Chapter 3
Non-Negative Matrix

Factorization

Part 1: Introduction & computation
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Motivating NMF

Skillicorn chapter 8; Berry et al. (2007)
DMM, summer 2017 Pauli Miettinen


http://www.public.asu.edu/~jye02/CLASSES/Fall-2007/NOTES/aNMF-rev-06.pdf
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The components of the SVD

are not very interpretable




Non-negative factors

A W W:H; H W:H
1 1 1 1 1 1 1 1 1 1|1 0 0 0 0 0
0 1 0 1 0 — 0 0 0 0 0o 0 p | O 1 0 1 0
0 1 0 1 0 0 0 0 0 0 0 1 0 1 0

Forcing the factors to be non-negative can, and often will,
improve the interpretability of the factorization
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The definition
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Definition of NMF

Given a non-negative matrix A € R7*™
and an integer k, find non-negative matrices

W < [R'l"k and He Ri"m such that

1 2
La—wH)?

IS Minimized.
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Non-negative rank

* The non-negative rank of matrix A,
rank.(A), Is the size of the smallest exact

non-negative factorization A = WH

* rank(A) < rank+(A) < min{n, m}
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Some commments

* NMF Is not unique

* If X Is nonnegative and with nonnegative
inverse, then WXX1H is equivalent valid
decomposition

» Computing NMF (and non-negative rank) is
NP-hard

* This was open until 2008
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Example of non-
unigueness
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NMF has no order

 The factors in NMF have no inherent order

* The first component is no more important
than the second is no more important...

* NMF is not hierarchical

» The factors of rank-(k+1) decomposition
can be completely different to those of
rank-k decomposition
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Example

0 1 0 1 0 ~ 0.5
0 1 0 1 0 0.5
1 0 1 1 1 1 1
— 0 1 0 1 0 1 0
0 1
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Interpreting NMF

MMMMMMMMMMMMMM



Parts-of-whole

* NMF works over anti-negative semiring
- There is no subtraction

* Each rank-1 component w;h; explains a part
of the whole

* This can yield to sparse factors
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faces

NMF example

Row of original

Row of reconstruction
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NMF example

Row of original
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NMF example: digits
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Some NMF applications

* Text mining (more later)
- Bioinformatics

- Microarray analysis

- Mineral exploration

- Neuroscience

- Image understanding

- Air pollution research

- Weather forecasting
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(c) Ten estimated components by using Fast-HALS (d) PSNR using Beta HALS for various values of

Figure 4.8 Illustration for (a) benchmark used in large-scale experiments with 10 nonnegative sources;
(b) Typical 1000 mixtures; (c) Ten estimated components by using FAST HALS NMF from the observations
matrix Y of dimension 1000 x 1000. (d) Performance expressed via the PSNR using the Beta HALS NMF
algorithm for $=0.5, 1, 1.5, 2 and 3.
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Computing NMF
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General idea

* NMF is not convex, but it is biconvex
+ If W is fixed, 5 ||[A — WH]||Z is convex
» Start from random W and repeat
* Fix W and update H
* Fix H and update W

* until the error doesn’t decrease anymore
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Notes on the general idea

- How to create a good random starting point?

* |s the algorithm robust to initial solutions?
* How to update W and H?

* When (and how quickly) has the process
converged?

* Fixed number of iterations? Minimum change

N error?

DMM, summer 2017 Pauli Miettinen

20



Alternating least squares

- Without the non-negativity constraint, this is the
standard least-squares:

* w; < argmin,, ||[wH - ajl|r
. we can update W « AH and H « W'A
+ X" is the pseudo-inverse of X which is LS-optimal

* The method is called alternating least-squares (ALS)

» This can introduce negative values
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Enforcing non-negativity
in ALS

* Least-squares optimal update of W (or H) with
non-negativity constraints is convex optimization

problem

- In theory In P, in practice slow, but subject to

much research

- Simple approach: truncate all negative values to O

- Update W « [AH "],
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The NMF-ALS algorithm

1. W < random(n, k)
2. repeat
2.1. H< [WTA]+
2.2. W« [AH*].

3. until convergence
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When has there been
enough convergence?

* When the error doesn’t change too much
. HA _ W(k)H(k)HF _ HA _ W(k+1)H(l<+1)HF < €

« After some number of maximum iterations
has been achieved

- Usually, whichever of these two happens first
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Gradient descent

- We can compute the gradient of the error function
(with one factor matrix fixed)

f(H)=3|A—WH|?=3Ylla;— Wh|?
. VHUf(H) — (WTA)U— (WTWH)U
- We can move slightly towards the negative gradient

- How much Is the step size and deciding it is a big
problem
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The NMF gradient descent
algorithm

1. W < random(n, k)

2. H < random(k, m)
3. repeat
3.1. H—H—ep
3.2. W — W —epw
4. until convergence
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Oblique Projected
Landweber (OPL) for NMF

* OPL provides one way to select the step size

* With H — H— €55 S updates, the convergence

radius is Z/Amax(WTW), where Amax is the
largest eigenvalue

* Amax < Max(rowSums(W'W))

* We can set the learning rates to

1/rowSums(W'W) for a good convergence
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The OPL algorithm for
updating H

1. n « diag(l / rowSums(W'W))
2. repeat
2.1. G-« W WH-W'A

(small) number of
Iiterations

3. until a stopping criterion is met s

H doesn’'t change much

DMM, summer 2017 Pauli Miettinen



Interior Point Gradient
(IPG) for NMF

* In OPL, we might (temporarily) have negative

values in Wor H

* In Interior Point Gradient (IPG) algorithm,
we set the step sizes so that we never update
to negative

DMM, summer 2017 Pauli Miettinen 29



The IPG algorithm for
updating H

1. repeat until a stopping criterion is met

T

1.1. G« W (WH - A)

T :
1.2. D« H/ (W WH) Scaling / and * are element-wise

1.3. P« -D*@G Update direction

Best step
1.4. n* « - ({vec(P), vec(G))/{vec(WP), vec(WP))

size
1.5. n < max{n:H + NP = 0} B EEVERSE b

1.6. n « min{tn’, n*}
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Multiplicative updates

* The KKT conditions for H in NMF are

* H=0; Vu||A - WHI||?/2 =0

* H* Va||A - WHI?/2 = 0

. Substituting Vu||A - WH|[?/2 = WWH - WA
one gets H* (W'WH) = H * (W'A)

* This gives us an update rule for H
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The NMF multiplicative
updates algorithm

1. W < random(n, k)

2. H <« random(k, m)

3. repeat
e h. (WTA);
3.1. hj hU(WTWH)[j+E
(AH");

3.2. Wi

(_ W..
Y (WHH");+¢

4. until convergence
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Notes on multiplicative
updates
* Proposed by Lee & Seung (Nature, 1999)

» Equivalent to gradient descent with dynamic

step size

« Zeros In Initial solutions will never turn into

non-zeros: non-zeros will never turn into zeros

* Problems if the correct solution contains

2eros
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Summary

- NMF can provide factorizations that are more
interpretable than those given by SVD

- Harder to compute than SVD, but many
different approaches

* Or are they so different...

* In two weeks: Applications & alternations of
NMF... Stay tuned!
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