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• Linear algebra crash course 

• The singular value decomposition 

• Applications of SVD 

• Normalization & selecting the rank 

• Computing the SVD
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Linear Algebra 
Crash Course
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Matrices and vectors

• A vector is  

• a 1D array of numbers 

• a geometric entity with 
magnitude and direction 

• a matrix with exactly one 
row or column
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Norms and angles
• The magnitude is measure 

by a (vector) norm 

• The Euclidean norm 

• General Lp norm  
(1 ≤ p ≤ ∞)  

• The direction is measured by 
the angle
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Basic vector operations
• The transpose of x, xT, transposes a row 

vector into a column vector and vice versa 

• A dot product of two vectors of the same 
dimension is 

•  A.k.a. scalar product or inner product 

• Same as ⟨x,y⟩, aTb (for column vectors), or 
abT (for row vectors)
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Orthogonality

• Orthogonality is a generalization of 
perpendicularity  

• x and y are orthogonal if x · y = 0 

• HW: this generalizes standard definition
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Matrix algebra

• Matrices in ℝn×n form a ring 

• Addition, subtraction, and multiplication 

• But usually no division 

• Multiplication is not commutative 

• AB ≠ BA in general
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Matrix multiplication
• The product of two matrices, A and B, is 

defined element-wise as  
 

• The number of columns in A and number of 
rows in B must agree 

• inner dimension
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Intuition for Matrix 
Multiplication

• Element (AB)ĳ is the inner product of row i of 
A and column j of B
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Intuition for Matrix 
Multiplication

• Column j of AB is the linear combination of 
columns of A with the coefficients coming 
from column j of B

11

� � �

�

�

C =
ïîPk

�=1 b�1��
ó îPk

�=1 b�2��
ó
· · ·
îPk

�=1 b�m��
óò



DMM, summer 2017 Pauli Miettinen

Intuition for Matrix 
Multiplication

• Matrix AB is a sum of k matrices albl
T 

obtained by multiplying the l-th column of A 
with the l-th row of B
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Matrix decompositions
• A decomposition of matrix A expresses it as 

a product of two (or more) factor matrices 

• A = BC  

• Every matrix has decomposition A = AI (or  
A = IA if n < m) 

• The size of the decomposition is the inner 
dimension of the product
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Matrices as linear maps
• Matrix A ∈ ℝn×m is a linear mapping from ℝm to ℝn 

• A(x) = Ax  

• If A ∈ ℝn×k and B ∈ ℝk×m, then AB is a mapping 
from ℝm to ℝn  

• The transpose AT is a mapping from ℝn to ℝm  

• (AT)ĳ = Aji  

• (AB)T = BTAT 

14
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Matrix inverse
• Square matrix A is invertible if there is a matrix 

B s.t. AB = BA = I  

• B is the inverse of A, denoted A–1  

• Usually the transpose is not the inverse 

• Non-square matrices don’t have general inverses 

• Can have left or right inverse:  
AR = I or LA = I 

15
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Linear independency
• Vector u is linearly dependent on a set of 

vectors V = {vi} if u is a linear combination of vi  

• u = ∑i aivi for some ai  

• If u is not linearly dependent, it is linearly 
independent  

• Set V of vectors is linearly independent if all 
vi are linearly independent of V \ {vi}
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Matrix ranks
• The column rank of a matrix A is the number of 

linearly independent columns of A  

• The row rank of A is the number of linearly 
independent rows of A  

• The Schein rank of A is the least integer k such 
that A can be expressed as a sum of k rank-1 
matrices 

• Rank-1 matrix is an outer product of two vectors

17
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Orthogonal matrices
• Set of vectors {vi} is orthogonal if all vi are mutually 

orthogonal, i.e. ⟨vi, vj⟩ = 0 for all i ≠ j  

• If ||vi||2 = 1 for all vi, the set is orthonormal 

• Square matrix A is orthogonal if its columns form a set 
of orthonormal vectors 

• Non-square matrices can be row- or column-
orthogonal 

• If A is orthogonal, then A–1 = AT  
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Properties of orthogonal 
matrices

• The inverse of orthogonal matrices is easy to 
compute 

• Orthogonal matrices perform a rotation 

• Only the angle of the vector is changed, the 
length stays the same
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Matrix norms
• Matrix norms measure the magnitude of the 

matrix 

• the magnitude of the values or the image  

• Operator norms:  
||A||p = max{||Mx||p : ||x||p = 1} for p ≥ 1 

• Frobenius norm: 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Singular Value 
Decomposition

21
Skillicorn Chapter 3; Golub & Van Loan Chapters 2.4–2.6, Leskovec et al. Chapter 11.3



– Diane O’Leary, 2006

“The SVD is the Swiss Army knife of 
matrix decompositions”
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The definition
• Theorem. For every A ∈ ℝn×m there exists an 

n-by-n orthogonal matrix U and an m-by-m 
orthogonal matrix V such that UTAV is an  
n-by-m diagonal matrix Σ that has values  
σ1 ≥ σ2 ≥ … ≥ σmin{n,m} ≥ 0 in its diagonal 

• I.e. every A has decomposition A = UΣVT  

• The singular value decomposition of A 

23
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In picture

24

=A U V
T

⌅

vi are the right singular vectors

σi are the singular values 

ui are the left singular vectors
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Some useful equations

• A = UΣVT = ∑i σiuivi
T  

• Expresses A as a sum of rank-1 matrices 

• A–1 = (UΣVT)–1 = VΣ–1UT (if A is invertible) 

• ATAvi = σi
2vi (for any A) 

• AATui = σi
2ui (for any A)

25
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Truncated SVD
• The rank of the matrix is the number of its 

non-zero singular values (write A = ∑i σiuivi
T) 

• The truncated SVD takes the first k columns 
of U and V and the main k-by-k submatrix of Σ  

• Ak = UkΣkVk
T  

• Uk and Vk are column-orthogonal

26
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Truncated SVD
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Why is SVD important?
• It gives us the dimensions of the fundamental 

subspaces 

• It lets us compute various norms  

• It tells about sensitivity of linear systems  

• It gives us optimal solutions to least-squares linear 
systems  

• It gives us the least-error rank-k decomposition  

• Every matrix has one 

28
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SVD and norms

• Let A = UΣVT be the SVD of A. 

•   

•   

• Therefore  

• For truncated SVD, 
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Sensitivity of linear 
systems

• The solution for system Ax = b is x = A–1b  

• Requires that A is invertible 

• Hence 

• Small changes in A or b yield large changes 
in x if σn is small 

• Can we characterize this sensitivity?
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Condition number
• The condition number κp(A) of a square matrix 

A is ||A||p ||A–1||p  

• Particularly κ2(A) = σ1(A)/σn(A) 

• κ2(A) = ∞ for singular A   

• If κ is large, the matrix is ill-conditioned  

• The solution is sensitive for small 
perturbations

31
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Least-squares linear 
systems

• Problem. Given A ∈ ℝn×m and b ∈ℝn, find  
x ∈ ℝm minimizing ||Ax – b||2. 

• If A is invertible, x = A–1b is an exact solution 

• For non-invertible A we have to find other 
solution

32
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The Moore–Penrose 
pseudo-inverse

• n-by-m matrix B is the Moore–Penrose pseudo-
inverse of n-by-m matrix A if 

• ABA = A (but possibly AB ≠ I) 

• BAB = B  

• (AB)T = AB (AB is symmetric) 

• (BA)T = BA  

• Pseudo-inverse of A is denoted by A+ 

33
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Pseudo-inverse and SVD
• If A = UΣVT is the SVD of A, then  

A+ = VΣ–1UT  

• Σ–1 replaces non-zero σi’s with 1/σi and 
transposes the result 

• N.B. not a real inverse 

• Theorem. Setting x = A+y gives the optimal 
solution to ||Ax – y||

34
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The Eckart–Young theorem

• Theorem. Let Ak = UkΣkVk
T be the rank-k 

truncated SVD of A. Then Ak is the closest 
rank-k matrix of A in the Frobenius sense, that 
is, 
||A – Ak||F ≤ ||A – B||F for all rank-k matrices B 

• Holds for any unitarily invariant norm

35
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Interpreting SVD

36
Skillicorn chapter 3.2
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Factor interpretation
• Let A be objects-by-attributes and UΣVT its 

SVD 

• If two columns have similar values in a row 
of VT, these attributes are similar (have 
strong correlation) 

• If two rows have similar values in a column 
of U, these objects are similar

37
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Example
• Data: people’s ratings on 

different wines 

• Scatterplot of first two LSV 

• SVD doesn’t know what 
the data is 

• Conclusion: winelovers like 
red and white alike, others 
are more biased

38

3.2. Interpreting an SVD 55
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Figure 3.2. The first two factors for a dataset ranking wines.

plan, and medical insurance. It might turn out that all of these correlate
strongly with income, but it might not, and the differences in correlation
may provide insight into the contribution of a more general concept such as
‘prosperity’ to happiness. The survey data can be put into a matrix with
one row for each respondent, and one column for the response each question.
An SVD of this matrix can help to find the latent factors behind the explicit
factors that each question and response is addressing.

For datasets of modest size, where the attributes exhibit strong correla-
tions, this can work well. For example, Figure 3.2 is derived from a dataset in
which 78 people were asked to rank 14 wines, from 1 to 14, although many did
not carry out a strict ranking. So the attributes in this dataset are wines, and
the entries are indications of how much each wine was liked by each person.
The figure shows a plot along the first two axes of the transformed space,
corresponding to the two most important factors. Some further analysis is
required, but the first (most important) factor turns out to be liking for wine
– those respondents at the left end of the plot are those who like wine, that
is who had many low numbers in their ‘ranking’, while those at the right end
liked wine less across the board. This factor corresponds to something which
could have been seen in the data relatively easily since it correlates strongly
with the sum of the ‘rankings’. For example, the outlier at the right end
corresponds to someone who rated every wine 14.

The second factor turns out to indicate preference for red versus white
wine – those respondents at the top of the plot prefer red wine over white,

© 2007 by Taylor and Francis Group, LLC

red

white

likes wine doesn’t like
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Geometric interpretation
• Let M = UΣVT 

• Any linear mapping y=Mx can 
be expressed as a rotation, 
stretching, and rotation 
operation  

• y1 = VTx is the first rotation 

• y2 = Σy1 is the stretching 

• y = Uy2 is the final rotation

39
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Direction of largest 
variances

• The singular vectors give the 
directions of the largest variances 

• First singular vector points to the 
direction of the largest variance 

• Second to the second-largest 

• Spans a hyperplane with the 
first 

• The projection distance to these 
hyperplanes is minimal over all 
hyperplanes (Eckart–Young)

40
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(a) Original Basis: 3D

u1
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u2

(b) Optimal Basis: 3D

Figure 8.1: Iris Data: Optimal Basis

U matrix is an orthogonal matrix, whose columns, the basis vectors, are orthonormal,
i.e., they are pairwise orthogonal and have unit length

uTi uj =

{
1 if i = j

0 if i ̸= j
(8.5)

Since U is orthogonal, this means that its inverse equals its transpose

U−1 = UT (8.6)

which implies that UTU = I, where I is the d × d identity matrix.
Multiplying (8.3) on both sides by UT yields the expression for computing the

coordinates of x in the new basis

UT x = UTUa

a = UT x (8.7)
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variance uTΣΣΣu. Since we know that u1, the dominant eigenvector of ΣΣΣ maximizes the
projected variance, we have

MSE(u1) = var(D)− uT1 ΣΣΣu1 = var(D)− uT1 λ1u1 = var(D)− λ1

Thus, the principal component u1 which is the direction that maximizes the projected
variance, is also the direction that minimizes the mean squared error.

X1
X2

X3

u1

Figure 8.2: Best 1D or Line Approximation

Example 8.3: Figure 8.2 shows the first principal component, i.e., the best one di-
mensional approximation, for the three dimensional Iris dataset shown in Figure 8.1a.
The covariance matrix for this dataset is given as

ΣΣΣ =

⎛

⎜⎝
0.681 −0.039 1.265
−0.039 0.187 −0.320
1.265 −0.320 3.092

⎞

⎟⎠

The largest eigenvalue is λ1 = 3.662, and the corresponding dominant eigenvector
is u1 = (−0.390, 0.089,−0.916)T . The unit vector u1 thus maximizes the projected
variance, which is given as J(u1) = α = λ1 = 3.662. Figure 8.2 plots the principal
component u1. It also shows the error vectors ϵi , as thin gray line segments.
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X1
X2

X3

u1
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(a) Optimal 2D Basis

X1
X2

X3

(b) Non-Optimal 2D Basis

Figure 8.3: Best 2D Approximation

Example 8.4: For the Iris dataset from Example 8.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors

u1 =

⎛

⎜⎝
−0.390
0.089
−0.916

⎞

⎟⎠ u2 =

⎛

⎜⎝
−0.639
−0.742
0.200

⎞

⎟⎠

The projection matrix is given as

P2 = U2U
T
2 =

⎛

⎜⎝
| |
u1 u2
| |

⎞

⎟⎠

(
— uT1 —
— uT2 —

)

= u1u
T
1 + u2u

T
2

=

⎛

⎜⎝
0.152 −0.035 0.357
−0.035 0.008 −0.082
0.357 −0.082 0.839

⎞

⎟⎠+

⎛

⎜⎝
0.408 0.474 −0.128
0.474 0.551 −0.148
−0.128 −0.148 0.04

⎞

⎟⎠

=

⎛

⎜⎝
0.560 0.439 0.229
0.439 0.558 −0.230
0.229 −0.230 0.879

⎞

⎟⎠
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Component interpretation
• We can write A = UΣVT = ∑i σiuivi

T = ∑i Ai  

• This explains the data as a sum of rank-1 
layers 

• First layer explains the most, the second 
updates that, the third updates that, … 

• Each individual layer don’t have to be very 
intuitive

41
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Example
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Applications of SVD

43
Skillicorn chapter 3.5; Leskovec et al. chapter 11.3
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Removing noise
• SVD is often used as a pre-processing step to 

remove noise from the data 

• The rank-k truncated SVD with proper k

44
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Removing dimensions
• SVD can be used to project the data to 

smaller-dimensional subspace 

• Original dimensions can have complex 
correlations 

• Subsequent analysis is faster 

• Points seem close to each other in high-
dimensional space

45

Curse of dimensionality
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Karhunen–Loève transform
• The Karhunen–Loève transform (KLT) works as 

follows: 

• Normalize A ∈ ℝn×m to z-scores 

• Compute the SVD UΣVT = A  

• Project A ↦ AVk ∈ ℝn×k  

• Vk = top-k right singular vectors 

• A.k.a. the principal component analysis (PCA)

46
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More on KLT

• The columns of Vk show 
the main directions of 
variance in columns 

• The data is expressed in a 
new coordinate system 

• The average projection 
distance is minimized

47
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Figure 8.3: Best 2D Approximation

Example 8.4: For the Iris dataset from Example 8.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors

u1 =

⎛

⎜⎝
−0.390
0.089
−0.916

⎞

⎟⎠ u2 =

⎛

⎜⎝
−0.639
−0.742
0.200

⎞

⎟⎠

The projection matrix is given as

P2 = U2U
T
2 =

⎛

⎜⎝
| |
u1 u2
| |

⎞

⎟⎠

(
— uT1 —
— uT2 —

)

= u1u
T
1 + u2u

T
2

=

⎛

⎜⎝
0.152 −0.035 0.357
−0.035 0.008 −0.082
0.357 −0.082 0.839

⎞

⎟⎠+

⎛

⎜⎝
0.408 0.474 −0.128
0.474 0.551 −0.148
−0.128 −0.148 0.04

⎞

⎟⎠

=

⎛

⎜⎝
0.560 0.439 0.229
0.439 0.558 −0.230
0.229 −0.230 0.879

⎞

⎟⎠
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Visualization

48
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Figure 8.3: Best 2D Approximation

Example 8.4: For the Iris dataset from Example 8.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors

u1 =

⎛

⎜⎝
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0.089
−0.916

⎞

⎟⎠ u2 =
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⎞

⎟⎠

The projection matrix is given as

P2 = U2U
T
2 =

⎛

⎜⎝
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u1 u2
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⎞

⎟⎠

(
— uT1 —
— uT2 —

)

= u1u
T
1 + u2u

T
2

=

⎛

⎜⎝
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⎞
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Figure 3.2. The first two factors for a dataset ranking wines.

plan, and medical insurance. It might turn out that all of these correlate
strongly with income, but it might not, and the differences in correlation
may provide insight into the contribution of a more general concept such as
‘prosperity’ to happiness. The survey data can be put into a matrix with
one row for each respondent, and one column for the response each question.
An SVD of this matrix can help to find the latent factors behind the explicit
factors that each question and response is addressing.

For datasets of modest size, where the attributes exhibit strong correla-
tions, this can work well. For example, Figure 3.2 is derived from a dataset in
which 78 people were asked to rank 14 wines, from 1 to 14, although many did
not carry out a strict ranking. So the attributes in this dataset are wines, and
the entries are indications of how much each wine was liked by each person.
The figure shows a plot along the first two axes of the transformed space,
corresponding to the two most important factors. Some further analysis is
required, but the first (most important) factor turns out to be liking for wine
– those respondents at the left end of the plot are those who like wine, that
is who had many low numbers in their ‘ranking’, while those at the right end
liked wine less across the board. This factor corresponds to something which
could have been seen in the data relatively easily since it correlates strongly
with the sum of the ‘rankings’. For example, the outlier at the right end
corresponds to someone who rated every wine 14.

The second factor turns out to indicate preference for red versus white
wine – those respondents at the top of the plot prefer red wine over white,
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Latent Semantic Analysis 
& Indexing

• Latent semantic analysis (LSA) is a latent topic model  

• Documents-by-terms matrix A  

• Typically normalized (e.g. tf/idf) 

• Goal is to find the “topics” doing SVD 

• U associates documents to topics 

• V associates topics to terms 

• Queries can be answered by projecting the query vector q 
to q’ = qVΣ–1 and returning rows of U that are similar to q’ 
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And many more…

• Determining the rank, finding the least-
squares solution, recommending the movies, 
ordering results of queries, … 

• Next week: and how do we compute this 
SVD, again? Stay tuned!
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