Chapter 3 **Non-Negative Matrix Factorization**

Part 1: Introduction & computation

Motivating NMF

DMM, summer 2017 **Pauli Miettinen** Skillicorn chapter 8; [Berry et al. \(2007\)](http://www.public.asu.edu/~jye02/CLASSES/Fall-2007/NOTES/aNMF-rev-06.pdf)

Reminder

 $\boldsymbol{U}_1 \boldsymbol{\Sigma}_{1,1} \boldsymbol{V}_1^T$ $\boldsymbol{V} \boldsymbol{U}$

The components of the SVD are not very interpretable

Non-negative factors

Forcing the factors to be non-negative can, and often will, improve the interpretability of the factorization

The definition

Definition of NMF

Given a non-negative matrix $A \in \mathbb{R}_+^{n \times m}$ and an integer *k*, find non-negative matrices $W \in \mathbb{R}_+^{n \times k}$ and $M \in \mathbb{R}_+^{k \times m}$ such that is minimized. $\frac{1}{2}$ $\|\boldsymbol{A} - \boldsymbol{W}\boldsymbol{H}\|_F^2$

Non-negative rank

- The **non-negative rank** of matrix *A*, rank+(*A*), is the size of the smallest exact non-negative factorization *A* = *WH*
	- rank(A) \leq rank₊(A) \leq min{*n*, *m*}

Some comments

- NMF is **not** unique
	- If *X* is nonnegative and with nonnegative inverse, then *WXX*–1*H* is equivalent valid decomposition
- Computing NMF (and non-negative rank) is NP-hard
	- This was open until 2008

Example of nonuniqueness

 $+$

 $+$

 $+$

NMF has no order

- The factors in NMF have no inherent order
	- The first component is no more important than the second is no more important…
- NMF is not **hierarchical**
	- The factors of rank-(*k*+1) decomposition can be completely different to those of rank-*k* decomposition

Example

Interpreting NMF

Parts-of-whole

- NMF works over **anti-negative semiring**
	- There is no subtraction
- Each rank-1 component *wihi* explains a part of the whole
	- This can yield to sparse factors

NMF example: faces

Row of original

PCA/SVD

Row of reconstruction

NMF example: faces

Row of original

NMF example: digits

NMF factors correspond to patterns and background

DMM, summer 2017 **Pauli Miettinen**

A H

Some NMF applications

- Text mining (more later)
- Bioinformatics
- Microarray analysis
- Mineral exploration
- **Neuroscience**
- Image understanding
- Air pollution research
- Weather forecasting

(c) Ten estimated components by using Fast-HALS

(d) PSNR using Beta HALS for various values of β

Figure 4.8 Illustration for (a) benchmark used in large-scale experiments with 10 nonnegative sources; (b) Typical 1000 mixtures; (c) Ten estimated components by using FAST HALS NMF from the observations matrix Y of dimension 1000×1000 . (d) Performance expressed via the PSNR using the Beta HALS NMF algorithm for β = 0.5, 1, 1.5, 2 and 3.

• …

Computing NMF

General idea

- NMF is not convex, but it is **biconvex**
	- If **W** is fixed, $\frac{1}{2} \|\boldsymbol{A} \boldsymbol{W}\boldsymbol{H}\|_{\epsilon}^2$ is convex $\frac{1}{2}$ $\|\boldsymbol{A} - \boldsymbol{W}\boldsymbol{H}\|_F^2$
- Start from random *W* and **repeat**
	- Fix *W* and update *H*
	- Fix *H* and update *W*
- **until** the error doesn't decrease anymore

Notes on the general idea

- How to create a good random starting point?
	- Is the algorithm robust to initial solutions?
- How to update *W* and *H*?
- When (and how quickly) has the process converged?
	- Fixed number of iterations? Minimum change in error?

Alternating least squares

- Without the non-negativity constraint, this is the standard least-squares:
	- $w_i \leftarrow \text{argmin}_w ||wH a_i||_F$
	- we can update $W \leftarrow AH^+$ and $H \leftarrow W^+A$
	- x^+ is the pseudo-inverse of X which is LS-optimal
- The method is called **alternating least-squares** (ALS)
- This can introduce negative values

Enforcing non-negativity in ALS

- Least-squares optimal update of *W* (or *H*) with non-negativity constraints is convex optimization problem
	- In theory in P, in practice slow, but subject to much research
- Simple approach: truncate all negative values to 0
	- Update $W \leftarrow [AH^+]_+$

The NMF-ALS algorithm

- 1. $W \leftarrow \text{random}(n, k)$
- 2. **repeat**
	- 2.1. H ← $[W^+A]_+$
	- 2.2. *W* ← $[AH^+]_+$
- 3. **until** convergence

When has there been enough convergence?

• When the error doesn't change too much

•
$$
||A - W^{(k)}H^{(k)}||_F - ||A - W^{(k+1)}H^{(k+1)}||_F \leq \epsilon
$$

- After some number of maximum iterations has been achieved
- Usually, whichever of these two happens first

Gradient descent

• We can compute the gradient of the error function (with one factor matrix fixed)

•
$$
f(H) = \frac{1}{2} ||A - WH||_F^2 = \frac{1}{2} \sum_i ||a_i - Wh_i||_F^2
$$

$$
\cdot \ \nabla_{\boldsymbol{H}_{ij}}f(\boldsymbol{H}) = (\boldsymbol{W}^T \boldsymbol{A})_{ij} - (\boldsymbol{W}^T \boldsymbol{W} \boldsymbol{H})_{ij}
$$

- We can move slightly towards the negative gradient
	- How much is the step size and deciding it is a big problem

The NMF gradient descent algorithm

- 1. $W \leftarrow \text{random}(n, k)$
- 2. H ← random(k, m)
- 3. **repeat**

3.1.
$$
H \leftarrow H - \varepsilon_H \frac{\partial f}{\partial H}
$$

3.2. $W \leftarrow W - \varepsilon_W \frac{\partial f}{\partial W}$

4. **until** convergence

Oblique Projected Landweber (OPL) for NMF

- OPL provides one way to select the step size
- With $H \leftarrow H \varepsilon_H \frac{\partial f}{\partial H}$ updates, the convergence radius is $2/\lambda_{\text{max}}(\boldsymbol{W}^T\boldsymbol{W})$, where λ_{max} is the largest eigenvalue *ƒ H*
	- \cdot $\lambda_{\text{max}} \leq \text{max}(\text{rows} \text{ums}(\textbf{W}^T \textbf{W}))$
- We can set the learning rates to 1/rowSums(*W^TW*) for a good convergence

The OPL algorithm for updating *H*

- $1. \mathbf{n} \leftarrow \text{diag}(1 / \text{rowsums}(\mathbf{W}^T \mathbf{W}))$
- 2. **repeat**
	- $2.1.$ $G \leftarrow W^{T}WH W^{T}A$
	- 2.2. H ← $[H nG]_+$
- 3. **until** a stopping criterion is met

(small) number of iterations OR *H* doesn't change much

Interior Point Gradient (IPG) for NMF

- In OPL, we might (temporarily) have negative values in *W* or *H*
- In **Interior Point Gradient** (IPG) algorithm, we set the step sizes so that we never update to negative

The IPG algorithm for updating H

1. **repeat until** a stopping criterion is met

1.1.
$$
G \leftarrow W^T(WH - A)
$$
 Gradient
\n1.2. $D \leftarrow H / (W^TWH)$ Scaling / and * are element-wise
\n1.3. $P \leftarrow -D * G$ Update direction
\n1.4. $\eta^* \leftarrow -\langle vec(P), vec(G)\rangle/\langle vec(WP), vec(WP)\rangle$ Best step
\n1.5. $\eta' \leftarrow max\{\eta : H + \eta P \ge 0\}$ Positive step size
\n1.6. $\eta \leftarrow min\{\tau\eta', \eta^*\}$
\n1.7. $H \leftarrow H + \eta P$ Update

Multiplicative updates

- The KKT conditions for *H* in NMF are
	- $H \ge 0$; $\nabla_H ||A WH||^2 / 2 \ge 0$
	- $H * \nabla_H ||A WH||^2 / 2 = 0$

* is element-wise product

- Substituting $\nabla_H ||A WH||^2/2 = W^TWH W^T A$ one gets $H * (W^TWH) = H * (W^TA)$
	- This gives us an update rule for *H*

The NMF multiplicative updates algorithm

- 1. $W \leftarrow \text{random}(n, k)$
- 2. H ← random(k , *m*)
- 3. **repeat**

3.1.
$$
h_{ij} \leftarrow h_{ij} \frac{(W^T A)_{ij}}{(W^T W H)_{ij} + \varepsilon}
$$

3.2. $W_{ij} \leftarrow W_{ij} \frac{(AH^T)_{ij}}{(WHH^T)_{ij} + \varepsilon}$

4. **until** convergence

Notes on multiplicative updates

- Proposed by Lee & Seung (Nature, 1999)
- Equivalent to gradient descent with dynamic step size
- Zeros in initial solutions will never turn into non-zeros; non-zeros will never turn into zeros
	- Problems if the correct solution contains zeros

Summary

- NMF can provide factorizations that are more interpretable than those given by SVD
- Harder to compute than SVD, but many different approaches
	- Or are they so different...
- In two weeks: Applications & alternations of NMF… *Stay tuned!*