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Pre-processing
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Skillicorn chapter 3.1
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Why pre-process?
• Consider matrix of weather data 

• Monthly temperatures in degrees Celsius 

• Typical range [–20, +25] 

• Monthly precipitation in millimeters 

• Typical range [0, 100] 

• Precipitation seems much more important 

• But what if the temperatures where in degrees Kelvin? 

• The range is now [250, 300]
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Why pre-process

• If A is nonnegative, the 
first singular vector just 
shows where the average 
of A is 

• The remaining vectors 
still have to be 
orthogonal to the first
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Why pre-process

• If A is centered to the 
origin, the singular vectors 
show the directions of 
variance in A  

• This is the basis of KLT/
PCA…
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The z-scores
• The z-scores are attributes whose values are 

transformed by 

• centering them to 0 by removing the 
(column) mean from each value 

• normalizing the magnitudes by dividing every 
value with the (column) standard deviation 

6

X0 = X��
�



DMM, summer 2017 Pauli Miettinen

When z-scores?
• Attribute values are approximately normally 

distributed, c.f. 

• All attributes are equally important 

• Data does not have any important structure 
that is destroyed 

• Non-negativity, sparsity, integer values, …
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Other normalizations
• Large values can be reduced in importance by 

• taking logarithms (from positive values) 

• taking cubic roots 

• Sparsity can be preserved by only considering 
non-zero values  

• The effects of normalization must always 
be considered
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Selecting the rank
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Skillicorn chapter 3.3



DMM, summer 2017 Pauli Miettinen

How many factors?
• Assume we want to compute rank-k truncated 

SVD to analyze some data 

• But how to select the k? 

• Too big, and we have to handle unimportant 
factors 

• Too small, and we loose important structure 

• So we need a way to select a good k 
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Guttman–Kaiser criterion 
and captured energy

• Method 1: select k s.t. for all i > k, σi < 1 

• Motivation: components with singular values < 1 
are uninteresting 

• Method 2: select smallest k s.t.   

• Motivation: this explains 90% of the Frobenius 
norm (a.k.a. energy) 

• Both methods are based on arbitrary thresholds
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Cattell’s Scree test
• The scree plot has the singular values plotted in 

decreasing order 

• In scree test, the rank is selected s.t. in the plot 

• there is a clear drop in the magnitudes; or 

• the singular values start to even out

12
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20



DMM, summer 2017 Pauli Miettinen

Entropy-based method

• The relative contribution of σk is  

• The entropy E of singular values is 

• Set the rank to the smallest k s.t.  

• Intuition: low entropy = the mass of the 
singular values is packed to the begin
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Random flip of signs
• Consider a random matrix A’ created by 

multiplying every element of A by 1 or –1 u.a.r. 

• The Frobenius norm doesn’t change, but the 
spectral norm does change 

• How much the spectral norm changes depends 
on the amount of “structure” in A  

• Idea: use this to select k that isolates the structure 
from the noise
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Using random flips
• The residual matrix A–k is  

• U–k (V–k) contains the last n – k (m – k) left 
(right) singular vectors  

• Let A–k be the residual of A and A’–k that of A’ 

• Select k s.t. | ||A–k||2 – ||A’–k||2 | / ||A–k||F is small 

• On average, over multiple random matrices

15

A�k = A � Ak = U�k��kVT
�k



DMM, summer 2017 Pauli Miettinen

Issues with the methods
• Require computing the full SVD first or 

otherwise computationally heavy 
  

• Require subjective evaluation 
  

• Based on arbitrary thresholds 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Summary

• Pre-processing can make all the difference 

• Often overlooked 

• Selecting the rank is non-trivial 

• Guttman–Kaiser and scree test are often 
used in other fields
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Computing the SVD

19
Golub & Van Loan chapters 5.1, 5.4.8, and 8.6
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Very general idea
• SVD is unique 

• If U and V are orthogonal s.t. UTAV = Σ, then 
UΣVT is the SVD of A  

• Idea: find orthogonal U and V s.t. UTAV is as desired 

• Iterative process: find orthogonal U1, U2, … and 
set U = U1U2U3…  

• Still orthogonal
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Rotations and reflections
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Å
cos(�) sin(�)
� sin(�) cos(�)

ã Å
cos(�) sin(�)
sin(�) � cos(�)

ã
2D rotation 2D reflection

Rotates counterclockwise  
through an angle θ

Reflects across the line spanned 
by (cos(θ/2), sin(θ/2))T 
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Example

22

x = (√2, √2)TQ =
Å
cos(�/4) sin(�/4)
� sin(�/4) cos(�/4)

ã

Qx = (2, 0)T

This coordinate is now 0!



DMM, summer 2017 Pauli Miettinen

Householder reflections
• A Householder reflection is n-by-n matrix  
 

• If we set v = x – ||x||2e1, then Px = ||x||2e1  

• e1 = (1, 0, 0, …, 0)T  

• Note: PA = A – (βv)(vTA) where β = 2/(vTv)   

• We never have to compute matrix P 

23
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Example

24

Wikimedia commons

http://commons.wikimedia.org/wiki/File:Householdertransformation.svg
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Almost there: 
bidiagonalization

• Given n-by-m (n ≥ m) A, we can 
bidiagonalize it with Householder 
transformations 

• Fix A[1:n,1], A[1,2:m], A[2:n,2], A[2,3:m], 
A[3:n,3], A[3,4:m]… 

• The results has non-zeros in main diagonal 
and the one above it

25



DMM, summer 2017 Pauli Miettinen

Example
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Givens rotations
• Householder is too crude to give identity 

• Givens rotations are rank-2 corrections to 
the identity of form
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G(�, k,�) =

0
BBBBBBBBBB@

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
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0 · · · cos(�) · · · sin(�) · · · 0
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. . .

...
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0 · · · � sin(�) · · · cos(�) · · · 0
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. . .
...
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Applying Givens
• Set θ s.t.                            

                           and  

• Now 

• N.B. G(i, k, θ)TA only affects to the 2 rows 
A[c(i, k),] 

• Also, no inverse trig. operations are needed
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2
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Å
cos(�) sin(�)
� sin(�) cos(�)

ãT Å��
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ã
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Å
r
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Givens in SVD
• We use Givens transformations to erase the 

superdiagonal 

• Consider principal 2-by-2 submatrices  
A[k:k+1,k:k+1] 

• Rotations can introduce unwanted non-
zeros to A[k+2,k] (or A[k,k+2]) 

• Fix them in the next sub-matrix
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Example

30
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Putting it all together

1. Compute the bidiagonal matrix B from A 
using Householder transformations 

2. Apply the Givens rotations to B until it is 
fully diagonal 

3. Collect the required results
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Time complexity

32

Output Time

Σ 4nm2 - 4m3/3

Σ, V 4nm2 + 8m3

Σ, U 4n2m - 8nm2 

Σ, U1 14nm2 - 2m3 

Σ, U, V 4n2m + 8nm2 + 9m3

Σ, U1, V 14nm2 + 8m3 
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Summary of computing 
SVD

• Rotations and reflections allow us to selectively 
zero elements of a matrix with orthogonal 
transformations 

• Used in many, many decompositions 

• Fast and accurate results require careful 
implementations 

• Other techniques are faster for truncated SVD in 
large, sparse matrices
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Summary of SVD
• Truly the workhorse of numerical linear algebra 

• Many useful theoretical properties 

• Rank-revealing, pseudo-inverses, scalar 
norm computation, … 

• Reasonably easy to compute 

• But it also has some major shortcomings in 
data analysis… stay tuned!
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