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Motivation
• SVD is often hard to interpret and yields 

dense factorizations  

• NMF tries to address these problems with 
varying success 

• But if original data is sparse & easy to 
interpret, why not use it in the 
decompositions?
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The CX decomposition
• In the CX decomposition we are given a 

matrix A and a rank k, and we need to select 
k columns of A into matrix C and build 
matrix X s.t. we minimize ||A – CX||ξ  

• ξ is either F or 2  

• A.k.a. column subset selection problem 
(CSSP)
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Why CX?
• The columns of C preserve the original interpretation 

of columns of A 

• Even complex constraints are satisfied if the 
original data satisfied them 

• Feature selection 

• Selects the columns that can be used to explain 
the rest 

• Compare to the dimensionality reduction
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Alternative target function

• Building C is the hard part of CX 
decompositions 

• Given A and C, X can be computed with the 
pseudo-inverse 

• X = C+A  

• Alternative target function for CX: 
minimize ||A – CC+A||ξ = ||A – PCA||ξ 
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How to select C?
• Exhaustive: try all       subsets of columns 

• Not very scalable 

• Try to select the columns in a clever way 

• But how? 

• Sample columns w.r.t. carefully selected 
probabilities  

• Avoids deterministic worst-case scenarios
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Related idea: RRQR
• The rank-revealing QR (RRQR) factorization 

of matrix A is 
 
 
that satisfies
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CX and RRQR
• Let AΠ = QR and let Πk be the first k columns 

of Π and C = AΠk some k columns of A  

• Now ||A – PCA||ξ = ||R22||ξ, ξ = F or 2  

• In particular ||A – PCA||2 ≤ p2(k, m)||A – Ak||2  

• Ak = UkΣkVk
T (truncated SVD) 

• CX is p2(k, m)-approximation to SVD
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Computing CX by sampling

• Let A = UΣVT be the input and its SVD and Vk 
the truncated V  

• Sample columns of A with replacement  

• Probability pj for selecting column j is   

• Sample O(k2log(1/δ)/ε2) columns and repeat 
log(1/δ) times returning the least-error sample
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Notes on sampling
• We can prove that  

           ||A – PCA||F ≤ (1 + ε)||A – Ak||F  
with probability at least 1 – δ  

• Notice that C has much more than k 
columns 

• O(k2log(1/δ)/ε2) with large hidden 
constants
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Why does sampling work?
• Intuitively, if A is of low rank (k ≪ n), A should 

have many almost-similar columns 

• If we sample many columns enough, we should 
get a representative for each set of similar 
columns  
⇒ We need to sample more columns than the  
    rank 

• Or our error depends on the rank…

12



DMM, summer 2017 Pauli Miettinen

CX with exact k 
• Construct larger-than-k CX decomposition as above for c = 

O(k log k) columns (and using rank-k truncated SVD) 

• Let Π1 be the m-by-c matrix that selects c columns s.t.  
C = AΠ1  

• Let D1 be c-by-c diagonal s.t. if jth column is selected on 
round i, (D1)ii = (cpj)

–1/2
  

• Run RRQR algorithm for Vk
T
Π1D1 to select exactly k columns 

of Vk
T
Π1D1 with matrix Π2 (c-by-k) 

• return C = AΠ1Π2   
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Notes on the exact-k CX
• Pr[||A – PCA||F ≤ Θ(k log1/2 k)||A – Ak||F] ≥ 0.8 

• The sampling phase still requires really many 
columns (high hidden constants) 

• But in practice something like c = 5k works 

• Any RRQR algorithm can be used for the second 
step 

• But the analysis depends on the chosen algorithm
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Non-Negative CX
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Motivation
• If data is non-negative, so is C  

• But X can contain negative values in standard CX 

• Non-negative X yields “parts-of-whole” 
interpretation similar to NMF 

• Selected columns are “pure” while others are 
mixtures of the pure columns 

• Non-negativity also improves sparsity
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The non-negative CX 
decomposition

• In the non-negative CX decomposition 
(NNCX) we are given a non-negative matrix A 
and a rank k, and we need to select k 
columns of A into matrix C and build a non-
negative matrix X s.t. we minimize ||A – CX||F 
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Cones and columns
• Consider the cone spanned by columns of A, 

cone(A)  

• If removing column j of A changes the cone, 
that column is extremal  

• Otherwise it is internal  

• Selecting all extremal columns to C gives us 
A = CX with nonnegative X 
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Algorithm for NNCX
• When we cannot select all extremal columns, 

we must choose which of them to select 

• Our goal is to maximize the volume of the 
convex cone 

• Finding the extremal columns is not easy 

• Given the columns, we must compute the 
non-negative projection
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The convex_cone 
algorithm

• Set R ← A  

• repeat 

• Select column c with highest norm in the residual R  

• Normalize c to unit norm 

• Solve nonnegative x that minimizes ||R – cx
T
|| 

• Set R ← R – cx
T
  

• until k columns are selected 

• Set C to the columns of A corresponding to the selected c and solve 
nonnegative X minimizing ||A – CX||F
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Solving for non-negative X 

• Given C, finding non-negative X is the same 
as with NMF 

• Convex optimization with linear constraints 

• Or truncated-to-zero pseudo-inverse
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Application: Neuroimaging
• Record brain cell activity over 

time 

• Every row is one frame 

• Assume some columns contain 
the pure glomerulus signal 

• C identifies these signals 

• X explains how the signals 
are mixed in the brain 
images
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182 7 Empirical evaluation: NNCX and Convex cone

ConvexCone SiVM

local_NNCX CX_D

human expert

algorithm

shortest distance

Fig. 7.28. Columns selected by a human expert (c = 13 glomerulus positions) and
by the respective CX algorithm (c = 30 pixels). The underlying movie is a calcium
imaging recording from the honeybee AL [59] and pixels are superimposed onto a
correlation image of the movie that was used by the expert for manual selection
(Section 4.3.1). This figure is continued in Figure 7.29.

Yellow lines indicate the distance d
r

from a manually selected pixel
pmanual

r

(green square) to the closest pixel that was selected by the respective
algorithm, palgorithm

l

(magenta triangle). The distance d
r

is computed as

d
r

:= argmin
l

���pmanual

r

� palgorithm

l

��� (7.8)

, and the p
r

are vectors of x-and y coordinates in the image plane. All pmanual

r

(green squares) are matched, but not necessarily to a unique palgorithm

l

(magenta triangle). Multiple assignments of the same palgorithm

l

to di↵erent
pmanual

r

are indicative of a ”pixel of interest” not found by the algorithm and
will result in large distances (yellow lines).

Human expert
Algorithm

Movie frame with real and  
found locations marked

Strauch 2014

http://kops.uni-konstanz.de/handle/123456789/29539
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Application cont’d

24

224 9 Applications to neuroimaging data

9.1.2 Signal selection with Convex cone

NNCX on imaging data

For processing an imaging movie from the honeybee AL, we are interested in
a factorisation of the movie matrix into factors with a temporal and factors
with a spatial interpretation (Equation 4.1 from Section 4.2): We want to
approximate the movie matrix A (with m time points and n pixels) as

Am⇥n ⇡ Tm⇥c Sc⇥n + N (9.1)

, where matrix T contains c time series and matrix S contains c images. In
addition, consider the noise term N .

Following the mixture model for imaging movies (Section 4.2.3), assume
further that S is non-negative, and that T 2 A, i.e. the pure glomerulus signals
are contained in the columns of the movie matrix and can be selected. Without
the noise term, that will be dealt with below, this is a NNCX factorisation
(Section 2.1.2) that can be solved with Convex cone (Algorithm 8).

As seen in the evaluation in Chapter 7, Convex cone succeeds in selecting
pure signal columns on (imaging) data with mixtures, which renders it a
suitable algorithm for the task. For signal selection from honeybee imaging
movies we can thus compute [T := C, S := X0+] = Convex cone(A, c).

Then, T contains c time series that can be used as input for higher-level
data analysis as demonstrated later in Section 9.3. Matrix S (see Figure 9.1 for
an example) contains information about glomerulus shape, overlap and where
in space the signals from T are located. Successful selection of pure signals into
T leads to sparse images in S (cp. Section 7.4.5) that allow for interpretation
of the time series and images as the signal and shape of glomeruli.

Further, A
c

= TS is a rank-c reconstruction of the original movie A that
can be used for visualisation purposes.

Fig. 9.1. Top-10 rows of matrix S as obtained by Convex cone (Algorithm 8)
performed on a calcium imaging movie of the honeybee AL (as in Section 7.5.1).

Top-10 rows of X from NNCX decomposition shows 
the shape and location of glomeruli
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Column-Row 
Decompositions

25
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The CUR decomposition

• In the CUR decomposition we are given 
matrix A and integers c and r, and our task is 
to select c columns of A to matrix C and r 
rows to matrix R, and build c-by-r matrix U 
minimizing ||A – CUR||F  

• Often c = r = k 
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Why CUR?

• If selecting the actual columns in CX is good, 
selecting the actual columns and rows must 
be even better 

• We find prototypical columns and rows 

• U is usually small, so if C and R are sparse, 
storing CUR takes little space

27



DMM, summer 2017 Pauli Miettinen

Solving CUR: general idea
• CUR is two-sided CX 

• Simple algorithm idea: 

• Solve CX for A and AT and solve for U given C 
and R  

• U = C+AR+  

• Better algorithms take into account the columns 
selected to C when computing R 
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Simple CUR algorithm
• Sample columns proportional to their L2-norm 

• Sample rows proportional to their L2-norm 

• Build W = A[R,C] (the sub-matrix of columns 
in R and rows in C) 

• Let W = XΣYT be an SVD of W, and set  
U ← Y(Σ+)2XT  

29
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Fancier CUR algorithm
• Find C similar to exact-k CX earlier 

• Sample O(k/ε) additional columns 

• Find Z ∈ span(C), ZTZ = I, such that  
||AT – ATZZT||F ≤ (1 + O(ε))||A – CX*||F  

• Use Z to get the probabilities for sampling O(k log k) 
rows of A and reduce that to O(k) rows 

• Sample O(k/ε) additional rows 

• Set U = X*ZTAR+ 
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Optimal X
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Comments on the Boutsidis 
& Woodruff algorithm

• Slight variations of the above algorithm 
achieve: 

• selects the smallest number of rows and 
columns for (1+ε) approximation 

• matrix U has the smallest possible rank
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CX and CUR summary
• Rows and columns of the original data should 

be interpretable 

• Also admit local constraints in the data 

• CX and CUR decompositions are forms of 
feature selection 

• Applications when we need “prototypical” 
rows and columns
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