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Basic Info
• 6 credits 

• Lectures:  
           Mondays 14–16 @ 029, E1.5 

• Tutorials:  
           Wednesdays 10–12 @ 024, E1.4 

• Web page:  
           https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/teaching/ss17/data-mining-and-matrices/ 

• Email:  
          dmm17@mpi-inf.mpg.de
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What is Data 
Mining?
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What is Data Mining?
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“Data mining is the analysis of (often large) observational data 
sets to find unsuspected relationships and to summarize the data 
in novel ways that are both understandable and useful to the data 

owner.”

“Data mining, in a broad sense, is the set of techniques for 
analyzing and understanding data.”

“An Unethical Econometric practice of massaging and 
manipulating the data to obtain the desired results.”

“Data mining is the process of extracting hidden patterns from 
data.”
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Why Data Mining?
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Why data mining?
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The ”PHT” Pirate wanted all 
information of the world. But 
before he realised most of it 
was useless, he was already 
buried under it. 

—Stanisław Lem,  
The Cyberiad 
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Data mining applications
• Business intelligence 

• What customers buy together? 

• What are the seasonal trends? 

• How to make more money? 

• Scientific data analysis 

• What genes cause diseases? 

• What species co-inhabit areas? 

• What happens if average temperature raises? 

• And anything else where you have data… 

• Who Donald Trump had to persuade to vote him? 

• Is there a problem in the International Space Station? 

8
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Example  
results
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possibly because herbivore distributions are most directly

influenced by the maritime–continental climate gradient.

The species with the highest grid cell incidence give more

coherent clusters than other groups (Fig. 1). Those with an

incidence of 10–20% give coherence values approaching those

of all species and small mammals, but higher incidence values

give lower coherence, perhaps because the species with the

highest incidence are few and widespread. The subset of species

‘at risk’ gives spatially the least coherent clusters found in this

study, even less coherent than seen for large mammals (Fig. 1).

The regional divisions identified by the clusterings show

significant differences in the values of basic climate variables

and elevation (Table 4). All cluster pairs in the ‘all species’

clustering seen in Fig. 3 differ significantly in at least two

environmental variables, and most cluster pairs differ in all of

the variables (Table 4a,b). For almost all groupings tempera-

ture is the variable for which the cluster pairs have the most

significant differences (Table 4c). For precipitation, the num-

ber of significant differences is also high. For all environmental

variables the set ‘species at risk’ has the smallest number of

significantly different cluster pairs, while the species set with

the largest number of significant differences is different for

each considered variable. However, more important than these

relatively minor differences is the high overall percentage of

significant differences. The results of the anova tests complete

with P-values for all of the species groupings are provided as

Table S3 in the supplementary material.

DISCUSSION

We find that Europe can be divided into coherent subregions

based on the distributions of mammal species. We also find a

high degree of geographical coherence displayed by the

clusters, and consistency in the basic spatial pattern among

non-overlapping subsets of the data and despite changes in the

number of clusters. These observations, in combination with

the environmental contrast observed between the clusters and

the concordance of the geographical cluster pattern with the

EnS environmental stratification strongly suggest that the

clusters represent real biological units rather than arbitrary

constructs generated by the clustering algorithms. We take

this to indicate that, even in present-day Europe with its

long history of intensive human presence, the main con-

trols on mammalian metacommunity distributions remain

Figure 3 The k-means clustering of the
mammal data cells in 12 clusters with the ‘all
species’ set. The clustering is the best out of
100 clustering runs in terms of squared error.
The cells are projected on to the map with the
Mollweide (equal-area) NAD27 projection.

Clustering of European mammals

Journal of Biogeography 34, 1053–1064 1059
ª 2007 The Authors. Journal compilation ª 2007 Blackwell Publishing Ltd

Areas with similar mammals
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The KDD process
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Filtering patterns 
    Visualisation 

    Pattern interpretation

Data  
pre-processing

Data  
mining Post-processing

Input data

Information
Normalisation 

Dimensionality reduction 
Feature selection 

Handling missing values

"CRISP-DM Process Diagram" by Kenneth Jensen - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons - https://commons.wikimedia.org/wiki/File:CRISP-DM_Process_Diagram.png#/
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Data pre-processing
• Garbage in, garbage out 

• Many issues 

• What to do with missing 
values 

• Are missing values 
clearly marked? 

• What’s the dimensionality 
vs. sample size 

• Anyway, which way the 
observations are? 

• Do some features correlate 
with each other in an 
uninteresting way 

• Record ID and class 
label 

• Is data type suitable for our 
algorithm 

• Binary, categorical, 
numerical 

• And many, many more…

11
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Post-processing
• Humans can only interpret 

so many results 

• Computers are a 
different thing 

• Select top-k results 

• What criteria? 

• Are the results significant?  

• Statistics 

• Are the results meaningful? 

• Domain expert 

• Visualisation 

• Humans are great at 
finding patterns (even 
when they don’t exist) 

• Computers are a 
different thing

12
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Which of these is a 
matrix?

14

System of linear equations

Systems of linear equations can be written as matrices

3x + 2y + z = 39

2x + 3y + z = 34

x + 2y + 3z = 26

!

0

@
3 2 1 39
2 3 1 34
1 2 3 26

1

A

and then be solved using linear algebra methods

0

@
3 2 1 39

5 1 24
12 33

1

A =)

0

@
x
y
z

1

A =

0

@
9.25
4.25
2.75

1

A
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Linear maps

Linear maps from R3 to R
f1(x , y , z) = 3x + 2y + z

f2(x , y , z) = 2x + 3y + z

f3(x , y , z) = x + 2y + 3z

f4(x , y , z) = x

Linear map f1 written as a matrix

�
3 2 1

�
0

@
x
y
z

1

A = f1(x , y , z)

Linear map from R3 to R4

0

BB@

3 2 1
2 3 1
1 2 3
1 0 0

1

CCA

0

@
x
y
z

1

A =

0

BB@

f1(x , y , z)
f2(x , y , z)
f3(x , y , z)
f4(x , y , z)

1

CCA
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Original data
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A brief history…
• First systems of linear equations solved in Nine Chapters on 

Mathematical Art, China, 200–100BCE 

• Determinants were invented in 1683 in Japan (by Seki) and Europe 
(by Leibniz) 

• Further work by Cramer (1750), Laplace (1772), Lagrange (1773) 

• Term determinant was coined by Gauss (1801) but first used in 
its modern sense by Cauchy (1812) 

• Jacobi (1830s), Kronecker, and Weierstrass (1850s) considered 
matrices as linear transformations 

• Caley (1858) published the first abstract definition of a matrix 

15



DMM, summer 2017 Pauli Miettinen

Matrices and Data 
Mining

16
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Matrices in data mining

17

Objects and attributes

Anna, Bob, and Charlie went shopping
Anna bought butter and bread
Bob bought butter, bread, and beer
Charlie bought bread and beer

0

@

Bread Butter Beer

Anna 1 1 0
Bob 1 1 1
Charlie 0 1 1

1

A

Customer transactions

0

@

Data Matrix Mining

Book 1 5 0 3
Book 2 0 0 7
Book 3 4 6 5

1

A

Document-term matrix

0

@

Avatar The Matrix Up

Alice 4 2
Bob 3 2
Charlie 5 3

1

A

Incomplete rating matrix

0

@

Jan Jun Sep

Saarbrücken 1 11 10
Helsinki 6.5 10.9 8.7
Cape Town 15.7 7.8 8.7

1

A

Cities and monthly temperatures

Many di↵erent kinds of data fit this object-attribute viewpoint.

14 / 27
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Matrix decompositions in 
data mining

• A common goal in data mining is to find 
regularities (or patterns) in the data 

• Often, to summarise the data 

• A matrix decomposition presents the data as 
a sum of “simple” elements, i.e. patterns 

• but there’s also other uses… stay tuned!

18
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Learning objectives
• To know the most common/important matrix 

factorisation methods 

• their advantages and disadvantages 

• their use in data mining 

• To understand the theoretical foundation behind the 
techniques 

• To be able to use the techniques to solve real-world 
data analysis problems

19
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Learning objectives: 
theory

• Students understand how matrix decompositions and linear 
algebra can be used to solve and model data analysis 
problems 

• Students understand the theory behind the most common 
matrix decomposition methods 

• Students can prove (simple) theorems about the methods 
and present their proves to their peers 

• Students have the basic knowledge to be able to 
understand new matrix decomposition methods themselves

20
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Learning objectives: 
practice

• Students have working knowledge of the R 
statistical language and can use existing matrix 
decomposition implementations and implement 
new ones 

• Students can apply matrix decomposition 
methods to real-world data analysis problems 

• Students can analyse the results and present 
their analysis in a coherent written format

21
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Organisation

22
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Staff
• Lecturer: Dr. Pauli Miettinen 

• Tutors:  

• Sanjar Karaev (theory assignments) 

• Saskia Metzler (practical assignments)

23
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Course structure
• Lectures (almost) every week 

• Pen-and-paper problem sheets every second 
week & tutorial sessions in the following 
week 

• Three hands-on assignments 

• Final exam (written)

24
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Course material
• Lecture slides (available on course 

homepage) 

• David Skillicorn: Understanding Complex 
Datasets: Data Mining with Matrix 
Decompositions. Chapman & Hall 2007 

• Gene H. Golub & Charles F. Van Loan: 
Matrix Computations, 3rd ed. Johns 
Hopkins University Press 1996 

• Jure Leskovec, Anand Rajaraman & Jeff 
Ullman: Mining of Massive Datasets, 2nd 
ed. Cambridge University Press 2015 
(available online http://www.mmds.org)

25

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/teaching/ss15/data-mining-and-matrices/
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Lectures
• Slides will be made available via the home page 

• Which one do you prefer: 

• Starts 14:00, no break, ends 15:30 

• Starts 14:00, 30min break, ends 16:00 

• Starts 14:15, no break, ends 15:45 

• Starts 14:15, 15min break, ends 16:00 

• Starts 14:30, no break, ends 16:00

26
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Practical assignments
• Three hands-on assignments 

• Implementing and using methods from the 
lectures; analysing results; understanding 
the process 

• 3 weeks to complete 

• Graded: failed, passed, excellent 

• Done using the R language

27

http://www.r-project.org
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Hands-on tutorials
• Every second week tutorial meetings discuss the hands-on 

assignments 

• 3 May, 17 May, 31 May, 14 June, 28 June, 12 July 

• Volunteer, but recommended! 

• Help with problems, feedback from previous assignments, 
meeting with tutor & peers 

• Discussion is OK, copying is not 

• Next week’s lecture: Intro to R 

• Bring your laptop!

28
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Problem sheets

• Handed out every second week 

• Week-and-a-half to do (with one exception) 

• Six problems per sheet 

• To get marks for solved problems, you must 
attend the tutorial session

29
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Theory tutorials
• At begin, you mark which problem’s you’ve solved 

• You must have the solutions written down 
and with you 

• Tutor chooses (randomly) students to present 
their solutions in the blackboard 

• One student per problem 

• Corrects & guides if there are issues

30
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Theory tutorials cont’d
• You can use computers (but must show sufficient details & 

intermediate steps) 

• Discussing is OK, copying is not 

• You can mark an answer even if you know it’s not fully correct 

• Must show a significant progress towards solving, and you 
must always be ready to present your solution 

• Marking problems you haven’t done leads into losing the mark 
for the problem and the tutor will check the rest of your 
solutions, and can remove marks from those as well

31
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Theory tutorials
• Tutorial meetings covering the problem 

sheets are in the week after their hand-out 

• 10 May, 24 May(?), 7 June, 21 June, 5 July, 
and 19 July 

• 24 May is MPI-INF SAB ⇒ place and maybe 
the time for the tutorial might have to be 
changed

32
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To pass the course:
• Mark solved at lest 50% of the homework 

questions (18/36) 

• Return acceptable solution to all three hands-
on assignments 

• At most one failed solution can be converted 
to a pass by doing extra homework 

• Pass the final exam

33
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Bonus points

• You can earn at most 3 bonus points 

• Each increases the grade of a passed exam 
by one step (1/3) 

• E.g. with 1 bonus point, 1.7 turns into 1.3

34
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Bonus point matrix

35

3 points 2 points 1 point

at least 33 marked 
problems and three 

excellent grades

at least 30 marked 
problems and two 
excellent grades

at least 30 marked 
problems

at least two excellent 
grades

at least 27 marked 
problems and at least one 

excellent grade
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Exam

• Written 

• Place TBA 

• Time: (tentatively) the last lecture, 24 July 

• Otherwise very late in summer

36
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One more thing
• First problem sheet is given out today, tutorial 

on 10 May (2½ weeks from now) 

• You should be able to answer to all questions 
with prerequisite knowledge 

• For this problem sheet, you must attend 
the tutorial and mark all problems solved 
to be eligible to sit in the final exam

37
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That’s all folks!
• Next week, no lecture (1st of May) 

• Saskia will give an introduction to the R 
language on next week’s Wednesday

38


