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Geometry of NMF
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Sparsity in NMF

4
Skillicorn chapter 8; Berry et al. (2007)

http://www.public.asu.edu/~jye02/CLASSES/Fall-2007/NOTES/aNMF-rev-06.pdf
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Sparsity: desiderata
• Sparse factor matrices are often preferred 

• Simpler to interpret (zeroes can be ignored) 

• Agrees with our intuition on parts of whole 

• Faster computations, less space 

• NMF is sometimes claimed to automatically yield 
sparse factors 

• In practice, this is often not the case

5
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Enforcing sparsity
• A common solution: change the target 

function to minimize 

• How to define sparsity? 

• Naïve: density(W) = 1 – nnz(W)/size(W) 

• Non-convex, non-nice to optimize directly

6

Parameters Regularizers

1
2 kA �WHk2F + � · density(W) + � · density(H)
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Frobenius regularizer

• A.k.a. Tikhonov regularizer 

• Minimize 

• Doesn’t help much with sparsity 

• Used to impose smoothness

7

1
2

Ä
kA �WHk2F + � kWk2F + � kHk2F
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ALS-NMF with Frobenius 
regularizers

• The update rules for ALS with Frobenius 
regularizer are 
 

• Uses the fact that X+ = (XTX)–1XT if X has 
full column rank (homework)

8

W  
⇥
(AHT)(HHT + ��)�1

⇤
+

H 
⇥
(WTW + ��)�1(WTA)

⇤
+
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L1 (Lasso) regularizer

• Using L1 based instead of L2 based regularizer 
helps obtaining sparse solutions 

• Larger values of α and β yield sparse 
solutions (e.g. α, β ∈ [0.01, 0.5]) 

• Still no guarantees on sparsity

9

1
2 kA �WHk2F + �

P
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ALS-NMF with Lasso
• The update rules are  
 

• 1n×k is n-by-k matrix of all 1s 

• Requires columns of W to be normalized to 
unit L1 after each update 

10

W  
⇥
(AHT � �1n⇥k)(HHT )�1

⇤
+

H 
⇥
(WTW)�1(WTA � �1k⇥m)

⇤
+

W�j  W�j/
P

�W�j
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Hoyer’s sparse NMF

• Hoyer (2004) considers the following sparsity 
function for n-dimensional vector x  
 

• sparsity(x) = 1 iff nnz(x) = 1 

• sparsity(x) = 0 iff |xi| = |xj| for all i, j 

11

Hoyer 2004

sp�rsity(�) =
p
n � k�k1 / k�k2p

n � 1

http://www.jmlr.org/papers/volume5/hoyer04a/hoyer04a.pdf
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Hoyer’s sparse NMF
• Hoyer’s algorithm obtains an NMF using 

factor matrices with user-defined level of 
sparsity 

• After every update, the columns of W and 
rows of H are updated s.t. their L2 is 
constant and L1 is set to desired level of 
sparsity

12
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Getting the desired level 
of sparsity

• Set s = x + (L1 – ∑ixi)/dim(x) and Z = {}  

• repeat 

• Set mi = L1/(dim(x) – size(Z)) for i ∉ Z and mi = 0 o/w 

• Set s = m + α(s – m) where α is s.t. ||s||2 = L2 

• If s ≥ 0, return s  

• Set Z = Z ∪ {i : si < 0} and si = 0 for all i ∈ Z  

• Set c = (∑isi – L1)/(dim(x) – size(Z)) 

• Set si = si – c for all i ∉ Z 

13

Fix L1 

Fix L2 

Are we done?

Truncate negative values  
and fix L1 again
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Other forms of NMF

14
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Normalized NMF
• Columns of W (and/or rows of H) should be normalized 

to sum to unity 

• Stability of the solution and interpretability 

• If only W (or H) is normalized, the weights can be 
pushed to the other matrix 

• To normalize both, use k-by-k diagonal Σ s.t.  
σii = ||Wi||1×||(HT)i||1  

• Normalized NMF: WΣH 

15
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Semi-orthogonal NMF
• In semi-orthogonal NMF we restrict H to row-

orthogonal:  
minimize ||A – WH||F s.t. HHT = I and W and H are 
nonnegative 

• Solutions are unique (up to permutations) 

• The problem is “equivalent” to k-means 

• In the sense that the optimal solutions have 
the same value

16
Ding et al. 2006

http://users.cis.fiu.edu/~taoli/tenure/p126-DLPH-KDD05.pdf
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Geometry of semi-
orthogonal NMF

17

The orthogonal factors  
 span a cone
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NMF and clustering
• In k-means, we minimize  

• μj is the centroid of the jth cluster Cj  

• G is n-by-k cluster assignment matrix  

• Gĳ = 1 if i ∈ Cj and 0 otherwise 

• Equivalently:  

• M is k-by-m containing the centroids as its rows

18

kA � GMk2F
Type of NMF if  

A is nonnegative!

Pk
j=1

P
�2Cj
���� � �j
��2
2 =
Pk

j=1

Pn
�=1G�j
���� � �j
��2
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Orthogonal tri-factor NMF
• We can find NMF where both W and H are 

(column/row) orthogonal 

• Often too restrictive; cannot handle different 
scales 

• In orthogonal nonnegative tri-factorization 
we add third non-negative matrix S: 
minimize ||A – WSH||F s.t. WTW = I, HHT = I, and 
all matrices are non-negative

19
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More on tri-factorization
• S does not have to be square 

• W is n-by-k, S is k-by-l, H is l-by-m  

• Different number of row and column 
factors 

• If orthogonal NMF “clusters” columns of A, 
this “bi-clusters” rows and columns 
simultaneously

20
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Computing semi-
orthogonal NMF

• If H has to be orthogonal, either 

• update as usual and set after every iteration  
H ← [HHT]–1/2H ; or 

• update  

• W is updated as usual (w/o constraints) 

• If W needs to be orthogonal, the update rules 
are changed accordingly

21

H�j  H�j

vt (WTA)�j
(WTAHTH)�j
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Computing the orthogonal 
tri-factorization

• The update rules for orthogonal tri-
factorization are 
 
 
 
 
 

22

H�j  H�j

vut
�
(WS)TA
�
�j�

(WS)TAHTH
�
�j

W�j  W�j

vt (A(SH)T )�j
(WWTA(SH)T )�j

S�j  S�j

vt (WTAHT )�j
(WTWSHHT )�j
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Other optimization 
functions

23
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Kullback–Leibler 
divergence

• The Kullback–Leibler divergence of Q from 
P, DKL(P||Q), measures the expected number 
of extra bits required to code samples from P 
when using a code optimized for Q  

• P and Q are probability distributions 

• Non-negative and non-symmetric 

24

DKL(PkQ) =
P

� P(�) ln
P(�)
Q(�)
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Generalized KL-divergence 
and matrix factorizations

• The standard KL-divergence requires P and Q 
be probability distributions (e.g. ∑i P(i) = 1) 

• The generalized KL-divergence (or  
I-divergence) removes this requirement: 

• In NMF, P = A and Q = WH : 

25

DGKL(PkQ) =
P

�

Ä
P(�) ln P(�)

Q(�) � P(�) + Q(�)
ä

DGKL(AkWH) =
P

�,j

⇣
A�j ln

A�j
(WH)�j

� A�j + (WH)�j
⌘
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KL v.s. GKL in NMF
• KL requires A to be considered as a probability 

distribution  

• ∑i,j Ai,j = 1 (or row/column normalization) 

• WH should be normalized the same way 

• GKL only requires non-negativity 

• But inherently assumes integer data 

• Looses a bit of the probability interpretation

26
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NMF for GKL
• The update rules for multiplicative GKL NMF 

algorithm are  
 
 

• The columns of W are normalized to sum to 
unity after every iteration

27

W�k  W�k

Pm
j=1(A�j /(WH)�j)HkjPm

j=1Hkj

Hkj  Hkj

Pn
�=1W�k(A�j /(WH)�j)Pn

�=1W�k
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Applications of NMF

28
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Component interpretation

• NMF’s main “sales argument” is the 
component interpretation 

• A ≈ w1h1 + w2h2 + … + wkhk  

• Each rank-1 component has “parts-of-
whole” interpretation 

• Nothing is ever removed

29
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Hand-written digits

30

Selected Applications 445

Figure 8.6 Basis images obtained with: (a) PCA, (b) NMF.

Face recognitionwithNMFhas also beendiscussedbyOkun in [79]. The experiments havebeenperformed
for the images taken from the JAFFEdatabase,6 which contains facial imageswith different facial expressions
of 10 Japanese females. The classification results obtained with the standard NMFwere not very satisfactory.
However, Local NMF [31,66,112] and Weighted NMF [45] can achieve better results.

8.2.2.2 Handwritten Digit Recognition

Another example comparing the basis vectors obtained with PCA and NMF is shown in Figure 8.7. Hand-
written digit recognition has been extensively studied in the literature. A survey of the methods for such

Figure 8.7 Basis images obtained with different methods (and the rank J) applied to handwritten digits:
(a) PCA, J = 20; (b) NMF, J = 20; (c) PCA, J = 50; (d) NMF, J = 50.

6http://www.mis.atr.co.jp/∼mlyons/jaffe.htmlCichocki et al. 2009

http://onlinelibrary.wiley.com/book/10.1002/9780470747278
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Factor interpretation

• NMF can be seen as a nonnegative mixture of 
nonnegative factors 

• The factors can capture underlying 
nonnegative phenomena 

• The nonnegative coefficients potentially 
help with the interpretation

31
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Geometric interpretation
• NMF factors are not (generally) orthogonal 

• They do not create a coordinate system 

• Span a convex cone 

• Projection to the space spanned by the factors 
can yield odd results 

• Points that are far away in the original space 
get close in the cone and vice versa

32
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Separation of various 
spectra 

• In spectroscopy imaging we often have 
multiple observations of signals over some 
spectrum 

• Observations-by-spectrum non-negative 
matrix 

• The signals constitute an additive mixture of 
“pure” signals

33
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Raman spectroscopy

34

448 Nonnegative Matrix and Tensor Factorizations

scattering) have the energy and spectral lines shifted up or down with reference to the energy of incident
photons. The shifting is very specific for each molecular structure, which can be considered as a fingerprint
by which the molecule is identified.
Due to many reasons (measurement errors, impure specimen, and background fluorescence) the observed

spectra represent a mixture of spectra for underlying consistent materials, and the aim is to extract the desired
spectra to uniquely identify the examined specimen. The mixture is assumed to be represented by the linear
model: Y ∼= AX where A is the mixing matrix and X contains the constituent Raman spectra. Each column
of A represents the concentration/abundence of the corresponding constituent material, and the respective
row vector of X represents the unknown spectrum. Both mixing coefficients and spectra are nonnegative,
and hence, the choice of NMF for this application is natural. Because of nonnegativity constraints, NMF
should outperform ICA that was successfully applied to Raman spectroscopy in [75,110,111]. Moreover,
the performance may even increase assuming only one target spectrum and the others being considered as
disturbing spectra that are completely different from the target one. Assuming the spectra are independent
an additional orthogonality constraint can be imposed to the row vectors in X [65].
An example that shows the Raman spectra of Epsomite and Demantoid is taken from [95]. Epsomite is

a water soluble hydrous magnesium sulfate mineral that is well-known as artificially created epsom salt.
Demantoid is a brilliant green mineral andradite garnet used as a gem. The Raman spectra of these minerals
observed in a bandwidth of 201 to 1200 Raman shift (cm−1) are illustrated in Figure 8.9(a) and Figure 8.9(b).

Figure 8.9 Raman spectra: (a) target spectra of Epsomite and Demantoid, (b) ten sample components of
256 mixtures, (c) estimated spectra of Epsomite and Demantoid, (d) NMF with smoothness constraints.

Ground 
truth

Observation

Estimated Estimated

Cichocki et al. 2009

http://onlinelibrary.wiley.com/book/10.1002/9780470747278
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Text mining and pLSA
• Consider a document–term matrix A  

• aĳ is the number of times term j appears in 
document i 

35

Topic modeling

Consider a document-word matrix constructed from some corpus

D̃ =

0

BBBB@

air water pollution democrat republican

doc 1 3 2 8 0 0
doc 2 1 4 12 0 0
doc 3 0 0 0 10 11
doc 4 0 0 0 8 5
doc 5 1 1 1 1 1

1

CCCCA

Documents seem to talk about two “topics”
1 Environment (with words air, water, and pollution)
2 Congress (with words democrat and republican)

Can we automatically detect topics in documents?

27 / 39

A = 

Environmet

Politics

Can we find these topics automatically?
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The idea

• Normalized A’ that sums to 1 can be 
considered as a probability distribution  
P(d, w) = A’d,w  

• Model with topics: 

36

P(d,�) =
P

k P(k)P(d | k)P(� | k)

P(� | d) =
P

z P(� | z)P(z | d)
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Generative process

• Pick a document according 
to P(d) 

• Select a topic according to 
P(z | d) 

• Select a word according to 
P(w | z)

37

IRDM  WS 2007 4-85

Aspect Model: Probabilistic LSI (pLSI)

documents d latent concepts z
(aspects)

terms w
(words)

TRADE

economic

imports

embargo

¦ � 
z

zwPdzPdwP ]|[]|[]|[
d and w 
conditionally
independent
given z
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pLSA as NMF
• In the NMF version of the probabilistic latent semantic 

analysis (pLSA) we are given 

• documents-by-terms matrix A and rank r 

• We have to find 

• n-by-r non-negative W (columns sum to unity)  

• r-by-r diagonal non-negative Σ 

• r-by-m non-negative H (rows sum to unity) 

• Minimizing DGKL(A || WΣH)

38
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Geometry of pLSA

39

PROBABILISTIC LATENT SEMANTIC ANALYSIS 183

In early stopping one does not necessarily optimize until convergence, but instead stops
updating the parameters once the performance on hold-out data is not improving. This is
a standard procedure that can be used to avoid overfitting in the context of iterative fitting
methods, EM being a special case.
Before discussing further algorithmic questions, we will study the relationship between

the proposed model and LSA in more detail.

3.3. Latent probability spaces and probabilistic latent semantic analysis

Consider the class-conditional probability mass functions P(· | zk) over the vocabularyW
which can be represented as points on theM−1 dimensional simplex of all probabilitymass
functions overW . Via its convex hull, this set of K points defines a K−1dimensional convex
region R ≡ conv(P(· | z1), . . . , P(· | zK )) on the simplex (provided they are in general
position). The modeling assumption expressed by (3) is that all conditional probabilities
P(· | di ) for 1 ≤ i ≤ N are approximated by a convex combination of the K probability
mass functions P(· | zk). The mixing weights P(zk | di ) are coordinates that uniquely define
for each document a point within the convex region R. A simple sketch of the geometry
is shown in Figure 2. This demonstrates that despite of the discreteness of the introduced
latent variables, a continuous latent space is obtained within the space of all probability
mass functions over W . Since the dimensionality of the convex region R is K − 1 as
opposed to M − 1 for the probability simplex, this can also be thought of in terms of
dimensionality reduction andR can be identified with a probabilistic latent semantic space.
Each “direction” in this space corresponds to a particular context as quantified by P(· | zk)
and each document di participates in each context with some specific fraction P(zk | di ).
Note that since the aspect model is symmetric with respect to terms and documents, by

Figure 2. Sketch of the probability simplex and a convex region spanned by class-conditional probabilities in
the aspect model.

T. Hofmann Unsupervised learning by probabilistic latent semantic analysis. 2001



DMM, summer 2017 Pauli Miettinen

pLSA example

40

Here, A is normalized How strong 
the topic is 

in the document?

How strong the 
word is in the 

topic?

Overall 
frequency

Example

pLSA factorization of example matrix

0.04

0.01

0

0

0.01

0.03

0.06

0

0

0.01

0.12

0.17

0

0

0.01

0

0

0.14

0.12

0.01

0

0

0.16

0.07

0.01

0.39

0.52

0

0

0.09

0

0

0.58

0.36

0.06

0.48

0

0

0.52

0.15

0

0.21

0

0.64

0

0

0.53

0

0.47

D ⇡ L ⌃ R

Rank r corresponds to number of topics

⌃kk corresponds to overall frequency of topic k

Ldk corresponds to contribution of document d to topic k

Rkw corresponds to frequency of word w in topic k

pLSA constraints allow for probabilistic interpretation
P(d ,w) ⇡ [L⌃R]dw =

P
k ⌃kkLdkRkw =

P
k P(k)P(d | k)P(w | k)

pLSA model imposes conditional independence constraints
! restricted space of distributions

30 / 39

air wat pol dem rep air wat pol dem rep

A W Σ H
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NMF algorithm for pLSA

• Compute W and H using GKL NMF algorithm 

• Normalize columns (rows) of W (H) and put 
the multipliers to Σ  

• Normalize Σ to sum to unity 

• Real implementations would require 
tempering to avoid over-fitting

41



DMM, summer 2017 Pauli Miettinen

pLSA example

42
IRDM  WS 2007 4-94

Experimental Results: Example

Source: Thomas Hofmann, Tutorial at ADFOCS 2004
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pLSA applications
• Topic modeling 

• Clustering documents and terms 

• Information retrieval 

• Similar to LSA/LSI 

• Generalizes better than LSA 

• But outperformed by Latent Dirichlet 
Allocation (LDA)

43
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NMF summary
• Parts-of-whole interpretation 

• Often easier/more appropriate than SVD 

• Hard to compute and non-unique 

• Local updates (multiplicative, gradient, ALS) 

• Many applications and specific variations 

• Still under very active research

44
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