
Chapter 3 
Non-Negative Matrix 

Factorization
Part 1: Introduction & computation
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Motivating NMF

2
Skillicorn chapter 8; Berry et al. (2007)

http://www.public.asu.edu/~jye02/CLASSES/Fall-2007/NOTES/aNMF-rev-06.pdf
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Reminder
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The components of the SVD  
are not very interpretable
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Non-negative factors
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Forcing the factors to be non-negative can, and often will,  
improve the interpretability of the factorization
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The definition

5
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Definition of NMF
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Given a non-negative matrix                 
and an integer k, find non-negative matrices 
                and                  such that 
 
is minimized.

1
2 kA �WHk2F

A 2 Rn⇥m+

W 2 Rn⇥k+ H 2 Rk⇥m+
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Non-negative rank

• The non-negative rank of matrix A,  
rank+(A), is the size of the smallest exact 
non-negative factorization A = WH  

• rank(A) ≤ rank+(A) ≤ min{n, m}

7
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Some comments
• NMF is not unique 

• If X is nonnegative and with nonnegative 
inverse, then WXX–1H is equivalent valid 
decomposition 

• Computing NMF (and non-negative rank) is 
NP-hard 

• This was open until 2008

8
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Example of non-
uniqueness
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NMF has no order
• The factors in NMF have no inherent order 

• The first component is no more important 
than the second is no more important… 

• NMF is not hierarchical 

• The factors of rank-(k+1) decomposition 
can be completely different to those of 
rank-k decomposition

10
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Example
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Interpreting NMF

12
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Parts-of-whole

• NMF works over anti-negative semiring  

• There is no subtraction 

• Each rank-1 component wihi explains a part 
of the whole 

• This can yield to sparse factors

13
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NMF example: faces

14

Row of original

Row of reconstruction

= ×

PCA/SVD
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NMF example: faces
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Row of original

= ×

NMF
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NMF example: digits

16

A H

NMF factors correspond to patterns and background
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Some NMF applications
• Text mining (more later) 

• Bioinformatics 

• Microarray analysis 

• Mineral exploration 

• Neuroscience 

• Image understanding 

• Air pollution research 

• Weather forecasting 

• …

17
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Computing NMF

18
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General idea
• NMF is not convex, but it is biconvex  

• If W is fixed,                      is convex 

• Start from random W and repeat  

• Fix W and update H  

• Fix H and update W  

• until the error doesn’t decrease anymore

19

1
2 kA �WHk2F
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Notes on the general idea
• How to create a good random starting point? 

• Is the algorithm robust to initial solutions? 

• How to update W and H? 

• When (and how quickly) has the process 
converged? 

• Fixed number of iterations? Minimum change 
in error?

20
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Alternating least squares

• Without the non-negativity constraint, this is the 
standard least-squares: 

• wi ← argminw ||wH – ai||F 

• we can update W ← AH+ and H ← W+A  

• X+ is the pseudo-inverse of X which is LS-optimal 

• The method is called alternating least-squares (ALS) 

• This can introduce negative values

21
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Enforcing non-negativity 
in ALS

• Least-squares optimal update of W (or H) with 
non-negativity constraints is convex optimization 
problem 

• In theory in P, in practice slow, but subject to 
much research 

• Simple approach: truncate all negative values to 0 

• Update W ← [AH+]+

22
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The NMF-ALS algorithm

1. W ← random(n, k) 

2. repeat  

2.1. H ← [W+A]+  

2.2. W ← [AH+]+  

3. until convergence

23
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When has there been 
enough convergence?

• When the error doesn’t change too much 

• ||A – W(k)H(k)||F – ||A – W(k+1)H(k+1)||F ≤ ε  

• After some number of maximum iterations 
has been achieved 

• Usually, whichever of these two happens first

24
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Gradient descent
• We can compute the gradient of the error function 

(with one factor matrix fixed) 

•   

•   

• We can move slightly towards the negative gradient 

• How much is the step size and deciding it is a big 
problem

25

ƒ (H) = 1
2 kA �WHk2F =

1
2
P

� k�� �Wh�k2F
�H�j ƒ (H) = (W

TA)�j � (WTWH)�j
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The NMF gradient descent 
algorithm

1. W ← random(n, k) 

2. H ← random(k, m) 

3. repeat  

3.1.   

3.2.   

4. until convergence

26

H H � �H
�ƒ
�H

W  W � �W
�ƒ
�W
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Oblique Projected 
Landweber (OPL) for NMF

• OPL provides one way to select the step size 

• With                        updates, the convergence 
radius is 2/λmax(WTW), where λmax is the 
largest eigenvalue 

• λmax ≤ max(rowSums(WTW)) 

• We can set the learning rates to  
1/rowSums(WTW) for a good convergence

27

H H � �H
�ƒ
�H
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The OPL algorithm for 
updating H

1. η ← diag(1 / rowSums(WTW)) 

2. repeat  

2.1. G ← WTWH – WTA 

2.2. H ← [H – ηG]+  

3. until a stopping criterion is met

28

(small) number of 
iterations  

OR  
H doesn’t change much
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Interior Point Gradient 
(IPG) for NMF

• In OPL, we might (temporarily) have negative 
values in W or H  

• In Interior Point Gradient (IPG) algorithm, 
we set the step sizes so that we never update 
to negative

29
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The IPG algorithm for 
updating H

1. repeat until a stopping criterion is met 

1.1. G ← W
T
(WH – A) 

1.2. D ← H / (W
T
WH) 

1.3. P ← –D * G  

1.4. η* ← – ⟨vec(P), vec(G)⟩/⟨vec(WP), vec(WP)⟩ 

1.5. η’ ← max{η : H + ηP ≥ 0} 

1.6. η ← min{τη’, η*}  

1.7. H ← H + ηP 

30

Gradient

Scaling

Update direction

Best step 
size

Positive step size

Update

/ and * are element-wise
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Multiplicative updates
• The KKT conditions for H in NMF are 

• H ≥ 0; ∇H||A – WH||2/2 ≥ 0 

• H * ∇H||A – WH||2/2 = 0 

• Substituting ∇H||A – WH||2/2 = WTWH – WTA 
one gets H * (WTWH) = H * (WTA) 

• This gives us an update rule for H 

31

* is element-wise product
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The NMF multiplicative 
updates algorithm

1. W ← random(n, k) 

2. H ← random(k, m) 

3. repeat  

3.1.    

3.2.    

4. until convergence

32

h�j  h�j
(WTA)�j

(WTWH)�j+�
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(AHT )�j
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Notes on multiplicative 
updates

• Proposed by Lee & Seung (Nature, 1999) 

• Equivalent to gradient descent with dynamic 
step size 

• Zeros in initial solutions will never turn into 
non-zeros; non-zeros will never turn into zeros 

• Problems if the correct solution contains 
zeros

33
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Summary
• NMF can provide factorizations that are more 

interpretable than those given by SVD 

• Harder to compute than SVD, but many 
different approaches 

• Or are they so different… 

• In two weeks: Applications & alternations of 
NMF… Stay tuned! 
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