Chapter 5
Independent

Component Analysis

Part I: Introduction and applications

l l I I I max planck institut
informatik



Motivation

Skillikorn chapter 7
DMM, summer 2017 Pauli Miettinen



Cocktail party problem
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Cocktail party problem

- Assume we have two microphones recording
two speakers

 We observe x1(t) and x>(t) where t is time

- Assume what the speakers say Is statistically
independent

» Real signhals are si(t) and sx(t)

* Xj(t) = aysi1(t) + azs2(t) = x = sA
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Cocktail party examples

Original signals ° | | | | | | | | |
1 /\/\/\AA/\/\/\/
_20 1 IO 2|0 3IO 4IO 5|O 6|O 7IO 8|O 9|O 100
2 I I I I I I I I I
52 Or /\/\/\/
_20 1 IO 2|0 3|O 4IO 5|0 6IO 7|0 8|O 9|O 100
Observed signals ° | | | | | | | | |
X1 o W\/\/\/J\/\
_50 1 I0 2|O 3|0 4|0 5|0 6IO 7IO 8IO 9|O 100
2 I I I I I I I I I
_2 | | | | | | | | |
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https://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf

Cocktalil party question

* Problem: can we reconstruct the original
sighal and mixing coefficients knowing only
the mixed signals?

* |l.e. can we build A and s knowing only x?
* If we know x and A, the problem is easy

 But how to find A?
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The Definition

MMMMMMMMMMMMMM



ICA definition

* Setting. Let x;eR, j=1,...,n be observed
random variables. Assume there exists n
latent random variables s; € R and latent
coefficients a; such that x; = >, ajs; for all J.

* x = SA and for T observations, X = SA

where X and S have T rows

* Problem. Find A and s given x
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ICA assumptions
(Important slide!)

* Original signals s; are mutually statistically

independent

* At most one original signal s; is normally
distributed

- The mixing matrix A is square and invertible

- This Is not necessary but simplifies the
theory
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ICA Is identifiable

- Under the above assumptions, we can

estimate A and s up to
 signs and scales of components
» ordering of components
* In many applications this is good enough

- And we can impose extra constraints for
better stability
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Constraints

» The input variables must have zero mean
* Center the columns of X iIf needed
* Often, columns of § are fixed to unit variance

* The factors are pushed to A
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Statistical independency

* Two random variables x and y are uncorrelated

T Elxy] = Elx]Ely]

- Knowing E[x] tells us nothing of E[xy]

* Recall: covariance cov(x, y) = E[xy] - E[x]E[y]

* R.Wv.'s x and y are statistically independent if
for any transformation f; and £

E[f1(x)f2(y)] = E[f1(x)]E[f2(y)]
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Example of independency

» Let x and y be s.t. Prl(x, y) = (a, b)] = 1/4 for
(a, b) € {(0,1), (0,-1), (1,0), (-1,0)}

» cov(x, y) = E[xy] - E[x]JE[ly] =0-0-0=0
- Let x> x?and y b y?

- E[x°y?] - E[x*]E[y?] = 0 - 0.5-0.5 = -0.25
= X and y are uncorrelated but not

iIndependent
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Independency is strong

« |IBAN account numbers and account holder’s
ability to pay bills are probably uncorrelated

Saldo: 99 999€

s2E10 1234 1234 1234 1234 12

BLZ

» But they might still be dependent

* First 8 numbers (after DExx) are the bank
and branch identifier
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Whitening the signal

* Whitening is a transformation of random
variables x; to new variables y; s.t.
Elyiyil = 0if i = jand E[yyi] = 1

 Zero mean is assumed
* Thus, y; are uncorrelated with unit variance

* Compare to z-scores
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Computing the whitening

» Decorrelation can be computed in many ways

- ZCA whitening, Cholesky whitening, PCA
whitening

« We will use the SVD

e Let X have x; as its columns and observations
as its rows and let X = ULV’ be its SVD

* Columns of U give the whitened variables
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ICA and SVD

* SVD (or PCA) cannot solve ICA

- Essentially: they find uncorrelated but not
necessarily independent components

- Whitening gives us XVE ' = SAVEZ ! = SB
* B is new mixing matrix

* Whitening is a standard pre-processing
technique in ICA
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Why Gaussians are
forbidden?

- Let s; and s, be original independent components
whose joint distribution is Gaussian

r 2 2 )
1 51+S2 1

2

\ y,

- Let A be orthogonal

- X = SA is Gaussian with covariance matrix equal

2
to identity and p(X1,X2) = 2_171 exp{ I|52|I }

* No A in the pdf, the original and mixed
distributions are identical

DMM, summer 2017 Pauli Miettinen

18



More on Gaussians

- Two uncorrelated Gaussians are necessarily
independent

« With Gaussian distributions, we loose the
strength of the independency

- Equivalently, the joint distribution of independent
Gaussians is rotationally invariant

 But we can do ICA with at most one Gaussian
distribution
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ICA and other matrix
factorizations

- ICA does not reduce the rank of the matrix
» But we can apply the whitening first
* ICA does not have noise in the model|
* Some components express noise (c.f. SVD)

* Noise Is often Gaussian, and hence, If one
factor is Gaussian, it is considered the noise
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Interpreting an ICA
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Factor interpretation

- Most natural interpretation in many applications
* Columns of S give the independent components
- People in cocktail party

- Rows of A explain how the components are

mixed

* Placement of the microphones
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Geometric interpretation

* Independent components are not (necessarily)

orthogonal
- They are not axes, per se

 We can still treat the columns of A as coordinates

In some space and plot the first two rows (say)

- But two points that are close in the plot might

not be close In reality
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Component interpretation

« The rank-1 components can be studied to
understand how the columns of § are used to
create the data

- But their ordering is not fixed

* If one column has Gaussian histogram, it can be
considered to be noise

* Columns of § can be ordered based on how non-
Gaussian they are (more on that next week)
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Applications of ICA
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Blind source separation
from ECG data

» Electrocardiograms (ECG) have many types
of noise and artefacts

« Electrode movement, muscle movement,
etc.

» Might confuse the interpretation

* |CA can be used to clean the data

He, Clifford & Tarassenko 2006
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ECG example #1

(a) Original ECG
e i e o B B e e e e (R s e
0 1 2 3 4 5 3 7 8 9 10
(b) ICA components
SIS VIO U AR S N5 O N Y
A o
NoOige —> 3 brssiasspsapbmontinliped i ons ot Whghiglpieosso
0 1 2 3 4 5 3 7 8 9 10
(c) Corrected ECG
2 peedeod bl Ly
T A i e e o o e N
0

—_
)
(]
I
o

He, Clifford & Tarassenko 2006
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ECG example #2

(a) Original ECG
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Detecting suspicious
messages

« Assume an inmate tries to communicate with criminals outside the
prison

- His communication is statistically monitored and he wants to “fly
under the radar”

* No encryption and no “hot” terms
- Plan: replace hot terms with random terms

- “Put the file inside the cake” ~ “Put the asparagus inside the

cake”

- These discussions can be identified as they have anomalous
term frequencies

Skillicorn chapter 7.5.1
DMM, summer 2017 Pauli Miettinen

30



Suspicious message
example #1

Scatterplot of first three rows of A
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Figure 7.1. 3-dimensional plot from an ICA of messages with cor-
related unusual word use. The messages of interest are circled.

ICA finds messages with correlated unusual word use

Skillicorn chapter 7.5.1
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Suspicious message
example #2

Scatterplot of first three rows of A
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Figure 7.2. 3-dimensional plot from an ICA of messages with cor-
related ordinary word use. The messages of interest are circled.

ICA doesn’t identify messages with usual word use

Skillicorn chapter 7.5.1
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Suspicious message
example #3

Scatterplot of first three rows of A
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Figure 7.3. 3-dimensional plot from an ICA of messages with un-
usual word use. The messages of interest are circled.

ICA doesn’t identify messages with uncorrelated unusual word use

Skillicorn chapter 7.5.1
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Direction of causality

« Assume we observe x1 and x> and we know
one Is the cause and the other the effect

« Which one is which?
» Assume linear regression model|
« Either xo = bi1x1 + e1 or x1 = bax> + e>

* |If X7 and x> are Gaussian, both models will be
equally good

Hyvarinen 2012
DMM, summer 2017 Pauli Miettinen
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Causality and ICA

- If x1 and x2 are non-Gaussian, we have
- Model 1: (%)= (4 9)(&)
. Model 2: (31)=(23)(&)
- We can solve ICA on the data and decide if

mixing matrix A is closer to model 1 or
model 2

Hyvarinen 2012
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Summary (so far)

 |CA lets us to separate independent, non-
Gaussian factors

« Will not do noise removal or dimensionality
reduction (or feature selection) per se

» Orthogonal to SVD
« Pun perhaps intended

- Next week: How to compute ICA? Stay tuned!
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