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Linear Algebra
Crash Course
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Matrices and vectors

* A vector s

- a 1D array of numbers (1.2,0.8)
M (2,-0.8)
- a geometric entity with B
HSEERSD
magnitude and direction .
\\ x
- a matrix with exactly one

row or column
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Norms and angles

- The magnitude is measure

by a (vector) norm

* The Euclidean norm \/‘bﬂ (1.2,0.8)
n 5\1/2 1&\14 A EEaidine:
Ixll = lIxll> = (X7, x?) RANG (2, -0.8)
(=1 Lo x Y,
G L o ped
. ner Nnorm B
cheral Lp NO ~ ,0.5880 rad (33.69°)
1/p
n
Ixllp = (27, 1xIP) £

- The direction is measured by
the angle
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Basic vector operations

+ The transpose of x, x’, transposes a row

vector into a column vector and vice versa

* A dot product of two vectors of the same
dimensionis x-y = Zif':l XiVi

- A.k.a. scalar product or inner product

+ Same as (x,y), a'b (for column vectors), or

ab’ (for row vectors)
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Orthogonality

* Orthogonality is a generalization of
perpendicularity

* X and y are orthogonal if x-y =0

 HW: this generalizes standard definition
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Matrix algebra

« Matrices in R™" form a ring
» Addition, subtraction, and multiplication
» But usually no division
- Multiplication is not commutative

- AB # BA in general
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Matrix multiplication

* The product of two matrices, A and B, Is
defined element-wise as

k
(AB); = > apby;
=1

* The number of columns in A and number of

rows in B must agree

* INnner dimension
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Intuition for Matrix
Multiplication

* Element (AB); is the inner product of row / of

A and columnj of B

K
Cij=2,,_,Qubyj
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Intuition for Matrix
Multiplication

* Columnj of AB is the linear combination of

columns of A with the coefficients coming

from columnj of B _
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c=[[s buar] [ZX,bra]-[S, bima]
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Intuition for Matrix
Multiplication

- Matrix AB is a sum of kK matrices a/b,”
obtained by multiplying the /-th column of A
with the /-th row of B

]
O

C = Zle azbz-
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Matrix decompositions

* A decomposition of matrix A expresses it as

a product of two (or more) factor matrices
- A =BC

- Every matrix has decomposition A = Al (or
A=IAifn<m)

* The size of the decomposition iIs the inner
dimension of the product
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Matrices as linear maps

- Matrix A € R"*" is a linear mapping from R"” to R"
- A(Xx) = Ax

- IfA € R"”*and B € R“*™, then AB is a mapping
from R to R"

* The transpose A’ is a mapping from R” to R”
- (A)j = A;
- (AB)' =B'A’
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Matrix inverse

* Square matrix A is invertible if there is a matrix
B s.t. AB =BA =1

- B is the inverse of A, denoted A™
- Usually the transpose is not the inverse
- Non-square matrices don’'t have general inverses

- Can have left or right inverse:
AR =1orLA =1
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Linear independency

* Vector u is linearly dependent on a set of

vectors V = {v;} if uis a linear combination of v;
* U = >;ajv;for some a;

- If u is not linearly dependent, it is linearly

independent

- Set V of vectors is linearly independent if all

v; are linearly independent of V \ {v;}
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Matrix ranks

 The column rank of a matrix A Is the number of

linearly independent columns of A

* The row rank of A is the number of linearly

iIndependent rows of A

- The Schein rank of A is the least integer k such

that A can be expressed as a sum of k rank-1
matrices

- Rank-1 matrix is an outer product of two vectors
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Orthogonal matrices

- Set of vectors {v;} is orthogonal if all v; are mutually
orthogonal, i.e. {v;, v;) = 0 forall i =

* If |[|vi|]|> = 1 for all v;, the set is orthonormal

- Square matrix A is orthogonal if its columns form a set
of orthonormal vectors

- Non-square matrices can be row- or column-
orthogonal

- |If A is orthogonal, then A=A
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Properties of orthogonal
matrices

* The inverse of orthogonal matrices is easy to
compute

* Orthogonal matrices perform a rotation

- Only the angle of the vector is changed, the
length stays the same
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Matrix norms

* Matrix norms measure the magnitude of the
matrix

- the magnitude of the values or the image

- Operator norms:
[|A[lp = max{||Mx||p : [|x]|[p =1} forp =1

 Frobenius norm:
_ n m 2
HA”F — (Zi=1 Zj=1 a[j
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Singular Value
Decomposition

Skillicorn Chapter 3; Golub & Van Loan Chapters 2.4-2.6, Leskovec et al. Chapter 11.3
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“The SVD is the Swiss Army knife of
matrix decompositions”

— Diane O’Leary, 2006



The definition

* Theorem. For every A € R there exists an
n-by-n orthogonal matrix U and an m-by-m
orthogonal matrix V such that U'AV is an
n-by-m diagonal matrix £ that has values

01 =02 = ... = Omin{n.m} = 0 In its diagonal
* |.e. every A has decomposition A = UZV’

* The singular value decomposition of A
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In picture

v; are the right singular vectors

|
o; are the singular values

u; are the left singular vectors
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Some useful equations

c A=UZV' =3 ouv'
* Expresses A as a sum of rank-1 matrices
» A = (UZV')t = vZlU' (if A is invertible)
- A’Av; = g/°v; (for any A)

» AA'u; = o/u; (for any A)
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Truncated SVD

 The rank of the matrix is the number of its

non-zero singular values (write A = 5; ouv;’)

* The truncated SVD takes the first kK columns
of U and V and the main k-by-k submatrix of £

° Ak — UkszkT

* Ui and Vi are column-orthogonal
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Full

Truncated

Truncated SVD

.
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Why iIs SVD important?

* It gives us the dimensions of the fundamental

subspaces
- |t lets us compute various norms
- It tells about sensitivity of linear systems

* It gives us optimal solutions to least-squares linear

systems
* It gives us the least-error rank-k decomposition

 Every matrix has one
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SVD and norms

- Let A = ULV’ be the SVD of A.

- A7 =217 o

(=1
- ||A]l> =01

« Therefore ||A|l> <

|

Al < vVmin{n, m} ||A]l,
kK

- For truncated SVD, HAKHI% = Zz=1 012

DMM, summer 2017
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Sensitivity of linear
systems
* The solution for system Ax = bisx = A™'b
* Requires that A is invertible
- Hence x = (UEVT) "b =" 1o

* Small changes in A or b yield large changes

N X If o, IS small

» Can we characterize this sensitivity?
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Condition number

* The condition number k,(A) of a square matrix
Ais ||A]lp [|A7],

 Particularly k2(A) = 01(A)/0-(A)
* K2(A) = oo for singular A
 If K Is large, the matrix is ill-conditioned

« The solution is sensitive for small
perturbations
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Least-squares linear
systems

* Problem. Given A € R"™ and b €R", find

x € R minimizing ||Ax — b||>.
* If A is invertible, x = A~'b is an exact solution

* For non-invertible A we have to find other
solution
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The Moore-Penrose
pseudo-inverse

* n-by-m matrix B is the Moore-Penrose pseudo-
inverse of n-by-m matrix A if

- ABA = A (but possibly AB = I)
- BAB =B
- (AB)" = AB (AB is symmetric)
- (BA)' = BA
» Pseudo-inverse of A is denoted by A”
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Pseudo-inverse and SVD

- If A = UZV' is the SVD of A, then
AT =vZiu’

- =1 replaces non-zero o/'s with 1/0; and
transposes the result

* N.B. not a real inverse

* Theorem. Setting x = A"y gives the optimal

solution to ||Ax - y||
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The Eckart-Young theorem

* Theorem. Let Ax = U Z V" be the rank-k
truncated SVD of A. Then Ak is the closest
rank-k matrix of A in the Frobenius sense, that
IS,
||A — A«||F = ||A - B||r for all rank-k matrices B

» Holds for any unitarily invariant norm
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Interpreting SVD

Skillicorn chapter 3.2
DMM, summer 2017 Pauli Miettinen
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Factor interpretation

* Let A be objects-by-attributes and UZV' its
SVD

* |If two columns have similar values in a row
of V', these attributes are similar (have

strong correlation)

« If two rows have similar values in a column

of U, these objects are similar
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Example

- Data: people’s ratings on

doesn’t like
>

different wines AE

« Scatterplot of first two LSV

-0.1

+ SVD doesn’t know what ore T ewene,
the data Is

. . _ white
 Conclusion: winelovers like 7 -

(L4

%
)

l l l l
0.25 0.2 0.15 0.1 0.05 0
U1

red and white alike, others
are more biased
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Figure 3.2. The first two factors for a dataset ranking wines.
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Geometric interpretation

.- Let M = UZV'

- Any linear mapping y=MXx can

be expressed as a rotation,
stretching, and rotation
operation

* Y1 = V'x is the first rotation

- y> = X2y is the stretching

Y

-+ Yy = Uy is the final rotation

DMM, summer 2017
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Direction of largest
variances

- The singular vectors give the
directions of the largest variances

- First singular vector points to the
direction of the largest variance

- Second to the second-largest

- Spans a hyperplane with the
first

- The projection distance to these
hyperplanes is minimal over all

hyperplanes (Eckart-Younq)
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Component interpretation

+ We can write A = UZV' = 5, ouwv’ = 5, A,

* This explains the data as a sum of rank-1
layers

* First layer explains the most, the second
updates that, the third updates that, ...

» Each individual layer don’t have to be very
intuitive
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Applications of SVD

Skillicorn chapter 3.5; Leskovec et al. chapter 11.3
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Removing noise

* SVD Is often used as a pre-processing step to

remove noise from the data

* The rank-k truncated SVD with proper k

DMM, summer 2017

Pauli Miettinen

op=11.73
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Removing dimensions

* SVD can be used to project the data to
smaller-dimensional subspace

* Original dimensions can have complex
correlations

» Subsequent analysis is faster

* Points seem close to each other in high-
dimensional space
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Karhunen-Loeve transform

 The Karhunen-Loeve transform (KLT) works as
follows:

+ Normalize A € R"*" to z-scores
« Compute the SVD usv' = A
- Project A » AV € R"™
» Vi = top-k right singular vectors

- A.k.a. the principal component analysis (PCA)
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More on KLT

* The columns of Vr show
the main directions of
variance in columns

* The data is expressed in a
new coordinate system

- The average projection
distance is minimized
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Figure 3.2. The first two factors for a dataset ranking wines.
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2D or 3D KLT
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Latent Semantic Analysis
& Indexing

* Latent semantic analysis (LSA) is a latent topic model
* Documents-by-terms matrix A
* Typically normalized (e.qg. tf/idf)
* Goal is to find the “topics” doing SVD
* U associates documents to topics
* V associates topics to terms

* Queries can be answered by projecting the query vector q

-1 . .
toq’' = qVEX and returning rows of U that are similar to g’
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And many more...

» Determining the rank, finding the least-
squares solution, recommending the movies,
ordering results of queries, ...

* Next week: and how do we compute this
SVD, again? Stay tuned!
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