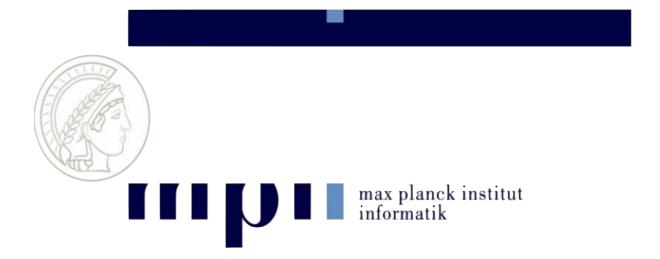
Chapter 5 Independent Component Analysis

Part I: Introduction and applications



Motivation

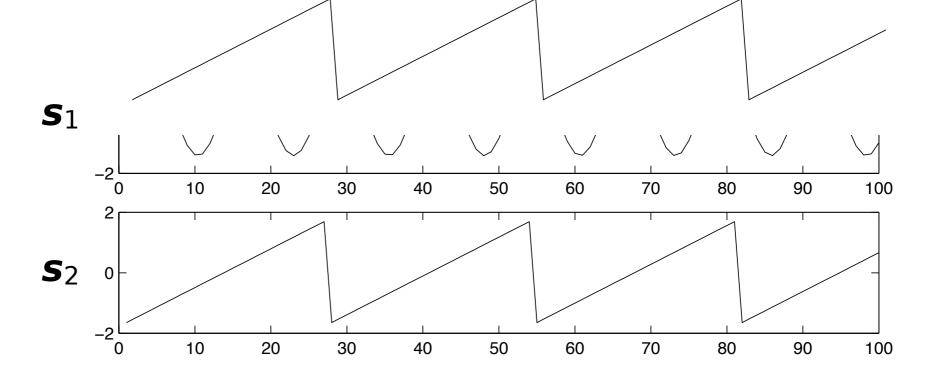
Cocktail party problem

Cocktail party problem

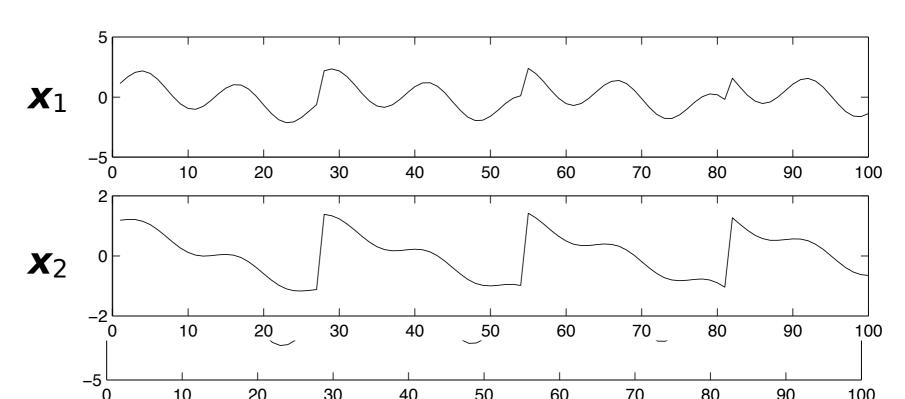
- Assume we have two microphones recording two speakers
 - We observe $x_1(t)$ and $x_2(t)$ where t is time
- Assume what the speakers say is statistically independent
 - Real signals are $s_1(t)$ and $s_2(t)$
 - $x_j(t) = a_{1j}s_1(t) + a_{2j}s_2(t) \Rightarrow x = sA$

Cocktai

Original signals



Observed signals



Cocktail party question

- Problem: can we reconstruct the original signal and mixing coefficients knowing only the mixed signals?
 - I.e. can we build A and s knowing only x?
- If we know x and A, the problem is easy
 - But how to find A?

The Definition

ICA definition

- **Setting**. Let $x_j \in \mathbb{R}$, j=1,...,n be observed random variables. Assume there exists n latent random variables $s_i \in \mathbb{R}$ and latent coefficients a_{ij} such that $x_j = \sum_i a_{ij} s_i$ for all j.
 - $\mathbf{x} = \mathbf{s}\mathbf{A}$ and for T observations, $\mathbf{X} = \mathbf{s}\mathbf{A}$ where \mathbf{X} and \mathbf{s} have T rows
- Problem. Find A and s given x

ICA assumptions (important slide!)

- Original signals s_i are mutually statistically independent
- At most one original signal s_i is normally distributed
- The mixing matrix A is square and invertible
 - This is not necessary but simplifies the theory

ICA is identifiable

- Under the above assumptions, we can estimate A and s up to
 - signs and scales of components
 - ordering of components
- In many applications this is good enough
 - And we can impose extra constraints for better stability

Constraints

- The input variables must have zero mean
 - Center the columns of X if needed
- Often, columns of S are fixed to unit variance
 - The factors are pushed to A

Statistical independency

- Two random variables x and y are uncorrelated if E[xy] = E[x]E[y] $E[\cdot] \text{ is expectation}$
 - Knowing E[x] tells us nothing of E[xy]
 - Recall: **covariance** cov(x, y) = E[xy] E[x]E[y]
- R.v.'s x and y are statistically independent if for any transformation f₁ and f₂
 E[f₁(x)f₂(y)] = E[f₁(x)]E[f₂(y)]

Example of independency

- Let x and y be s.t. Pr[(x, y) = (a, b)] = 1/4 for $(a, b) \in \{(0,1), (0,-1), (1,0), (-1,0)\}$
- cov(x, y) = E[xy] E[x]E[y] = 0 0.0 = 0
- Let $x \mapsto x^2$ and $y \mapsto y^2$
 - $E[x^2y^2] E[x^2]E[y^2] = 0 0.5 \cdot 0.5 = -0.25$ $\Rightarrow x$ and y are uncorrelated but not independent

Independency is strong

 IBAN account numbers and account holder's ability to pay bills are probably uncorrelated

```
DE19 1234 1234 1234 1234 12 Saldo: 99 999€

BLZ
```

- But they might still be dependent
 - First 8 numbers (after DExx) are the bank and branch identifier

Whitening the signal

- Whitening is a transformation of random variables x_i to new variables y_i s.t. $E[y_iy_j] = 0$ if $i \neq j$ and $E[y_iy_i] = 1$
 - Zero mean is assumed
 - Thus, y_i are uncorrelated with unit variance
 - Compare to z-scores

Computing the whitening

- Decorrelation can be computed in many ways
 - ZCA whitening, Cholesky whitening, PCA whitening
 whitening
- We will use the SVD
- Let X have x_i as its columns and observations as its rows and let $X = U\Sigma V^T$ be its SVD
 - Columns of *U* give the whitened variables

ICA and SVD

- SVD (or PCA) cannot solve ICA
 - Essentially: they find uncorrelated but not necessarily independent components
- Whitening gives us $XV\Sigma^{-1} = SAV\Sigma^{-1} = SB$
 - **B** is new mixing matrix
 - Whitening is a standard pre-processing technique in ICA

Why Gaussians are forbidden?

• Let s_1 and s_2 be original independent components whose joint distribution is Gaussian

$$p(s_1, s_2) = \frac{1}{2\pi} \exp\left\{-\frac{s_1^2 + s_2^2}{2}\right\} = \frac{1}{2\pi} \exp\left\{-\frac{\|\mathbf{s}\|^2}{2}\right\}$$

- Let A be orthogonal
 - $\mathbf{x} = \mathbf{s}\mathbf{A}$ is Gaussian with covariance matrix equal to identity and $p(x_1, x_2) = \frac{1}{2\pi} \exp\left\{-\frac{\|\mathbf{s}\|^2}{2}\right\}$
 - No A in the pdf, the original and mixed distributions are identical

More on Gaussians

- Two uncorrelated Gaussians are necessarily independent
 - With Gaussian distributions, we loose the strength of the independency
 - Equivalently, the joint distribution of independent Gaussians is rotationally invariant
- But we can do ICA with at most one Gaussian distribution

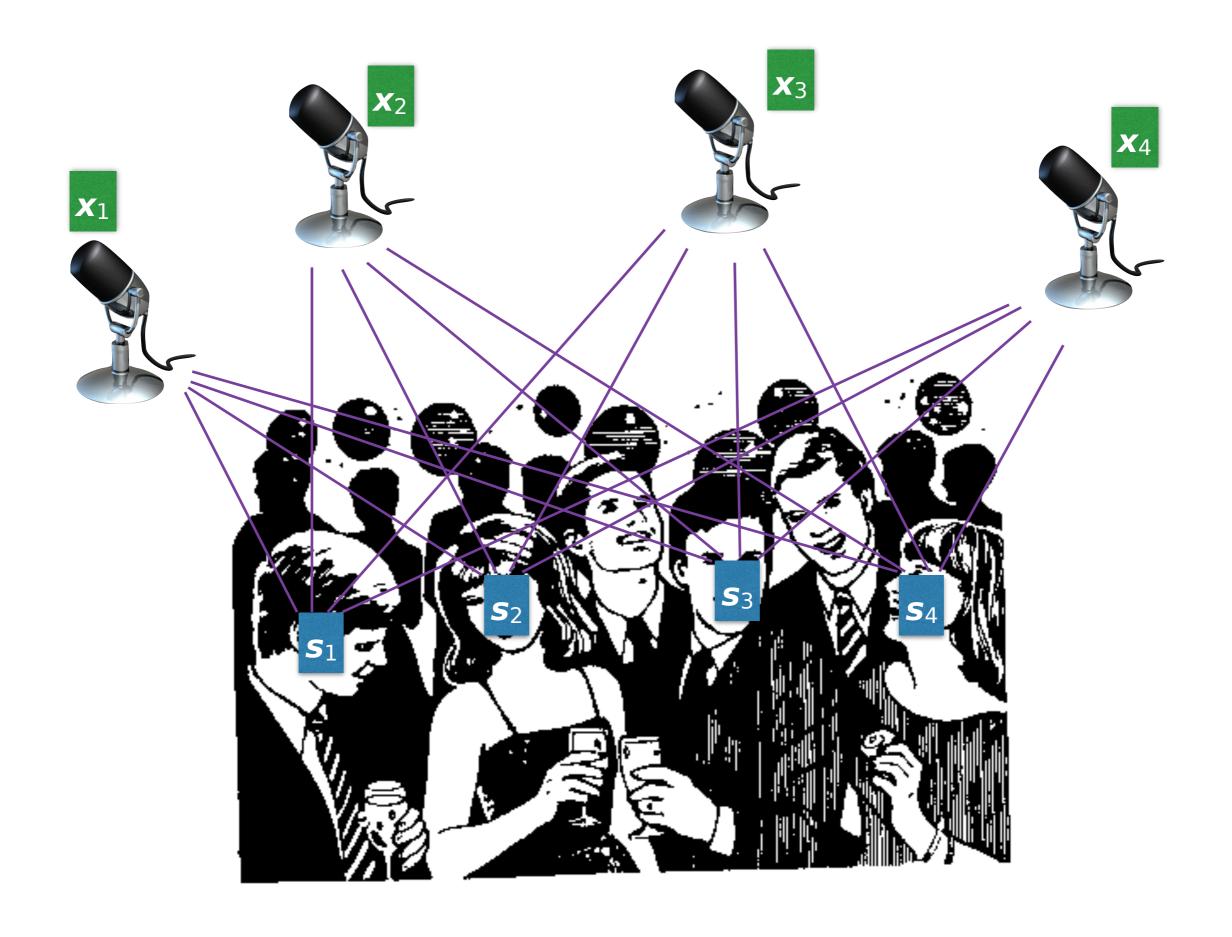
ICA and other matrix factorizations

- ICA does not reduce the rank of the matrix
 - But we can apply the whitening first
- ICA does not have noise in the model
 - Some components express noise (c.f. SVD)
 - Noise is often Gaussian, and hence, if one factor is Gaussian, it is considered the noise

Interpreting an ICA

Factor interpretation

- Most natural interpretation in many applications
- Columns of S give the independent components
 - People in cocktail party
- Rows of **A** explain how the components are mixed
 - Placement of the microphones



Geometric interpretation

- Independent components are not (necessarily) orthogonal
 - They are not axes, per se
- We can still treat the columns of A as coordinates in some space and plot the first two rows (say)
 - But two points that are close in the plot might not be close in reality

Component interpretation

- The rank-1 components can be studied to understand how the columns of S are used to create the data
 - But their ordering is not fixed
- If one column has Gaussian histogram, it can be considered to be noise
 - Columns of S can be ordered based on how non-Gaussian they are (more on that next week)

Applications of ICA

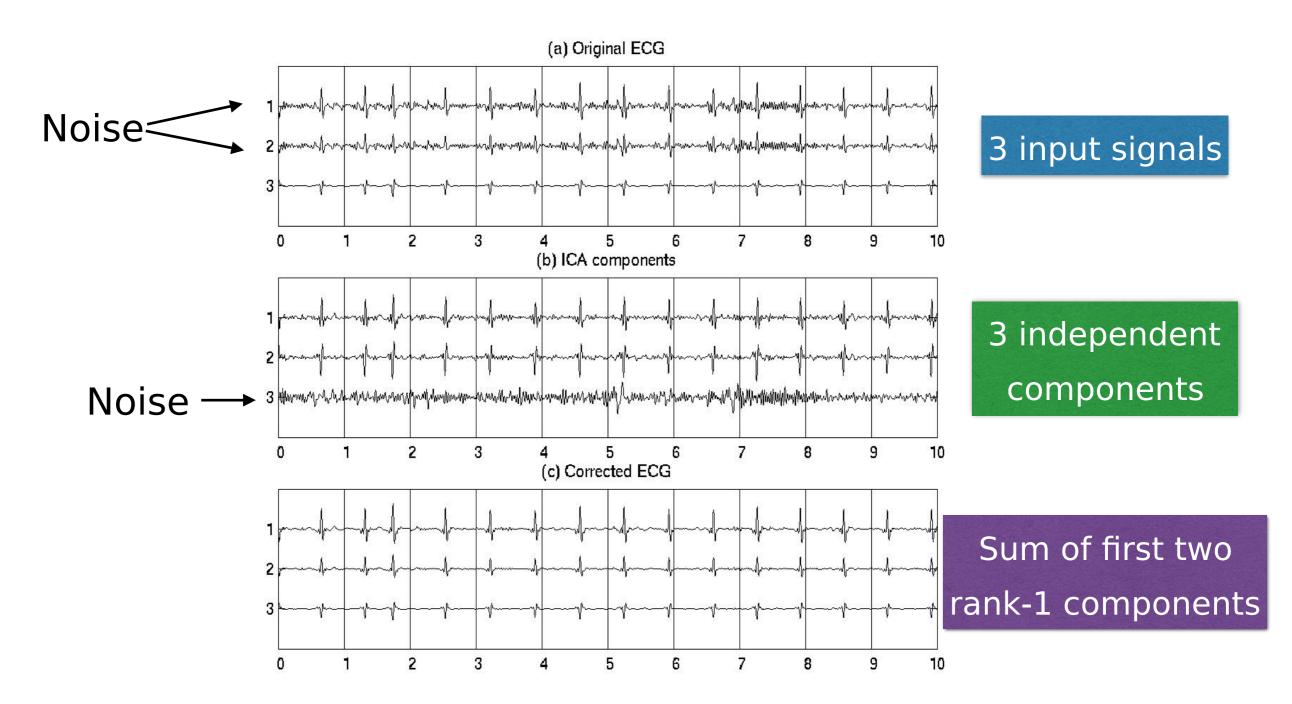
Blind source separation from ECG data

- Electrocardiograms (ECG) have many types of noise and artefacts
 - Electrode movement, muscle movement, etc.
 - Might confuse the interpretation
- ICA can be used to clean the data

He. Clifford & Tarassenko 2006

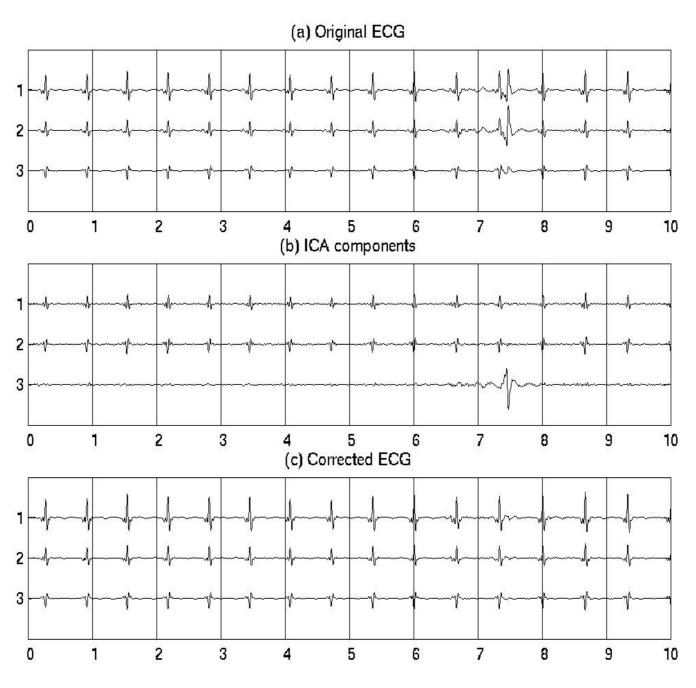
27

ECG example #1



He, Clifford & Tarassenko 2006

ECG example #2



29

Detecting suspicious messages

- Assume an inmate tries to communicate with criminals outside the prison
 - His communication is statistically monitored and he wants to "fly under the radar"
 - No encryption and no "hot" terms
- Plan: replace hot terms with random terms
 - "Put the file inside the cake" \rightarrow "Put the asparagus inside the cake"
 - These discussions can be identified as they have anomalous term frequencies

Suspicious message example #1

Scatterplot of first three rows of **A**

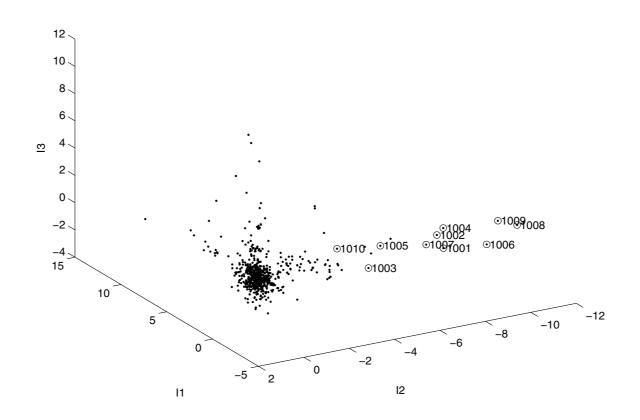


Figure 7.1. 3-dimensional plot from an ICA of messages with correlated unusual word use. The messages of interest are circled.

ICA finds messages with correlated unusual word use

Su

Ige

example #2

Scatterplot of first three rows of **A**

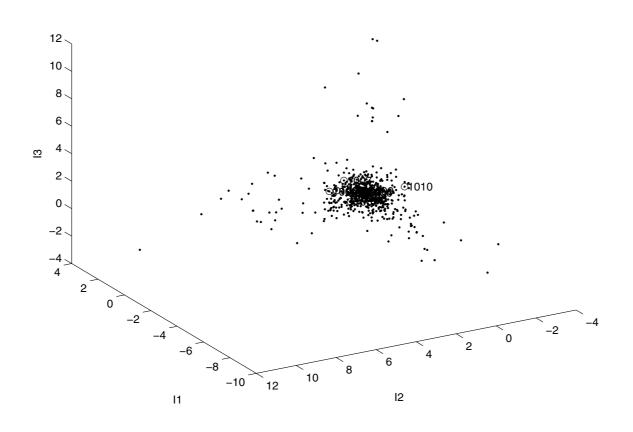


Figure 7.2. 3-dimensional plot from an ICA of messages with correlated ordinary word use. The messages of interest are circled.

ICA doesn't identify messages with usual word use

Suspicious message example #3

Scatterplot of first three rows of **A**

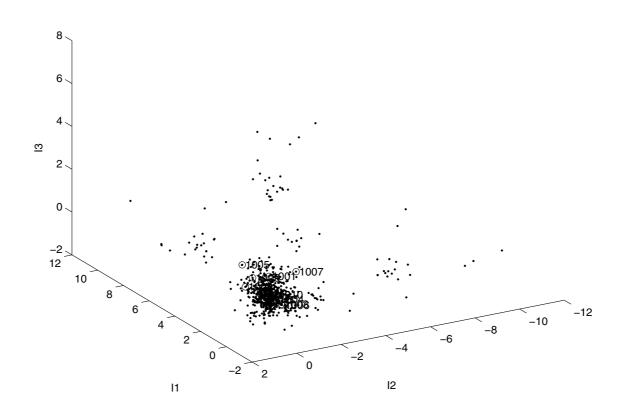


Figure 7.3. 3-dimensional plot from an ICA of messages with unusual word use. The messages of interest are circled.

ICA doesn't identify messages with uncorrelated unusual word use

Direction of causality

- Assume we observe x_1 and x_2 and we know one is the cause and the other the effect
 - Which one is which?
- Assume linear regression model
 - Either $x_2 = b_1x_1 + e_1$ or $x_1 = b_2x_2 + e_2$
- If x_1 and x_2 are Gaussian, both models will be equally good

Causality and ICA

- If x_1 and x_2 are non-Gaussian, we have
 - Model 1: $\binom{x_1}{x_2} = \binom{1}{b_1} \binom{s}{1} \binom{s}{e_1}$
 - Model 2: $\binom{x_1}{x_2} = \binom{b_2}{1} \binom{s}{0} \binom{s}{e_2}$
- We can solve ICA on the data and decide if mixing matrix A is closer to model 1 or model 2

Summary (so far)

- ICA lets us to separate independent, non-Gaussian factors
 - Will not do noise removal or dimensionality reduction (or feature selection) per se
- Orthogonal to SVD
 - Pun perhaps intended
- Next week: How to compute ICA? Stay tuned!