Chapter 3 Non-Negative Matrix Factorization

Part 1: Introduction & computation

Motivating NMF

Skillicorn chapter 8; Berry et al. (2007) DMM, summer 2017

Pauli Miettinen

Reminder

					_
1	1	1	1	1	
0	1	0	1	0	
0	1	0	1	0	

Α

 $\boldsymbol{W}_1 \boldsymbol{\Sigma}_{1,1} \boldsymbol{V}_1^T$

0.6	1.3	0.6	1.3	0.6	0.3	0.4	-0.3	0.4	-0.3	0.4
0.3	0.8	0.3	0.8	0.3	<u>0</u>	-0.3	0.2	-0.3	0.2	-0.3
0.3	0.8	0.3	0.8	0.3		-0.3	0.2	-0.3	0.2	-0.3

The components of the SVD are not very interpretable

Non-negative factors

		A				V	VV	V ₁ H	1		Η		V	V_2H	2	
1	1	1	1	1		1	1	1	1	1	1	0	0	0	0	0
0	1	0	1	0	=	0	0	0	0	0	•	0	1	0	1	0
0	1	0	1	0		0	0	0	0	0		0	1	0	1	0

Forcing the factors to be non-negative can, and often will, improve the interpretability of the factorization

The definition

Definition of NMF

Given a non-negative matrix $\mathbf{A} \in \mathbb{R}^{n \times m}_+$ and an integer k, find non-negative matrices $\mathbf{W} \in \mathbb{R}^{n \times k}_+$ and $\mathbf{H} \in \mathbb{R}^{k \times m}_+$ such that $\frac{1}{2} \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2$ is minimized.

Non-negative rank

- The non-negative rank of matrix A, rank₊(A), is the size of the smallest exact non-negative factorization A = WH
 - rank(\mathbf{A}) \leq rank₊(\mathbf{A}) \leq min{n, m}

Some comments

- NMF is **not** unique
 - If X is nonnegative and with nonnegative inverse, then WXX⁻¹H is equivalent valid decomposition
- Computing NMF (and non-negative rank) is
 NP-hard
 - This was open until 2008

Example of nonuniqueness

+

+

1

0

0

1

0

0

1	1	1	1	1	
0	1	0	1	0	
0	1	0	1	0	

0	0	0	0	0
0	1	0	1	0
0	1	0	1	0

0	0.5	0	0.5	0
0	1	0	1	0
0	1	0	1	0

NMF has no order

- The factors in NMF have no inherent order
 - The first component is no more important than the second is no more important...
- NMF is not hierarchical
 - The factors of rank-(k+1) decomposition can be completely different to those of rank-k decomposition

Example

Interpreting NMF

Parts-of-whole

- NMF works over anti-negative semiring
 - There is no subtraction
- Each rank-1 component *w_ih_i* explains a part of the whole
 - This can yield to sparse factors

NMF example: faces

Row of original

PCA/SVD

Row of reconstruction

DMM, summer 2017

NMF example: faces

Row of original

=

NMF example: digits

NMF factors correspond to patterns and background

Α

Η

DMM, summer 2017

Some NMF applications

- Text mining (more later)
- Bioinformatics
- Microarray analysis
- Mineral exploration
- Neuroscience
- Image understanding
- Air pollution research
- Weather forecasting

(c) Ten estimated components by using Fast-HALS

(d) PSNR using Beta HALS for various values of β

Figure 4.8 Illustration for (a) benchmark used in large-scale experiments with 10 nonnegative sources; (b) Typical 1000 mixtures; (c) Ten estimated components by using FAST HALS NMF from the observations matrix **Y** of dimension 1000×1000 . (d) Performance expressed via the PSNR using the Beta HALS NMF algorithm for $\beta = 0.5, 1, 1.5, 2$ and 3.

Pauli Miettinen

Computing NMF

General idea

- NMF is not convex, but it is **biconvex**
 - If **W** is fixed, $\frac{1}{2} \|\mathbf{A} \mathbf{W}\mathbf{H}\|_F^2$ is convex
- Start from random W and repeat
 - Fix **W** and update **H**
 - Fix *H* and update *W*
- until the error doesn't decrease anymore

Notes on the general idea

- How to create a good random starting point?
 - Is the algorithm robust to initial solutions?
- How to update **W** and **H**?
- When (and how quickly) has the process converged?
 - Fixed number of iterations? Minimum change in error?

Alternating least squares

- Without the non-negativity constraint, this is the standard least-squares:
 - $\boldsymbol{w}_i \leftarrow \operatorname{argmin}_{\boldsymbol{w}} || \boldsymbol{w} \boldsymbol{H} \boldsymbol{a}_i ||_F$
 - we can update $W \leftarrow AH^+$ and $H \leftarrow W^+A$
 - \mathbf{X}^+ is the pseudo-inverse of \mathbf{X} which is LS-optimal
- The method is called alternating least-squares (ALS)
- This can introduce negative values

Enforcing non-negativity in ALS

- Least-squares optimal update of *W* (or *H*) with non-negativity constraints is convex optimization problem
 - In theory in P, in practice slow, but subject to much research
- Simple approach: truncate all negative values to 0
 - Update $W \leftarrow [AH^+]_+$

The NMF-ALS algorithm

- 1. $W \leftarrow random(n, k)$
- 2. repeat
 - 2.1. $H \leftarrow [W^+A]_+$
 - 2.2. $W \leftarrow [AH^+]_+$
- 3. until convergence

When has there been enough convergence?

When the error doesn't change too much

•
$$||\mathbf{A} - \mathbf{W}^{(k)}\mathbf{H}^{(k)}||_{F} - ||\mathbf{A} - \mathbf{W}^{(k+1)}\mathbf{H}^{(k+1)}||_{F} \le \epsilon$$

- After some number of maximum iterations has been achieved
- Usually, whichever of these two happens first

Gradient descent

 We can compute the gradient of the error function (with one factor matrix fixed)

•
$$f(\mathbf{H}) = \frac{1}{2} \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_{F}^{2} = \frac{1}{2} \sum_{i} \|\mathbf{a}_{i} - \mathbf{W}\mathbf{h}_{i}\|_{F}^{2}$$

•
$$\nabla_{\boldsymbol{H}_{ij}} f(\boldsymbol{H}) = (\boldsymbol{W}^T \boldsymbol{A})_{ij} - (\boldsymbol{W}^T \boldsymbol{W} \boldsymbol{H})_{ij}$$

- We can move slightly towards the negative gradient
 - How much is the step size and deciding it is a big problem

The NMF gradient descent algorithm

- 1. $W \leftarrow random(n, k)$
- 2. $H \leftarrow random(k, m)$
- 3. repeat

3.1.
$$H \leftarrow H - \varepsilon_H \frac{\partial f}{\partial H}$$

3.2. $W \leftarrow W - \varepsilon_W \frac{\partial f}{\partial W}$

4. until convergence

Oblique Projected Landweber (OPL) for NMF

- OPL provides one way to select the step size
- With $H \leftarrow H \varepsilon_H \frac{\partial f}{\partial H}$ updates, the convergence radius is $2/\lambda_{max}(W^T W)$, where λ_{max} is the largest eigenvalue
 - $\lambda_{\max} \leq \max(\operatorname{rowSums}(W^T W))$
- We can set the learning rates to 1/rowSums(W^TW) for a good convergence

The OPL algorithm for updating *H*

- 1. $\boldsymbol{\eta} \leftarrow \text{diag}(1 / \text{rowSums}(\boldsymbol{W}^T \boldsymbol{W}))$
- 2. repeat
 - 2.1. $\boldsymbol{G} \leftarrow \boldsymbol{W}^T \boldsymbol{W} \boldsymbol{H} \boldsymbol{W}^T \boldsymbol{A}$
 - 2.2. $H \leftarrow [H \eta G]_+$
- 3. until a stopping criterion is met

(small) number of iterations OR H doesn't change much

Interior Point Gradient (IPG) for NMF

- In OPL, we might (temporarily) have negative values in *W* or *H*
- In Interior Point Gradient (IPG) algorithm, we set the step sizes so that we never update to negative

The IPG algorithm for updating H

1. repeat until a stopping criterion is met

1.1.
$$G \leftarrow W^T(WH - A)$$
Gradient1.2. $D \leftarrow H / (W^TWH)$ Scaling1.3. $P \leftarrow -D * G$ Update direction1.4. $\eta^* \leftarrow - \langle \operatorname{vec}(P), \operatorname{vec}(G) \rangle / \langle \operatorname{vec}(WP), \operatorname{vec}(WP) \rangle$ Best step
size1.5. $\eta' \leftarrow \max\{\eta : H + \eta P \ge 0\}$ Positive step size1.6. $\eta \leftarrow \min\{\tau\eta', \eta^*\}$ 1.7. $H \leftarrow H + \eta P$ Update

Multiplicative updates

- The KKT conditions for **H** in NMF are
 - $H \ge 0; \nabla_{H} ||A WH||^{2}/2 \ge 0$
 - $H * \nabla_H ||A WH||^2/2 = 0$

* is element-wise product

- Substituting $\nabla_{\boldsymbol{H}} || \boldsymbol{A} \boldsymbol{W} \boldsymbol{H} ||^2 / 2 = \boldsymbol{W}^T \boldsymbol{W} \boldsymbol{H} \boldsymbol{W}^T \boldsymbol{A}$ one gets $\boldsymbol{H} * (\boldsymbol{W}^T \boldsymbol{W} \boldsymbol{H}) = \boldsymbol{H} * (\boldsymbol{W}^T \boldsymbol{A})$
 - This gives us an update rule for \pmb{H}

The NMF multiplicative updates algorithm

- 1. $W \leftarrow random(n, k)$
- 2. $H \leftarrow random(k, m)$
- 3. repeat

3.1.
$$h_{ij} \leftarrow h_{ij} \frac{(\boldsymbol{W}^T \boldsymbol{A})_{ij}}{(\boldsymbol{W}^T \boldsymbol{W} \boldsymbol{H})_{ij} + \varepsilon}$$

3.2. $w_{ij} \leftarrow w_{ij} \frac{(\boldsymbol{A} \boldsymbol{H}^T)_{ij}}{(\boldsymbol{W} \boldsymbol{H} \boldsymbol{H}^T)_{ij} + \varepsilon}$

4. until convergence

Notes on multiplicative updates

- Proposed by Lee & Seung (Nature, 1999)
- Equivalent to gradient descent with dynamic step size
- Zeros in initial solutions will never turn into non-zeros; non-zeros will never turn into zeros
 - Problems if the correct solution contains zeros

Summary

- NMF can provide factorizations that are more interpretable than those given by SVD
- Harder to compute than SVD, but many different approaches
 - Or are they so different...
- In two weeks: Applications & alternations of NMF... Stay tuned!