7,614	
Total	12,215	

Number of predicted enumerating KB predicates

КВ	Enumerating	Counting
DBpedia-raw	4,090	5,853
DBpedia mapped	308	898
Wikidata-truthy	203	1,067
Freebase	7,614	1,687
Total	12,215	9,505

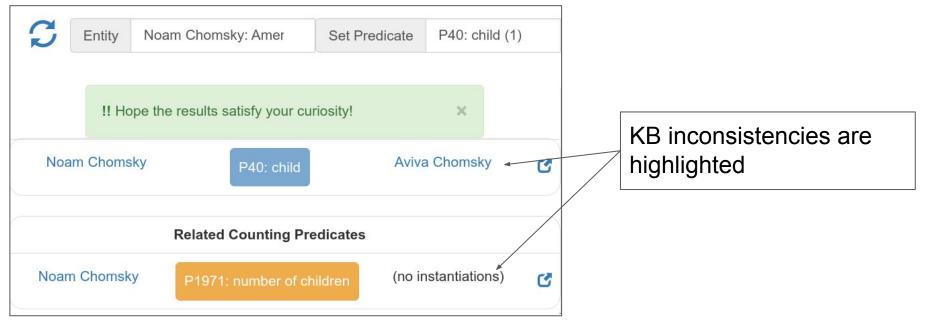
Number of predicted counting KB predicates

Shrestha Ghosh, Simon Razniewski, Gerhard Weikum <u>Uncovering Hidden Semantics of Set Information in Knowledge Bases</u> Journal of Web Semantics (JWS) 2020.

Number of predicted count predicates and KB alignments

КВ	Enumerating	Counting	Alignments
DBpedia-raw	4,090	5,853	3,703
DBpedia mapped	308	898	270
Wikidata-truthy	203	1,067	31
Freebase	7,614	1,687	274
Total	12,215	9,505	4,278

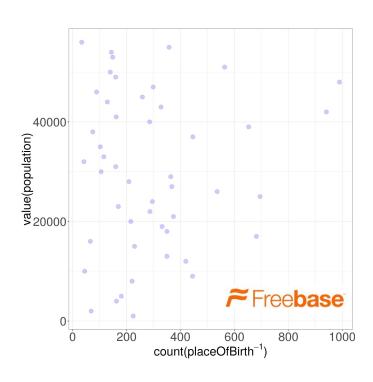
Quite a low number of alignments: indicative of KB sparsity

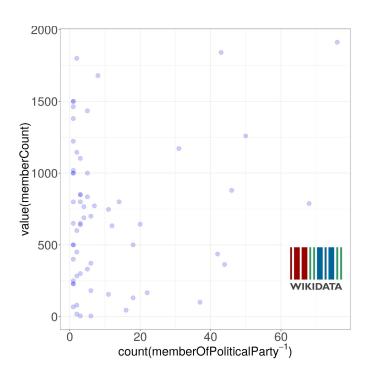

Shrestha Ghosh, Simon Razniewski, Gerhard Weikum <u>Uncovering Hidden Semantics of Set Information in Knowledge Bases</u> Journal of Web Semantics (JWS) 2020.

Open questions and challenges

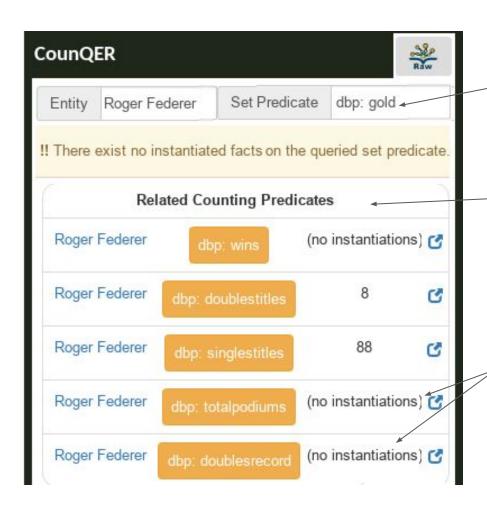
- #alignments << #counting and #enumerating predicates
 - unaligned count predicate → scope for new predicates
- Clustering similar predicates (faculty ← staff size)
 - staff size exists for an entity instead of faculty, then use it
- Cardinality extractors from text individually trained for each predicate
- Enumeration for static (children, spouses) vs dynamic classes (population, books)

- 1. Count information for recall assessment
- 2. How can we extract count information from text?
- 3. Variants of count information in KB
- 4. How much count information is accounted for?
- 5. Counts for KB curation


Counts for KB curation



https://counqer.mpi-inf.mpg.de/spo


Counts for KB curation

Value distribution of aligned predicates show incompleteness

Counts for KB curation

Enhanced KB question answering

No answer to the original query on enumerating predicate

Related count answers obtained from aligned count predicates

Count predicates which could potentially give more information

Takeaway: Counts from text and KB

- Count information for recall assessment
 - Counts and entities benefit from each other
 - KB mixes counts with standard facts
 - Counts can improve KB recall
- 2. Count information in text
 - is linguistically diverse (cardinals, ordinals, ..)
 - used to get the #objects for a given subject and predicate
- Count information in KBs
 - can be identified by supervised classification
 - occurs as semantically related counting and enumerating predicates
- 4. KB curation using counts
 - highlights inconsistencies
 - gives value distribution of aligned predicates
 - can enhance KB question answering