Chapter 2 Optimization

Gradients, convexity, and ALS

Contents

- Background
- Gradient descent
- Stochastic gradient descent
- Newton's method
- Alternating least squares
- KKT conditions

Motivation

- We can solve basic least-squares linear systems using SVD
- But what if we have
 - missing values in the data
 - extra constraints for feasible solutions
 - more complex optimization problems (e.g. regularizers)
 - etc

Gradients, Hessians, and convexity

Derivatives and local optima

• The **derivative** of a function $f: \mathbb{R} \to \mathbb{R}$, denoted f', explains its *rate of change*

$$f'(a) = \lim_{h \to 0+} \frac{f(a+h) - f(a)}{h}$$

- If it exists
- The second derivative f" is the change of rate of change

Derivatives and local optima

• A **stationary point** of differentiable f is x s.t. f'(x) = 0

- f achieves its extremes in stationary points or in points where derivative doesn't exist, or at infinities (Fermat's theorem)
- Whether this is (local) maximum or minimum can be seen from the second derivative (if it exists)

Partial derivative

- If f is multivariate (e.g. f: $\mathbb{R}^3 \to \mathbb{R}$), we can consider it as a family of functions
 - E.g. $f(x, y) = x^2 + y$ has functions $f_x(y) = x^2 + y$ and $f_y(x) = x^2 + y$
- Partial derivative w.r.t. one variable keeps other variables constant

$$\frac{\partial f}{\partial x}(x,y) = f_y'(x) = 2x$$

Gradient

• **Gradient** is the derivative for multivariate functions $f: \mathbb{R}^n \to \mathbb{R}$

- Here (and later), we assume that the derivatives exist
- Gradient is a function $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$
- $\nabla f(\mathbf{x})$ points "up" in the function at point \mathbf{x}

Gradient

Hessian

 Hessian is a square matrix of all second-order partial derivatives of a function

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$H(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

As usual, we assume the derivatives exist

Jacobian matrix

• If $f: \mathbb{R}^m \to \mathbb{R}^n$, then its **Jacobian** (matrix) is an $n \times m$ matrix of partial derivatives in form

$$\mathbf{J} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & & \frac{\partial f_2}{\partial x_m} \\ \vdots & & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_m} \end{pmatrix}$$

Jacobian is the best linear approximation of f

•
$$H(f(\mathbf{x})) = J(\nabla f(\mathbf{x}))^T$$

Examples

Function

$$f(x,y) = x^2 + 2xy + y$$

Partial derivatives

$$\frac{\partial f}{\partial x}(x, y) = 2x + 2y$$
$$\frac{\partial f}{\partial y}(x, y) = 2x + 1$$

Gradient

$$\nabla f = (2x + 2y, 2x + 1)$$

Hessian

$$\boldsymbol{H}(f) = \begin{pmatrix} 2 & 2 \\ 2 & 0 \end{pmatrix}$$

Function

$$f(x,y) = \begin{pmatrix} x^2y \\ 5x + \sin y \end{pmatrix}$$

Jacobian

$$J(f) = \begin{pmatrix} 2xy & x^2 \\ 5 & \cos y \end{pmatrix}$$

Gradient's properties

- Linearity: $\nabla(\alpha f + \beta g)(\mathbf{x}) + \alpha \nabla f(\mathbf{x}) + \beta \nabla g(\mathbf{x})$
- Product rule: $\nabla (fg)(x) = f(x)\nabla g(x) + g(x)\nabla f(x)$
- Chain rule:

IMPORTANT!

- If $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^m \to \mathbb{R}^n$, then $\nabla (f \circ g)(\mathbf{x}) = \mathbf{J}(g(\mathbf{x}))^T (\nabla f(\mathbf{y})) \text{ where } \mathbf{y} = g(\mathbf{x}) \blacktriangleleft$
- If f is as above and $h: \mathbb{R} \to \mathbb{R}$, then $\nabla (h \circ f)(\mathbf{x}) = h'(f(\mathbf{x})) \nabla f(\mathbf{x})$

Convexity

 A function is convex if any line segment between two points of the function lie above or on the graph

- For univariate f, if $f''(x) \ge 0$ for all x
- For multivariate f, if its Hessian is positive semidefinite
 - I.e. $z^T H z \ge 0$ for any z
- Convex function's local minimum is its global minimum

Preserving the convexity

- If f is convex and $\lambda > 0$, then λf is convex
- If f and g are convex, the f + g is convex
- If f is convex and g is **affine** (i.e. g(x) = Ax + b), then $f \circ g$ is convex (N.B. $(f \circ g)(x) = f(Ax + b)$)
- Let $f(\mathbf{x}) = (h \circ g)(\mathbf{x})$ with $g: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$; f is convex if
 - g is convex and h is nondecreasing and convex
 - g is concave and h is non-increasing and convex

Gradient descent

Idea

- If f is convex, we should find it's minimum by following its negative gradient
 - But the gradient at x points to minimum only at x
 - Hence, we need to descent slowly down the gradient

Example

Gradient descent

- Start from random point x⁰
- At step n, update $\mathbf{x}^n \leftarrow \mathbf{x}^{n-1} \gamma \nabla f(\mathbf{x}^{n-1})$
 - γ is some small step size
 - Often, γ depends on the iteration $\mathbf{x}^n \leftarrow \mathbf{x}^{n-1} \gamma_n \nabla f(\mathbf{x}^{n-1})$
- With suitable f and step size, will converge to local minimum

Example: least squares

- Given $\mathbf{A} \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$, find $\mathbf{x} \in \mathbb{R}^m$ s.t. $||\mathbf{A}\mathbf{x} - \mathbf{b}||^2/2$ is minimized
 - Can be solved using SVD...
- Calculate the gradient of $f_{A,b}(x) = ||Ax b||^2/2$
- Employ the gradient descent approach
 - In this case, the step size can be calculated analytically

Let's write open:

$$\frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^{2} = \frac{1}{2} \sum_{i=1}^{n} ((\mathbf{A}\mathbf{x})_{i} - b_{i})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{n} (\sum_{j=1}^{m} a_{ij}x_{j} - b_{i})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{n} ((\sum_{j=1}^{m} a_{ij}x_{j})^{2} - 2b_{i} \sum_{j=1}^{m} a_{ij}x_{j} + b_{i}^{2})$$

$$= \frac{1}{2} \sum_{i=1}^{n} (\sum_{j=1}^{m} a_{ij}x_{j})^{2} - \sum_{i=1}^{n} b_{i} \sum_{j=1}^{m} a_{ij}x_{j} + \frac{1}{2} \sum_{i=1}^{n} b_{i}^{2}$$

The partial derivative w.r.t. x_i :

$$\frac{\partial}{\partial x_{j}} \left(\frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^{2}\right) = \frac{\partial}{\partial x_{j}} \left(\frac{1}{2} \sum_{i=1}^{n} \left(\sum_{k=1}^{m} a_{ik} x_{k}\right)^{2} - \sum_{i=1}^{n} b_{i} \sum_{k=1}^{m} a_{ik} x_{k} + \frac{1}{2} \sum_{i=1}^{n} b_{i}^{2}\right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \frac{\partial}{\partial x_{j}} \left(\sum_{k=1}^{m} a_{ik} x_{k}\right)^{2} - \sum_{i=1}^{n} b \left(\frac{\partial}{\partial x_{j}} \sum_{k=1}^{m} a_{ik} x_{k}\right) \left(\frac{\partial}{\partial x_{j}} \sum_{k=1}^{n} b_{i}^{2}\right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \frac{\partial}{\partial x_{j}} \left(\sum_{k=1}^{m} a_{ik} x_{k}\right)^{2} - \sum_{i=1}^{n} b_{i} a_{ij} = 0 \text{ if } k \neq j = 0$$

Chain rule

$$= \sum_{i=1}^{n} a_{ij} \sum_{k=1}^{m} a_{ik} x_k - \sum_{i=1}^{n} b_i a_{ij}$$
$$= \sum_{i=1}^{n} a_{ij} \left(\sum_{k=1}^{m} a_{ik} x_k - b_i \right)$$

DMM, summer 2017 Pauli Miettinen 22

Collecting terms:

Matrix product

$$\frac{\partial}{\partial x_j} \left(\frac{1}{2} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|^2 \right) = \sum_{i=1}^n \alpha_{ij} \left(\sum_{k=1}^m \alpha_{ik} x_k - b_i \right)$$

$$\neq \sum_{i=1}^{p} a_{ij} ((\mathbf{A}\mathbf{x})_i - b_i)$$

$$= (\mathbf{A}^T (\mathbf{A}\mathbf{x} - \mathbf{b}))_i$$

Another matrix product

Hence we have:

$$\nabla \left(\frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2\right) = \mathbf{A}^T (\mathbf{A}\mathbf{x} - \mathbf{b})$$

The other way: Use the chain rule

$$\nabla \left(\frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^{2}\right) = J(\mathbf{A}\mathbf{x} - \mathbf{b})^{T} \left(\nabla \left(\frac{1}{2} \|\mathbf{y}\|^{2}\right)\right) \quad \mathbf{y} = \mathbf{A}\mathbf{x} - \mathbf{b}$$
$$= \mathbf{A}^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

Gradient descent & matrices

- How about "Given A, find small B and C s.t.
 - $||A BC||_F$ is minimized"?
 - Not convex for B and C jointly
- Fix some B and solve for C
 - $C = \operatorname{argmin}_{X} ||A BX||_{F}$
- Use the found *C* and solve for *B*, and repeat until convergence

How to solve for C?

- $C = \operatorname{argmin}_{X} ||A BX||_{F} \text{ still needs some work}$
- Write the norm as sum of column-wise errors $||\mathbf{A} \mathbf{B}\mathbf{X}||_F = \sum ||\mathbf{a}_j \mathbf{B}\mathbf{x}_j||_2$
 - Now the problem is a series of standard least-squares problems
 - Each can be solved independently

How to select the step size?

- Recall: $\mathbf{x}^n \leftarrow \mathbf{x}^{n-1} \gamma_n \nabla f(\mathbf{x}^{n-1})$
- Selecting correct γ_n for each n is crucial
 - Methods for optimal step size are often slow (e.g. line search)
 - Wrong step size can lead to nonconvergence

Stochastic gradient descent

Basic idea

- With gradient descent, we need to calculate
 the gradient for c → ||a Bc|| many times for
 different a in each iteration
- Instead we can fix one element a_{ij} and update the *i*th row of **B** and *j*th column of **C** accordingly
- When we choose a_{ij} randomly, this is stochastic gradient descent (SGD)

Local gradient

- With fixed a_{ij} , $||a_{ij} (\boldsymbol{BC})_{ij}|| = a_{ij} \sum b_{ik} c_{kj}$
 - Local gradient for b_{ik} is $-2c_{kj}(a_{ij} (BC)_{ij})$
 - Similarly for c_{kj}
- This allows us to update the factors by only computing one gradient
 - Gradient needs to be sufficiently scaled

SGD process

- Initialize with random B
 and C
- repeat
 - Pick a random element
 (i, j)
 - Update a row of **B** and a column of **C** using the local gradients w.r.t. a_{ij}

SGD pros and cons

- Each iteration is faster to compute
 - But can increase the error
- Does not need to know all elements of the input data
 - Scalability
 - Partially observed matrices (e.g. collaborative filtering)
- The step size still needs to be chosen carefully

Newton's method

Basic idea

Iterative update rule:

$$\mathbf{x}_{n+1} \leftarrow \mathbf{x}_n - [\mathbf{H}(f(\mathbf{x}_n))]^{-1} \nabla f(\mathbf{x}_n)$$

- Assuming Hessian exists and is invertible...
- Takes curvature information into account

Pros and cons

- Much faster convergence
 - But Hessian is slow to compute and takes lots of memory
- Quasi-Newton methods (e.g. L-BFGS)
 compute the Hessian indirectly
- Often still needs some step size other than 1

Alternating least squares

Basic idea

- Given \mathbf{A} and \mathbf{B} , we can find \mathbf{C} that minimizes $||\mathbf{A} \mathbf{B}\mathbf{C}||_F$
 - In gradient descent, we move slightly towards *C*
- In alternating least squares (ALS), we replace C with the new one

Basic ALS algorithm

- Given A, sample a random B
- repeat until convergence
 - $C \leftarrow \operatorname{argmin}_{X} ||A BX||_{F}$
 - $B \leftarrow \operatorname{argmin}_{X} ||A XC||_{F}$

ALS pros and cons

- Can have faster convergence than gradient descent (or SGD)
- The update is slower to compute than in SGD
 - About as fast as in gradient descent
- Requires fully-observed matrices

Adding constraints

The problem setting

- So far, we have done unconstrained optimization
- What if we have constrains on the optimal solution?
 - E.g. all matrices must be nonnegative
- In general, the above approaches won't admit these constraints

General case

- Minimize f(x)
- Subject to

$$g_i(\mathbf{x}) \le 0, i = 1, ..., m$$

 $h_i(\mathbf{x}) = 0, j = 1, ..., k$

• Assuming certain regularity conditions, there exists constraints μ_i (i=1,...,m) and λ_j (j=1,...,k) that satisfy **Karush–Kuhn–Tucker** (KKT) conditions

KKT conditions

- Let x* be the optimal solution
- Stationarity:

•
$$-\nabla f(\mathbf{x}^*) = \sum_i \mu_i \nabla g_i(\mathbf{x}^*) + \sum_i \lambda_i \nabla h_i(\mathbf{x}^*)$$

Primal feasibility:

•
$$g_i(\mathbf{x}^*) \le 0$$
 for all $i = 1, ..., m$

•
$$h_j(\mathbf{x}^*) = 0$$
 for all $j = 1, ..., k$

Dual feasibility:

•
$$\mu_i \ge 0$$
 for all $i = 1, ..., m$

Complementary slackness:

•
$$\mu_i g_i(\mathbf{x}^*) = 0$$
 for all $i = 1, ..., m$

When do KKT conditions hold

- KKT conditions hold under certain regularity conditions
 - E.g. g_i and h_j are affine
 - Or f is convex and exists \mathbf{x} s.t. $h(\mathbf{x}) = 0$ and $g_i(\mathbf{x}) < 0$
- Nonnegativity is an example of linear (hence, affine) constraint

What to do with the KKT conditions?

- μ and λ are new unknown variables
 - Must be optimized together with x
- The conditions appear in the optimization
 - E.g. in the gradient
- The KKT conditions are rarely solved directly

Summary

- There are many methods for optimization
 - We only scratched the surface
- Methods are often based on gradients
 - Can lead into ugly equations
- Next week: applying these techniques for finding nonnegative factorizations... Stay tuned!