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Motivation

* SVD is often hard to interpret and yields
dense factorizations

* NMF tries to address these problems with
varying success

- But if original data Is sparse & easy to
interpret, why not use it in the
decompositions?
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The CX decomposition

* In the CX decomposition we are given a
matrix A and a rank k, and we need to select
k columns of A into matrix C and build

matrix X s.t. we minimize ||A - CX||e

» EIs either F or 2

* A.k.a. column subset selection problem
(CSSP)
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Why CX?

- The columns of C preserve the original interpretation

of columns of A

- Even complex constraints are satisfied if the
original data satisfied them

 Feature selection

» Selects the columns that can be used to explain
the rest

- Compare to the dimensionality reduction
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Alternative target function

* Building C is the hard part of CX
decompositions

* Given A and C, X can be computed with the
pseudo-inverse

- X=C"A

- Alternative target function for CX:
minimize ||A - CCTA||ls = ||A - PcA||e
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How to select C?

- Exhaustive: try all (n,:) subsets of columns
* Not very scalable
- Try to select the columns in a clever way

 But how?

. Sample columns w.r.t. carefully selected |

|

probabilities

m—w —— A P — = - — __ I e ——

« Avolds deterministic worst-case scenarios

DMM, summer 2017 Pauli Miettinen



Related idea: RRQR

* The rank-revealing QR (RRQR) factorization
k-by-k upper-triangular w/ positive diagonal

of matrix A Is

p. o o
ATT=0R=0("¢" p?) e
permutation matr RN

that satisfies n-by-m
- kth singular value of A
ok(A)

<Omin(R11) < 0k(A)
p1(k, m)
<0/<+1(A) <Omax(R22) < pa(k, M)0is1(A)

Some polynomial on k and m
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CX and RRQR

* Let AIT = QR and let I, be the first kK columns

of [T and C = All, some k columns of A

* Now ||A - PcAllg = [|R22||g, & = F or 2

* In particular ||A - PcA||> = pa2(k, m)||A - Akl|>
» A = UlE V(' (truncated SVD)

* CX Is p2(k, m)-approximation to SVD
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Computing CX by sampling

. Let A = UZV' be the input and its SVD and Vx
the truncated V

- Sample columns of A with replacement

* Probability p; for selecting columnj is

pj = I(V])I3/k
- Sample O(k’log(1/6)/e?) columns and repeat
log(1/0) times returning the least-error sample
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Notes on sampling

* We can prove that
HA - PCAHF < (1 + E)HA —AkHF
with probability at least 1 -6

* Notice that € has much more than k

columns

- O(k?log(1/6)/e?) with large hidden
constants
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Why does sampling work?

* Intuitively, if A is of low rank (k « n), A should

have many almost-similar columns

- If we sample many columns enough, we should
get a representative for each set of similar

columns
= We need to sample more columns than the

rank

* Or our error depends on the rank...
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CX with exact k

» Construct larger-than-k CX decomposition as above for ¢ =
O(k log k) columns (and using rank-k truncated SVD)

* Let 1, be the m-by-c matrix that selects ¢ columns s.t.
C — An]_

- Let D, be c-by-c diagonal s.t. if jth column is selected on
-1/2

round /, (Dy); = (cp)) /m
T

* Run RRQR algorithm for V, MN,D, to select exactly k columns
T
of V. NM{D; with matrix I, (c-by-k)

* return C = Al I,
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Notes on the exact-k CX

+ Pr{||A - PcA||r = O(k 10g"? k)||A - Ad||F] = 0.8

- The sampling phase still requires really many
columns (high hidden constants)

- But in practice something like ¢ = 5k works

- Any RRQR algorithm can be used for the second
step

- But the analysis depends on the chosen algorithm
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Strauch 2014
DMM, summer 2017

Non-Negative CX

Pauli Miettinen
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Motivation

- |f data is non-negative, so is C
- But X can contain negative values in standard CX

- Non-negative X yields “parts-of-whole”
interpretation similar to NMF

» Selected columns are “pure” while others are
mixtures of the pure columns

* Non-negativity also improves sparsity
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The non-negative CX
decomposition

* In the non-negative CX decomposition
(NNCX) we are given a non-negative matrix A
and a rank k, and we need to select k
columns of A into matrix € and build a non-

negative matrix X s.t. we minimize ||A - CX]||F
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Geometry of NNCX

Columns in C

Columns not In C
Convex cone
Projections
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Cones and columns

* Consider the cone spanned by columns of A,

cone(A)

* If removing column j of A changes the cone,

that column iIs extremal
 Otherwise it is internal

* Selecting all extremal columns to € gives us

A = CX with nonnegative X
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Algorithm for NNCX

« When we cannot select all extremal columns,

we must choose which of them to select

* Our goal is to maximize the volume of the
convex cone

* Finding the extremal columns is not easy

* Given the columns, we must compute the
non-negative projection
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The convex cone
algorithm

- SetR<A
* repeat
* Select column ¢ with highest norm in the residual R
* Normalize ¢ to unit norm

.
* Solve nonnegative x that minimizes ||R - ¢x ||

.
e SetR«< R -c¢cx
 until kK columns are selected

* Set C to the columns of A corresponding to the selected ¢ and solve

nonnegative X minimizing ||A - CX||-
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Solving for non-negative X

* Given C, finding non-negative X is the same
as with NMF

» Convex optimization with linear constraints

* Or truncated-to-zero pseudo-inverse
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Application: Neuroimaging

Movie frame with real and
- Record brain cell activity over

found locations marked

time
- Every row is one frame

« Assume some columns contain
the pure glomerulus signal

* C identifies these signals

« X explains how the signals

are mixed in the brain !
Human expert

A Algorithm
Strauch 2014
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Application cont’d

max
. H

»
0

Top-10 rows of X from NNCX decomposition shows
the shape and location of glomeruli
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Column-Row
Decompositions

Leskovec et al. chapter 11.4; Skillicorn chapter 3.6.2
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The CUR decomposition

* In the CUR decomposition we are given
matrix A and integers ¢ and r, and our task is
to select ¢ columns of A to matrix C and r
rows to matrix R, and build c-by-r matrix U
minimizing ||A - CUR||Fr

« Oftenc=r=%k
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Why CUR?

» |f selecting the actual columns in CX is good,
selecting the actual columns and rows must
be even better

* We find prototypical columns and rows

* U is usually small, so if C and R are sparse,
storing CUR takes little space
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Solving CUR: general idea

« CUR is two-sided CX
- Simple algorithm idea:

+ Solve CX for A and A" and solve for U given C
and R

+ U=C"AR"

- Better algorithms take into account the columns

selected to € when computing R
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Simple CUR algorithm

» Sample columns proportional to their L;-norm

» Sample rows proportional to their L>-norm

* Build W = A[R,C] (the sub-matrix of columns

IN R and rows in C)

- Let W = XZY' be an SVD of W, and set
U < Y(Z+)2XT
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Fancier CUR algorithm

* FInd C similar to exact-k CX earlier

* Sample O(k/e) additional columns

* FInd Z € span(C) Z'z = I, such tha’f/

IIA"-A'ZZ'||; = (1 + O(€))||A - CX*||-

* Use Z to get the probabilities for sampling O(k log k)

rows of A and reduce that to O(k) rows
- Sample O(k/e) additional rows

. SetU = X*Z'AR"

Boutsidis & Woodruff 2014
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Comments on the Boutsidis
& Woodruff algorithm

» Slight variations of the above algorithm
achieve:

« selects the smallest number of rows and
columns for (1+€) approximation

* matrix U has the smallest possible rank
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CX and CUR summary

Rows and columns of the original data should
be interpretable

« Also admit local constraints in the data

CX and CUR decompositions are forms of
feature selection

* Applications when we need “prototypical”
rows and columns
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