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Common Assumptions in SOTA Recommender Systems
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User Reviews

All Items are Relevant: groups of highly inter-related items exist in both training

B and evaluation sets of the benchmarks.
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Recommendation:
“based on true story”

ltfem meta-data:
title, tags, description

Uniform Negative Sampling: in the absence of explicitly negative labels,
recommenders treat all unlabeled items as negative and sample them
uniformly for training and test.
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Revising Assumptions for Training Revising Assumptions for Evaluation

Uniform: the prevalent approach is to sample uniformly from all . . .
Standard: negative test points are drawn uniformly from all

the unlabeled data.
unlabeled data.

drawing negative samples with a

Difficult Negative Profile-based: negaftive test points are drawn from the
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common catego enre to the positive trainin tive traintime book tanc e | L .
gory/g P J Eanfasy,mngfdjt,Rimin'ce,,,, category distribution of the user’s positive training setf,

item. Idea: obtain difficult fo discriminate negative : . . .
which can be viewed as providing a user profile.

fraining samples, w/o knowing fthe test-time Search-based: negative test points are obtained by

queries. qguerying all unlabeled data with the category and

textual description of the positive point at hand, and
amples

keeping the 100 highest-ranked approximate matches

Weighted: cloning uniformly sampled unlabeled
points Info weighted positive and negative

samples. l[dea: improve learning by the more based on BM25 retrieval scores.

iInNformatively labeled negative samples.

Evaluation Setup and Results

System Architecture

Amazon Books Dataset with ratings >=4. #books-per-user >= 5.
#users = 1,715,645
#books = 2,066,646

We use a text-based approach ufilizing BERT-transtformer

encoder to encode the textual inputs.
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- Putting focus on the under-explored/more realistic modes of
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evaluation: The absolute results for the more demanding ,
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modes of evaluation are much lower.
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- Proposed techniques for generating negative samples at

fraining-time substantially improved the performance.
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