Completeness, Recall, and Negation in Open-World Knowledge Bases

Simon Razniewski, Hiba Arnaout, Shrestha Ghosh, Fabian Suchanek

- 1. Introduction & Foundations (Simon)
- 2. Predictive recall assessment (Fabian)
- 3. Counts from text and KB (Shrestha)
- 4. Negation (Hiba)
- 5. Relative completeness & Wrap-up (Simon)

Open-world Assumption

42 awards

Open-world Assumption

42 awards

Open-world Assumption

42 awards

Problem

42 awards

Problem

42 awards, 30000 awards

Existing positive-only KBs are <u>unaware</u> of negation. Set of negative statements is quasi-infinite!

- Collaborative KBs, e.g., Wikidata
- Deleted statements
- 82% ontology modifications

- Collaborative KBs, e.g., Wikidata
- Deleted statements
- 82% ontology modifications
- Count predicates
 - instance-based predicates?

- Collaborative KBs, e.g., Wikidata
- Deleted statements
- 82% ontology modifications
- Count predicates
 - instance-based predicates?
- Negated predicates
 - DBpedia e.g., never exceed alt (for airplanes)
 - Knowlife e.g., not caused by, not healed by

- Collaborative KBs, e.g., Wikidata
- Deleted statements
- 82% ontology modifications
- Count predicates
 - instance-based predicates?
- Negated predicates
 - DBpedia e.g., never exceed alt (for airplanes)
 - Knowlife e.g., not caused by, not healed by
- Object = No-value

- Collaborative KBs, e.g., Wikidata
- Deleted statements
- 82% ontology modifications
- Count predicates
 - instance-based predicates?
- Negated predicates
 - DBpedia e.g., never exceed alt (for airplanes)
 - Knowlife e.g., not caused by, not healed by
- Object = No-value
- Deprecated rank
 - statements that are known to include errors

• Edit history

- Collaborative KBs, e.g., Wikidata
- Deleted statements
- 82% ontology modifications
- Count predicates
 - instance-based predicates?
- Negated predicates

- child no value 1 reference number of children 1 reference 1 reference VIKIDATA
- DBpedia e.g., never exceed alt (for airplanes)
- Knowlife e.g., not caused by, not healed by
- Object = No-value
- Deprecated rank
 - statements that are known to include errors

Advantages: formalizes syntax for explicit negation addition, & some allows querying them (e.g., Wikidata SPARQL with o = no-value) **Limitations:** inherit same challenges from positive KBC, covers small domains, no active collection of useful negations

unknown

unknown

How to identify interesting negation?

PART1: Statistical Inferences

PART2: Text Extraction

PART3: Pretrained Language Models

How to identify interesting negation?

PART1: Statistical Inferences

★ Infer from existing positive statements: Peer-based negation inference method.

PART2: Text Extraction

PART3: Pretrained Language Models

PART1: Statistical Inferences Peer-based Negation Inference

<u>Input:</u> Given entity e from KB.

Steps:

- 1. Peer-based candidate retrieval
- 2. Correctness filtering by local completeness assumption
- 3. Supervised ranking for higher saliency

Output: Top interesting negative statements about e.

What is a similar entity (peer) ?

What is a similar entity (peer) ?

Class-based

• Stephen Hawking: Physicist

What is a similar entity (peer) ?

Class-based

• Stephen Hawking: Physicist

Jaccard-similarity

 predicate-object pairs shared by entities: Hawking AND Einstein = 423/750

What is a similar entity (peer) ?

Class-based

Stephen Hawking: Physicist

Jaccard-similarity

 predicate-object pairs shared by entities: Hawking AND Einstein = 423/750

Embedding-based similarity

Cosine of low-dimensional latent representations
Wikipedia embeddings

What is a similar entity (peer) ?

Class-based

Stephen Hawking: Physicist

Jaccard-similarity

 predicate-object pairs shared by entities: Hawking AND Einstein = 423/750

Embedding-based similarity

Cosine of low-dimensional latent representations
Wikipedia embeddings

Confounding factors:

- Popularity
- Sequences

What is a similar entity (peer) ?

Class-based

- Stephen Hawking: Physicist
- **Jaccard-similarity**
 - predicate-object pairs shared by entities: Hawking AND Einstein = 423/750

Embedding-based similarity

Cosine of low-dimensional latent representations
Wikipedia embeddings

Confounding factors:

- Popularity
- Sequences

Every statement that applies to <u>at least</u> one peer is a *candidate negation*.

Every statement that applies to <u>at least</u> one peer is a *candidate negation*.

Every statement that applies to <u>at least</u> one peer is a *candidate negation*.

Challenge: correctness of inferred negations.

Every statement that applies to <u>at least</u> one peer is a *candidate negation*.

Challenge: correctness of inferred negations.

Retain candidate only in presence of other values (Hawking, award, {Copley Medal, …}) ⊨ ¬ (award, Nobel Prize in Physics) (Hawking, hobby, Ø) ⊭ ¬ (sailing, reading)

Every statement that applies to <u>at least</u> one peer is a *candidate negation*.

Challenge: correctness of inferred negations.

Retain candidate only in presence of other values (Hawking, award, {Copley Medal, …}) ⊨ ¬ (award, Nobel Prize in Physics) (Hawking, hobby, Ø) ⊭ ¬ (sailing, reading)

Significantly boosts correctness of deductions: 57 to 84%.

Candidates = [¬ (handedness; left); ¬ (citizen; U.S.); ¬ (award; Nobel Prize in Physics)]

Candidates = [¬ (handedness; left); ¬ (citizen; U.S.); ¬ (award; Nobel Prize in Physics)]

- A. Scoring features include: peer frequency, object and predicate importance, and text signals.
- B. Pointwise L2R: Obtain annotator judgments for statement interestingness [0..1] Is it interesting that Stephen Hawking never received a Nobel in Physics? .. is not left-handed?
- C. Train supervised model to predict annotator scores Linear Regression
- D. Rank assertions by predicted score

Candidates = [¬ (handedness; left); ¬ (citizen; U.S.); ¬ (award; Nobel Prize in Physics)]

- A. Scoring features include: peer frequency, object and predicate importance, and text signals.
- B. Pointwise L2R: Obtain annotator judgments for statement interestingness [0..1] Is it interesting that Stephen Hawking never received a Nobel in Physics? .. is not left-handed?
- C. Train supervised model to predict annotator scores Linear Regression
- D. Rank assertions by predicted score

- 1. ¬ (award; Nobel Prize in Physics)
- 2. ¬ (citizen; U.S.)
- 3. ¬ (handedness; left)

Candidates = [¬ (handedness; left); ¬ (citizen; U.S.); ¬ (award; Nobel Prize in Physics)]

- A. Scoring features include: peer frequency, object and predicate importance, and text signals.
- B. Pointwise L2R: Obtain annotator judgments for statement interestingness [0..1] Is it interesting that Stephen Hawking never received a Nobel in Physics? .. is not left-handed?
- C. Train supervised model to predict annotator scores Linear Regression
- D. Rank assertions by predicted score

Advantages: recall, canonicalization Limitations: correctness

- 1. ¬ (award; Nobel Prize in Physics)
- 2. ¬ (citizen; U.S.)
- 3. ¬ (handedness; left)

PART1: Statistical Inferences

Infer from *existing* positive statements: Peer-based negation inference method. ★ Order-oriented peer-based inference.

PART2: Text Extraction

PART3: Pretrained Language Models
- Instead of binary peer relation, exploit order on peers:
 - Real-valued similarity functions (JS, Cosine distance, etc..)
 - Spatial/temporal data provided in KBs.

Group= Best Picture Award winners

- Instead of binary peer relation, exploit order on peers:
 - Real-valued similarity functions (JS, Cosine distance, etc..)
 - Spatial/temporal data provided in KBs.

- Instead of binary peer relation, exploit order on peers:
 - Real-valued similarity functions (JS, Cosine distance, etc..)
 - Spatial/temporal data provided in KBs.

Unlike previous 6 winners

- Instead of binary peer relation, exploit order on peers:
 - Real-valued similarity functions (JS, Cosine distance, etc..)
 - Spatial/temporal data provided in KBs.

Score(statement, m)=

peers with statement(within prefix length m)

peers(within prefix length m)

Score(statement)=

peers with statement

peers

Score(statement, m)=

peers with statement(within prefix length m)

peers(within prefix length m)

Score(statement)=

peers with statement

peers

statement= based on a true story

Score(statement, m)=

peers with statement(within prefix length m)

peers(within prefix length m)

Score(statement)=

peers with statement

peers

40/100 = 0.4

statement= based on a true story

Score(statement, m)=

peers with statement(within prefix length m)

peers(within prefix length m)

Score(statement)=

peers with statement

peers

40/100 = 0.4

statement= based on a true story

Score(statement, m)=

peers with statement(within prefix length m)

peers(within prefix length m)

Score(statement)=

peers with statement

peers

40/100 = 0.4

statement= based on a true story

peers with statement

peers

40/100 = 0.4

Score(statement)=

Score(statement, *m*)=

peers with statement(within prefix length m)

peers(within prefix length m)

statement= based on a true story

PART1: Statistical Inferences 47 Unordered v. Ordered peer-based negation inference peers 2013 2014 2015 2016 2017 2018 2019 SAM MUCCORNIL peers Group= Best Picture Award winners е Score(statement, *m*)= Group= films α # peers with statement(within prefix length m) + $(1 - \alpha)\log(\#peers)$ # peers(within prefix length m)

Score(statement)=

peers with statement

peers

40/100 = 0.4

е

statement= based on a true story

40 out of 100 similar films are

3 out of the last 6 Best Picture winners are

40 out of 100 similar films are

3 out of the last 6 Best Picture winners are

Advantages: interpretability, canonicalization Limitations: recall?

How to identify interesting negation?

PART1: Statistical Inferences

PART2: Text Extraction

★ Pattern-based query log extraction. Mining common factual mistakes from Wikipedia updates.

PART3: Pretrained Language Models

• Wisdom of the crowd: Search engine autocompletion provides access to salient user assertions

• Wisdom of the crowd: Search engine autocompletion provides access to salient user assertions

- Probing with negated prefixes
 - Why didn't <e>
 - Why hasn't <e>
 - Why wasn't <e>
 - ...

• Wisdom of the crowd: Search engine autocompletion provides access to salient user assertions

- Probing with negated prefixes
 - Why didn't <e>
 - Why hasn't <e>
 - Why wasn't <e>
 - ...

- Q why didn't stephen hawking
- Q why didn't stephen hawking get a nobel prize
- Q why didn't stephen hawking die
- Q why didn't stephen hawking get a knighthood

• Wisdom of the crowd: Search engine autocompletion provides access to salient user assertions

- Probing with negated prefixes
 - Why didn't <e>
 - Why hasn't <e>
 - Why wasn't <e>
 - ...

- Q why didn't stephen hawking
- Q why didn't stephen hawking get a nobel prize
- Q why didn't stephen hawking die
- Q why didn't stephen hawking get a knighthood
- Q why isn't Switzerland
- Q why isn't switzerland in the eu
- Q why isn't switzerland part of germany
- Q why isn't switzerland in nato

• Wisdom of the crowd: Search engine autocompletion provides access to salient user assertions

- Probing with negated prefixes
 - Why didn't <e>
 - Why hasn't <e>
 - Why wasn't <e>
 - ...

- Q why didn't stephen hawking
- Q why didn't stephen hawking get a nobel prize
- Q why didn't stephen hawking die
- Q why didn't stephen hawking get a knighthood
- Q why isn't Switzerland
- Q why isn't switzerland in the eu
- Q why isn't switzerland part of germany
- Q why isn't switzerland in nato

Advantages: relevance, correctness Limitations: recall

How to identify interesting negation?

PART1: Statistical Inferences

PART2: Text Extraction

Pattern-based query log extraction.

★ Mining common factual mistakes from Wikipedia updates.

PART3: Pretrained Language Models

 Anti-knowledge base (AKB) Create a knowledge base of *common factual mistakes* Complement the positive-only KB

- Anti-knowledge base (AKB) Create a knowledge base of *common factual mistakes* Complement the positive-only KB
- Main idea: Exploit entity/number swaps in Wikipedia update logs Web hits for correctness score

Revision 505 *Einstein was born in Vienna.*

Revision 506 Einstein was born in Ulm.

Advantages: correctness Limitations: relevance, updates occur for a variety of reasons (60% not factual corrections controversial, synonyms, spelling mistake, etc.)

- Anti-knowledge base (AKB) Create a knowledge base of common factual mistakes Complement the positive-only KB
- Main idea: Exploit entity/number swaps in Wikipedia update logs Web hits for correctness score

Revision 505 Einstein was born in Vienna.

Revision 506 Einstein was born in Ulm.

How to identify interesting negation?

PART1: Statistical Inferences

PART2: Text Extraction

PART3: Pretrained Language Models

Generating meaningful commonsense negative knowledge: Generate corruptions & estimate contradictions.

PART3: Pretrained Language Models

Generating Meaningful Negative Commonsense Knowledge

• Two-step framework:

PART3: Pretrained Language Models

Generating Meaningful Negative Commonsense Knowledge

- Two-step framework:
- 1) Generate corruptions plausible candidate negatives by corrupting positives source: ConceptNet

- Two-step framework:
- 1) Generate corruptions plausible candidate negatives by corrupting positives source: ConceptNet
- 2) Estimate contradiction with fine-tuned BERT for commonsense classification

- Two-step framework:
- 1) Generate corruptions plausible candidate negatives by corrupting positives source: ConceptNet
- 2) Estimate contradiction with fine-tuned BERT for commonsense classification

(horse, IsA, expensive pet) (cat, IsA, expensive pet) (goldfish, IsA, expensive pet) (horse, IsA, expensive car)

- Two-step framework:
- 1) Generate corruptions plausible candidate negatives by corrupting positives source: ConceptNet
- 2) Estimate contradiction with fine-tuned BERT for commonsense classification

(horse, IsA, expensive pet) (cat, IsA, expensive pet) (goldfish, IsA, expensive pet) (horse, IsA, expensive car)

> Advantages: recall Limitations: correctness (LM as source knowledge?)

Venue	Method	Correctness	Relevance	Recall	Canonicalization
AKBC'20 Arnaout et al.	Peer-based				
JWS'21 Arnaout et al.	Peer-based (ordered)				
PVLDB'19 Karagiannis et al.	Anti-KB (mining revisions)				
AKBC'20 Arnaout et al.	Query-logs (pattern-based)				
NeurlPS'20 Safavi et al.	Pretrained LMs				

Venue	Method	Correctness	Relevance	Recall	Canonicalization
AKBC'20 Arnaout et al.	Peer-based				
JWS'21 Arnaout et al.	Peer-based (ordered)				
PVLDB'19 Karagiannis et al.	Anti-KB (mining revisions)				
AKBC'20 Arnaout et al.	Query-logs (pattern-based)				
NeurlPS'20 Safavi et al.	Pretrained LMs				

Venue	Method	Correctness	Relevance	Recall	Canonicalization
AKBC'20 Arnaout et al.	Peer-based				
JWS'21 Arnaout et al.	Peer-based (ordered)				
PVLDB'19 Karagiannis et al.	Anti-KB (mining revisions)				
AKBC'20 Arnaout et al.	Query-logs (pattern-based)				
NeurlPS'20 Safavi et al.	Pretrained LMs				

Venue	Method	Correctness	Relevance	Recall	Canonicalization
AKBC'20 Arnaout et al.	Peer-based			\bigcirc	
JWS'21 Arnaout et al.	Peer-based (ordered)				
PVLDB'19 Karagiannis et al.	Anti-KB (mining revisions)				
AKBC'20 Arnaout et al.	Query-logs (pattern-based)				
NeurIPS'20 Safavi et al.	Pretrained LMs				
Summary

Venue	Method	Correctness	Relevance	Recall	Canonicalization
AKBC'20 Arnaout et al.	Peer-based				
JWS'21 Arnaout et al.	Peer-based (ordered)				
PVLDB'19 Karagiannis et al.	Anti-KB (mining revisions)				
AKBC'20 Arnaout et al.	Query-logs (pattern-based)				
NeurlPS'20 Safavi et al.	Pretrained LMs				

Summary

Venue	Method	Correctness	Relevance	Recall	Canonicalization
AKBC'20 Arnaout et al.	Peer-based				
JWS'21 Arnaout et al.	Peer-based (ordered)	•••			
PVLDB'19 Karagiannis et al.	Anti-KB (mining revisions)				
AKBC'20 Arnaout et al.	Query-logs (pattern-based)		•		
NeurIPS'20 Safavi et al.	Pretrained LMs			\bigcirc	

Browse interesting negations about Wikidata entities

Neguess (online quiz-game) Neguess?

Entity guessing game with negative clues

Anti-KB (dataset)

Ranked common factual mistakes from Wikipedia

ANION (dataset)

Commonsense KB focusing on negated events

Google Hotel Search (online platform)

Browse interesting negations about Wikidata entities

Neguess (online quiz-game) Neguess?

Entity guessing game with negative clues

Anti-KB (dataset)

Ranked common factual mistakes from Wikipedia

ANION (dataset)

Commonsense KB focusing on negated events

Google Hotel Search (online platform)

- Built upon the peer-based negation inference.
- Interesting negations about 0.5M Wikidata entities.

ome Documentation	Search by statement Contact			summarization
	Negative statements.		Albert Einstein	Compared with
	doctoral student:	none.	13 🕗 0 🗶 6 🔘 0 🔘	
Albert Einste Go!	Click here for a possible answer. Positive for: Max Planck, Wolfgang Pauli,	(6) more		Max Planck
 Live SPARQL validation Pre-computed validation 	member of:	-Russian Academy of Sciences.		Erwin Schrödinger
splay: Il statements 🗸 🗸	True Values: Royal Society; French Acade Positive for: Max Planck, Erwin Schrödin	my of Sciences; (8) more ger, (2) more		?
nilarity function: /ikipedia embeddin ∽ gation type:	award received:	-Fellow of the American Physical Society.	2 🕑 0 🗭 2 🔘 0 🔘	Wolfgang Pauli
egular (no lifting) v mber of statements: :3 v	True Values: Matteucci Medal; New Jerse Positive for: Erwin Schrödinger, Richard I	ey Hall of Fame; (8) more Feynman, (1) more		Niels Bohr
VIKINCGATA		Read more		

Arnaout et al., "Wikinegata: A Knowledge Base with Interesting Negative Statements", VLDB'21

78

- Built upon the peer-based negation inference.
- Interesting negations about 0.5M Wikidata entities.

Home Documentation Search by state	ement Contact
	(award received; Nobel Prize in Physics)
	The statement is negative for
Property: P166: aW& Entity: Nobel Prize	i) Stephen Hawking - British theoretical physicist, cosmologist and author (1942-2018) Sample Peer(s): Kip S. Thorne;
Conditional: O Yes O No	Alexander Graham Bell - <i>scientist and inventor known for his work on the telephone</i> Sample Peer(s): Guglielmo Marconi;
WIKICCATA Search by statement.	Nikola Tesla - Serbian-American inventor Sample Peer(s): Guglielmo Marconi;

Arnaout et al., "<u>Wikinegata: A Knowledge Base with Interesting Negative Statements</u>", VLDB'21

Browse interesting negations about Wikidata entities

Entity guessing game with negative clues

Anti-KB (dataset)

Ranked common factual mistakes from Wikipedia

ANION (dataset)

Commonsense KB focusing on negated events

Google Hotel Search (online platform)

Can you Neguess?

80

• Entity-guessing game with interesting negations as clues.

Clue1: was *not* <u>educated at Trinity College.</u> Clue2: did *not* <u>win Nobel Prize in Physics.</u> Clue3: is *not* <u>German.</u>

Biswas Bikram et al., "Neguess: Wikidata-entity guessing game withnegative clues", ISWC'21

Can you Neguess?

81

• Entity-guessing game with interesting negations as clues.

Clue1: was *not* <u>educated at Trinity College.</u> Clue2: did *not* <u>win Nobel Prize in Physics.</u> Clue3: is *not* <u>German.</u>

Biswas Bikram et al., "Neguess: Wikidata-entity guessing game withnegative clues", ISWC'21

Browse interesting negations about Wikidata entities

<u>Neguess</u> (online quiz-game) **Neguess?** Entity guessing game with negative clues

★ Anti-KB (dataset)

Ranked common factual mistakes from Wikipedia

ANION (dataset)

Commonsense KB focusing on negated events

Google Hotel Search (online platform)

Anti-knowledge base

Data available upon request

- Dataset of common factual mistakes: mined from Wikipedia change log.
- <u>116k</u> likely mistakes where people confuse entities or numbers

Penicillin was discovered in 1928 by Scottish scientist Alexander Baldwin.

Confidence (of actual mistake) score = 0.619

Karagiannis et al., "<u>Mining an "Anti-Knowledge Base</u>" from Wikipedia Updates with Applications to Fact <u>Checking and Beyond</u>", PVLDB'19

83

Browse interesting negations about Wikidata entities

Neguess (online quiz-game) Neguess?

Entity guessing game with negative clues

Anti-KB (dataset)

Ranked common factual mistakes from Wikipedia

Commonsense KB focusing on negated events

Google Hotel Search (online platform)

ANION

• A new commonsense knowledge graph with 624K ifthen rules.

https://github.com/liweijiang/anion

Jiang et al., "I'm Not Mad: Commonsense Implications of Negation and Contradiction", NAACL'21

Browse interesting negations about Wikidata entities

Neguess (online quiz-game) Neguess?

Entity guessing game with negative clues

Anti-KB (dataset)

Ranked common factual mistakes from Wikipedia

ANION (dataset)

Commonsense KB focusing on negated events

★ Google Hotel Search (online platform)

Data crawled from:

- Hotel websites
- Third-party services
- User reviews

https://www.google.com/travel/hotels/

Takeaway: negation

- Current KBs lack negative knowledge
- Rising interest in the *explicit addition* of negation to OW KB.
- Negations highly relevant in many applications including:
 - Commercial decision making (e.g., hotel booking)
 - General-domain QA systems (e.g., is Switzerland a member of the EU?)
- Methodologies include:
 - Statistical inference
 - Text extraction
 - Pretrained LMs.