Chapter 2
Optimization
Gradients, convexity, and ALS

l ' I I I max planck institut
informatik



Contents

» Background

» Gradient descent

» Stochastic gradient descent
* Newton’s method

+ Alternating least squares

« KKT conditions

DMM, summer 2017 Pauli Miettinen



Motivation

- We can solve basic least-squares linear systems using
SVD

« But what If we have
* missing values in the data
« extra constraints for feasible solutions

- more complex optimization problems (e.q.
reqularizers)

* etc
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Gradients, Hessians,
and convexity
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Derivatives and local
optima

* The derivative of a function f: R = R,
denoted f’, explains its rate of change

(@)= lim fla+ h)—f(a)

h—0+ h

 |f It exists

 The second derivative f”’ Is the

change of rate of change

DMM, summer 2017 Pauli Miettinen



Derivatives and local
optima

* A stationary point of differentiable fis x s.t.
f'(x) =0

- fachieves its extremes in stationary points or
In points where derivative doesn’t exist, or at
infinities (Fermat’s theorem)

* Whether this is (local) maximum or minimum can
be seen from the second derivative (if it exists)

DMM, summer 2017 Pauli Miettinen



Partial derivative

- If fis multivariate (e.g. f: R3 - R), we can
consider it as a family of functions

- E.g. f(x, y) = x* + y has functions
fly) = x>+ yand f(x) = x° +y

 Partial derivative w.r.t. one variable keeps
other variables constant

0, y) =f1(x) = 2x
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Gradient

e Gradient is the derivative for

- - .
P T - . . .

multivariate functions f R" - R ° -_513

. Vf=(£{1 J i)

7 AX2 ' 3X, i
« Here (and later), we assume that the
derivatives exist

 Gradient is a function Vf: R" - R"

* Vf(x) points “up” in the function at point x
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Hesslian

 Hessian is a square matrix of all second-order
partial derivatives of a function

. n
frR" > R
( o*f o’f ... _9f \
ax% 0X10X> 0X10Xn
3%f 3%f 3%f
0X29X1 2 90X 20X
H(f) = o ”
2 P ¥
0Xn0X1  0XpoX?2 ax% j

« As usual, we assume the derivatives exist
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Jacobian matrix

* If f: R™ - R", then its Jacobian (matrix) is an
nxm matrix of partial derivatives in form

°ofi o .. 9f1 \
0X1 0X?2 0X
of2 92 af?
= 0X1  9X2 0Xm
\ ofn ofn .. fn ]
0X1 0X?2 o0Xm

* Jacobian is the best linear approximation of f

* H(f(x)) = J(Vf(x))'
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Examples

Function
fOLY)=X2+2xy+y

Partial derivatives

of

—(X,y)=2x+ 2y

0X

of

— (X, y)=2x+1

oy

Gradient
Vi=(02x+2y,2x+ 1)

Hessian

wn=(3 %)
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Function
f(x,y) =(
Jacobian

.I(f)=(

X2y
5X + siny

2xy  x?

)

5 cosy)
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Gradient’s properties

* Linearity: V(af + Bg)(x) + aVi(x) + BVg(x)
* Product rule: V(fg)(x) = f(x)Vg(x) + g(x)Vf(x)

* Chain rule:

IMPORTANT!

e |f f: Rn - R and g: Rm N Rn’ then
V(fog)(x) = J(9(x))'(Vf(y)) where y = g(x) 4~

e If fis as above and h: R - R, then
V(h o H)(x) = h'(f(x))Vf(x)
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Convexity

A function is convex if any line
segment between two points of the
function lie above or on the graph

* For univariate f, if f”/(x) = 0 for all x .

- For multivariate f, if its Hessian is positive
semidefinite

. l.e. Z Hz = 0 for any z

« Convex function’s local minimum is its global minimum
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Preserving the convexity

- If fis convex and A > 0, then Afis convex
- If fand g are convex, the f + g Is convex

* If fis convex and g is affine (i.e. g(x) = Ax + b), then
fogis convex (N.B. (foeg)(x) = f(Ax + b))

* Let f(x) = (h~qg)(x) with g: R" > R and h: R > R; fis

convex If
* g Is convex and h is nondecreasing and convex

* g IS concave and h is non-increasing and convex

DMM, summer 2017 Pauli Miettinen 15



Gradient descent
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Idea

* If fis convex, we should find it's minimum by

following its negative gradient

- But the gradient at x points to minimum

only at x

* Hence, we need to descent slowly down the

gradient
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Gradient descent

+ Start from random point x°
+ At step n, update x" « x"! — yVAX")
* Y Is some small step size

- Often, y depends on the iteration

X" « x" - v, VAxX")

- With suitable f and step size, will converge to
local minimum
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Example: least squares

« GivenA € R and b € R", find x € R™

s.t. [|Ax - b||?/2 is minimized

- Can be solved using SVD...
- Calculate the gradient of fa p(x) = ||Ax — b||%/2
- Employ the gradient descent approach

- In this case, the step size can be calculated
analytically
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Example: the gradient

Let’'s write open:

1 , 12 ,
~llAx—b|I* = = > ((Ax)i— b))
i=1
1 n m 5
=5 2.(2,a5%— b)
i=1 j=1
1 n m 5 m
i=1 j=1 j=1
1 n m 5 n m 1 n
=5 7(7 aijxj)” — Zbiz agXj+ > Zblz
(=1 j=1 =1 =1 (=1
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Example: the gradient

The partial derivative w.r.t. x;:

aa (1 IAX — b||?) =
Xj
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Example: the gradient
Collecting terms: .

e RN Another matrix
N1 product

v(5 IAx — b||?) = AT(Ax — b)

Hence we have:
1
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Example: the gradient

The other way: Use the chain rule

1 1
V(5 Ilax —blI?) =J(Ax—b) (V- llyl*)) y=Ax—b

= A’ (Ax—b)
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Gradient descent &

matrices
 How about “Given A, find small B and C s.t.

||A — BC||rF is minimized”?

* Not convex for B and C jointly
- Fix some B and solve for C

* C = argminy ||A - BX||r

* Use the found € and solve for B, and repeat until
convergence
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How to solve for C?

* C = argminy ||A - BX||F still needs some work

« Write the norm as sum of column-wise errors
|A - BX||r =3 ||aj - Bxj||2

* Now the problem is a series of standard
least-squares problems

* Each can be solved independently
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How to select the step
size?

+ Recall: x" « x" 1 — v, Vf(x"1)
» Selecting correct y, for each n is crucial

» Methods for optimal step size are often
slow (e.qg. line search)

» Wrong step size can lead to non-
convergence
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Stochastic gradient
descent
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Basic idea

- With gradient descent, we need to calculate
the gradient for ¢ » ||a — Bc|| many times for

different a in each iteration

- Instead we can fix one element a; and update
the ith row of B and jth column of C accordingly

* When we choose a;j randomly, this is

stochastic gradient descent (5GD)
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Local gradient

* With fixed dij, ”a” — (BC),]H = ajj — Zbikaj
* Local gradient for bjx is —=2ckj(aj — (BC)j)
- Similarly for c;

* This allows us to update the factors by only
computing one gradient

» Gradient needs to be sufficiently scaled
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SGD process

* |Initialize with random B
and C

* repeat

* Pick a random element
(1, /) <-

* Update a row of B and a T

column of € using the
local gradients w.r.t. a;
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SGD pros and cons

- Each iteration is faster to compute
- But can increase the error

- Does not need to know all elements of the input data
-+ Scalability

- Partially observed matrices (e.g. collaborative
filtering)

» The step size still needs to be chosen carefully
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Newton’s method
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Basic

- lterative update rule:
Xn+1 < Xn — [H(f(Xn))]_1Vf(Xn)

* Assuming Hessian exists
and is invertible...

« Takes curvature information
INto account
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Pros and cons

* Much faster convergence

» But Hessian is slow to compute and takes

lots of memory

* Quasi-Newton methods (e.qg. L-BFGS)
compute the Hessian indirectly

» Often still needs some step size other than 1
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Alternating least
squares
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Basic idea

* Given A and B, we can find C that minimizes
|A — BC||F

* |In gradient descent, we move slightly

towards C

* |In alternating least squares (ALS), we

replace C with the new one
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Basic ALS algorithm

- Given A, sample a random B
* repeat until convergence
* C < argminy ||A — BX]||F

* B <« argminy ||A — XC||F
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ALS pros and cons

» Can have faster convergence than gradient
descent (or SGD)

* The update is slower to compute than in SGD
» About as fast as in gradient descent

» Requires fully-observed matrices
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Adding constraints
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The problem setting

* So far, we have done unconstrained

optimization

* What if we have constrains on the optimal
solution?

» E.g. all matrices must be nonnegative

* |In general, the above approaches won’t
admit these constraints
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General case

* Minimize f(x)

* Subject to
gilx)<0,/i=1, ... m
hix) =0,j=1, ...,k

- Assuming certain regularity conditions, there
exists constraints u; (i=1,...,m) and A; (j=1,...,k)
that satisfy Karush-Kuhn-Tucker (KKT)

conditions
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KKT conditions

* Let x* be the optimal solution

Stationarity:

o —Vf(x*) = 2 u,-Vg,-(x*) + Zj )\thj(X*)

Primal feasibility:
* gix*) =0foralli=1, .. m

* hix*) =0forallj=1, ..,k

Dual feasibility:

ey, =0foralli=1, .., m

Complementary slackness:

* Hg{x*)=0foralli=1, .., m
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When do KKT
conditions hold

- KKT conditions hold under certain regularity
conditions

- E.g. gi and h; are affine

* Or fis convex and exists x s.t. h(x) = 0 and
gi(X) <0

* Nonnegativity is an example of linear (hence,
affine) constraint
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What to do with the KKT
conditions?

* M and A are new unknown variables
* Must be optimized together with x

* The conditions appear in the optimization
* E.g. In the gradient

» The KKT conditions are rarely solved directly
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Summary

* There are many methods for optimization
- We only scratched the surface

» Methods are often based on gradients
- Can lead into ugly equations

* Next week: applying these technigues for
finding nonnegative factorizations... Stay
tuned!
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