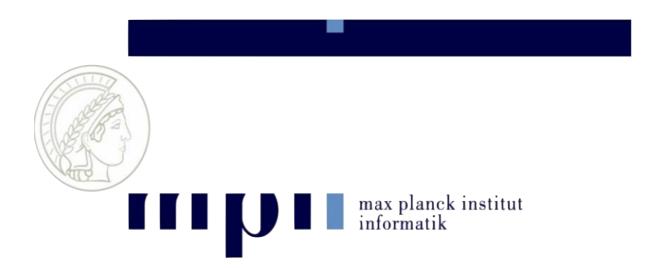
Chapter 5 Independent Component Analysis

Part II: Algorithms



ICA definition

- Given *n* observations of *m* random variables in matrix *X*, find *n* observations of *m* independent components in *S* and *m*-by-*m* invertible mixing matrix *A* s.t. *X* = *SA*
 - Components are statistically independent
 - At most one is Gaussian
 - We can assume A is orthogonal (by whitening X)

Maximal non-Gaussian

Skillikorn chapter 7; Hyvärinen & Oja 2000 DMM, summer 2017

Central limit theorem

 Average of i.i.d. variables converges to normal distribution

•
$$\sqrt{n}\left(\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)-\mu\right)\overset{d}{\rightarrow}N(0,\sigma^{2})$$
 as $n\rightarrow\infty$

- Hence $(X_1 + X_2)/2$ is "more Gaussian" than X_1 or X_2 alone
 - For i.i.d. zero-centered non-Gaussian X₁ and X₂
- Hence, we can try to find components s that are "maximally non-Gaussian"

Re-writing ICA

- Recall, in ICA $\mathbf{x} = \mathbf{s}\mathbf{A} \Leftrightarrow \mathbf{s} = \mathbf{x}\mathbf{A}^{-1}$
 - Hence, *s_j* is a linear combination of *x_i*
- Approximate $s_j \approx y = \mathbf{x} \mathbf{b}^T$ (**b** to be determined)
 - Now $y = sAb^T$ so y is a lin. comb. of s
 - Let $\boldsymbol{q}^T = \boldsymbol{A} \boldsymbol{b}^T$ and write $\boldsymbol{y} = \boldsymbol{x} \boldsymbol{b}^T = \boldsymbol{s} \boldsymbol{q}^T$

More re-writings

- Now $s_j \approx y = xb^T = sq^T$
- If \boldsymbol{b}^{T} is a column of \boldsymbol{A}^{-1} , $s_{j} = y$ and $q_{j} = 1$ and \boldsymbol{q} is 0 elsewhere
- CLT: \mathbf{sq}^{T} is least Gaussian when \mathbf{q} looks correct
 - We don't know s, so we can't vary q
 - But we can vary **b** and study $\mathbf{x}\mathbf{b}^{T}$
- Approach: find **b** s.t. xb^{T} is least Gaussian

Kurtosis

- One way to measure how Gaussian a random variable is its kurtosis
 - kurt(y) = E[(y μ)⁴] 3(E[(y μ)²])²
 - $E[y] = \mu$
 - Normalized version of the fourth central moment $E[(y \mu)^4]$
- If $y \sim N(\mu, \sigma^2)$, kurt(y) = 0, most other distributions have non-zero kurtosis (positive or negative)

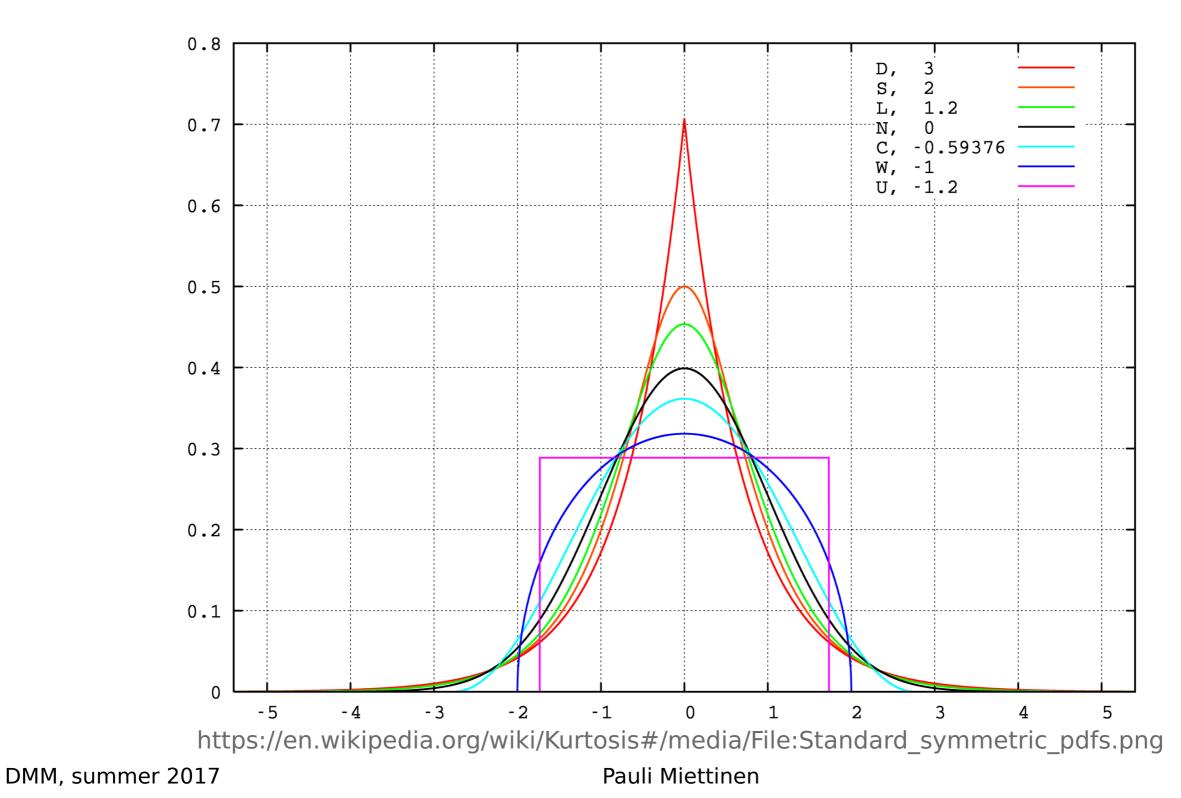
Computing with kurtosis

- If x and y are independent random variables:
 - kurt(x + y) = kurt(x) + kurt(y)
 - Homework
- If α is a constant:
 - kurt(αx) = α^4 kurt(x)
 - $E[(\alpha x)^4] 3(E[(\alpha x)^2])^2 = \alpha^4 E[x^4] \alpha^4 3(E[x^2])^2$

Sub- and super-Gaussian distributions

- Distributions with negative kurtosis are sub-Gaussian (or platykurtic)
 - Flatter than Gaussian
- Distributions with positive kurtosis are super-Gaussian (or leptokurtic)
 - Spikier than Gaussian

Examples



Negentropy

- Another measure of non-Gaussianity
- Entropy of discrete r.v. X is $H(X) = -\sum_{i} \Pr[X=i] \log \Pr[X=i]$
- The differential entropy of continuous random vector **x** with density $f(\mathbf{x})$ is $H(\mathbf{x}) = -\int f(\mathbf{x}) \log f(\mathbf{x}) d\mathbf{x}$
 - Gaussian x has the largest entropy over all random variables of equal variance
- Negentropy is $J(\mathbf{x}) = H(\mathbf{x}_{Gauss}) H(\mathbf{x})$
 - \pmb{x}_{Gauss} is a Gaussian r.v. of the same covariance matrix as \pmb{x}

Approximating negentropy

- Computing the negentropy requires estimating the (unknown) pdfs
- It can be approximated as $J(y) \approx \sum_{i} k_{i} (E[G_{i}(y)] - E[G_{i}(v)])^{2}$
 - v ~ N(0, 1), k_i are positive constants and G_i are some non-quadratic functions
 - With only one function $G(y) = y^4$, this is kurtosis
- One choice: $G_1(y) = \log(\cosh(ay))/a$, $G_2(y) = -\exp(-y^2/2)$

Back to optimization (using kurtosis)

Recall: with two components

$$y = xb^{T} = sq^{T} = q_{1}s_{1} + q_{2}s_{2}$$

- *s_i* have unit variance
- We want to find $\pm \mathbf{b} = \operatorname{argmax} |\operatorname{kurt}(\mathbf{x}\mathbf{b}^T)|$
 - We can't determine the sign
- We want *y* to be either s_1 or s_2 , hence $E[y^2] = q_1^2 + q_2^2 = 1$

Whitening, again

- Generally, $||q||^2 = 1$
- Recall: $\mathbf{Z} = \mathbf{U} = \mathbf{X}\mathbf{V}\mathbf{\Sigma}^{-1}$ is the whitened version of \mathbf{X}
- Target becomes $\pm w = \operatorname{argmax} |\operatorname{kurt}(\mathbf{z}\mathbf{w}^{\mathsf{T}})|$
- Now $\|\boldsymbol{q}\|_2^2 = (\boldsymbol{w}\boldsymbol{U}^T)(\boldsymbol{U}\boldsymbol{w}^T) = \|\boldsymbol{w}\|_2^2$
 - Hence we have constraint $||\boldsymbol{w}||^2 = 1$

Gradient-based algorithm

Gradient with kurtosis is

 $\frac{\partial |\operatorname{kurt}(\boldsymbol{z}\boldsymbol{w}^T)|}{\partial \boldsymbol{w}} = 4\operatorname{sign}(\operatorname{kurt}(\boldsymbol{z}\boldsymbol{w}^T))(E[(\boldsymbol{z}\boldsymbol{w}^T)^3\boldsymbol{z}] - 3\boldsymbol{w} \|\boldsymbol{w}\|_2^2)$

- $E[(\boldsymbol{z}\boldsymbol{w}^T)^2] = ||\boldsymbol{w}||^2$ for whitened data
- We can optimize this using standard gradient methods
 - To satisfy the constraint $||w||^2 = 1$, we divide w with its norm after every update

FastICA for one IC and kurtosis

• Noticing that $||\mathbf{w}||^2 = 1$ by constraint and taking infinite step update, we get

$$\mathbf{w} \leftarrow \mathrm{E}[(\mathbf{z}\mathbf{w}')^{3}\mathbf{z}] - 3\mathbf{w}$$

- Again set $\mathbf{w} \leftarrow \mathbf{w} / ||\mathbf{w}||$ after every update
- Expectation has naturally to be estimated
- No theoretical guarantees but works in practice

FastICA with approximations of negentropy

- Let g be the derivative of a function used to approximate the negentropy
 - $g_1(x) = G_1'(x) = \tanh(ax)$
- The general fixed-point update rule is $\boldsymbol{w} \leftarrow E[g(\boldsymbol{z}\boldsymbol{w}^T)\boldsymbol{z}] - E[g'(\boldsymbol{z}\boldsymbol{w}^T)]\boldsymbol{w}$

Multiple components

- So far we have found only one component
 - To find more, remember that vectors *w_i* are orthogonal (columns of invertible *A*)
- General idea:
 - Find one vector \boldsymbol{w}
 - Find second that is orthogonal to the first one
 - Find third that is orthogonal to the two previous ones, etc.

Symmetric orthogonalization

- We can compute **w**_is in parallel
 - Update *w_i*s independently
 - Run orthogonalization after every update step
 - $W \leftarrow (WW^T)^{-1/2}W$
 - Iterate until convergence

Maximum Likelihood

Skillikorn chapter 7; Hyvärinen & Oja 2000 DMM, summer 2017

Pauli Miettinen

Maximum-likelihood algorithms

- Idea: We are given observations X that are drawn from some parameterized family of distributions
 D(Θ)
 - The **likelihood** of **X** given Θ , $L(\Theta; \mathbf{X}) = p_D(\mathbf{X}; \Theta)$, where $p_D(\cdot; \Theta)$ is the probability density function of *D* with parameters Θ
- In maximum-likelihood estimation (MLE) we try to find Θ that maximizes the likelihood given \pmb{X}

ICA as MLE

• If $p_x(\mathbf{x})$ is the pdf of $\mathbf{x} = \mathbf{s}\mathbf{A}$, then

 $p_{x}(\boldsymbol{x}) = p_{s}(\boldsymbol{s}) |\det \boldsymbol{B}| = |\det \boldsymbol{B}| \prod_{i} p_{i}(s_{i}) = |\det \boldsymbol{B}| \prod_{i} p_{i}(\boldsymbol{x}\boldsymbol{b}_{i}^{T})$

- here **B**=**A** $^{-1}$
 - In general, if **x** is r.v. with pdf $p_x(\mathbf{x})$ and $\mathbf{y} = \mathbf{B}\mathbf{x}$, then $p_y(\mathbf{y}) = p_x(\mathbf{B}\mathbf{x})|\det \mathbf{B}|$
- For *T* observations $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T$ the log-likelihood of **B** given **X** is $\log L(\mathbf{B}; \mathbf{X}) = \sum_{t=1}^{T} \sum_{i=1}^{m} \log p_i(\mathbf{x}_t \mathbf{b}_i^T) + T \log |\det \mathbf{B}|$

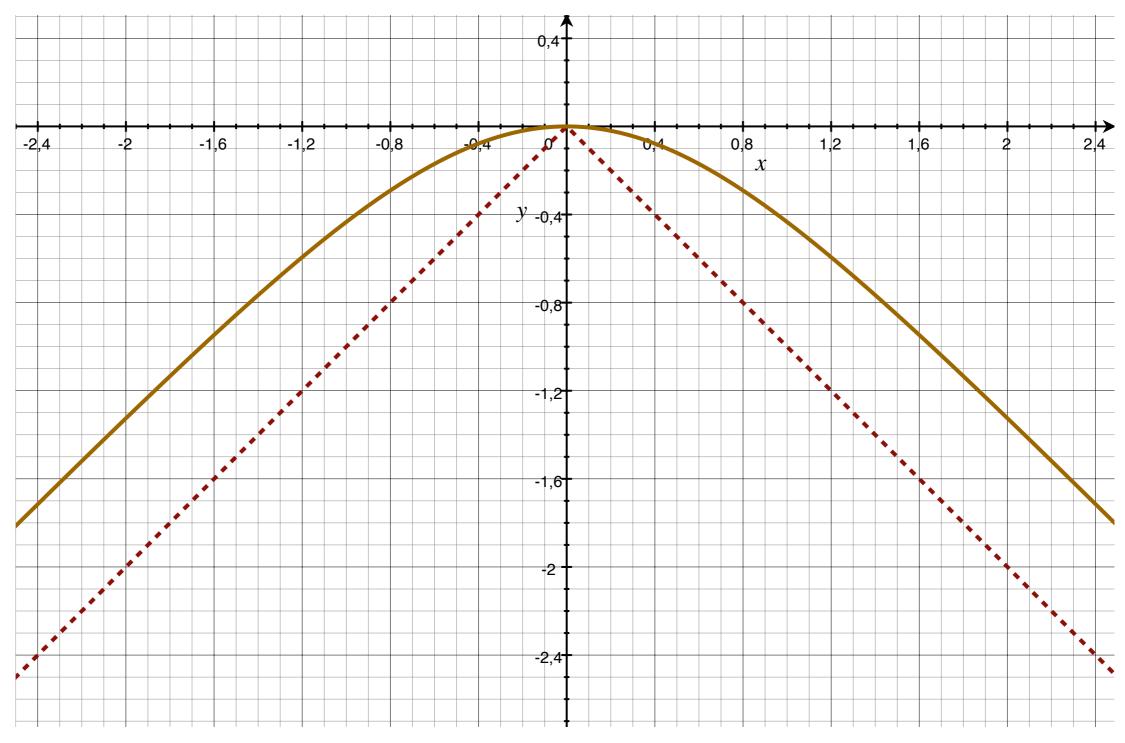
Problems with MLE

- The likelihood is expressed as a function of *B*
- But we also need to estimate the pdfs $p_i()$
 - Non-parametric problem, infinite number of different pdfs
- Very hard problem...

If we know the pdfs

- Sometimes we know the pdfs of the components
 - We only need to estimate their parameters and *B*
- Sometimes we know only that the pdfs are super-Gaussian (for example)
 - We can use $\log p_i(s_i) = -\log \cosh(s_i)$
 - Requires normalization

$-\log \cosh(x) \approx -|x|$



Pauli Miettinen

Nothing on the pdfs is known

- We might not know whether the pdfs of the components are sub- or super-Gaussian
 - It is enough to estimate which one they are!
- For super-Gaussian, $\log p_i^+(s_i) = \alpha_1 - 2\log \cosh(s_i)$

*a*_i are only needed to make these logs of pdfs – not in optimization

For sub-Gaussian,

 $\log p_i^{-}(s_i) = \alpha_2 - (s_i^{2}/2 - \log \cosh(s_i))$

Log-likelihood gradient

- The gradient is $\frac{\partial \log L}{\partial \boldsymbol{B}} = (\boldsymbol{B}^T)^{-1} + \sum_{t=1}^T \boldsymbol{g}(\boldsymbol{x}_t \boldsymbol{B}^T)^T \boldsymbol{x}_t$
 - Here $g(y) = (g_i(y_i))_{i=1}^n$ with $g_i(y_i) = (\log p_i(y_i))' = p_i'(y_i)/p_i(y_i)$

Step size

- This gives us $\boldsymbol{B} \leftarrow \boldsymbol{B} + \delta((\boldsymbol{B}^T)^{-1} + \sum_t \boldsymbol{g}(\boldsymbol{x}_t \boldsymbol{B}^T)^T \boldsymbol{x}_t)$
- Multiplying from right with $\mathbf{B}^T \mathbf{B}$ and defining $\mathbf{y}_t = \mathbf{x}_t \mathbf{B}^T$ gives $\mathbf{B} \leftarrow \mathbf{B} + \delta(\mathbf{I} + \sum_t \mathbf{g}(\mathbf{y}_t)^T \mathbf{y}_t) \mathbf{B}$
 - So-called infomax algorithm

Setting g()

- We compute $E[-tanh(s_i)s_i + (1 tanh(s_i)^2)]$
 - If positive, set $g(y) = -2 \tanh(y)$
 - If negative (or zero), set $g(y) = \tanh(y) y$
- Use current estimates of *s_i*

Putting it all together

- Start with random **B** and γ , choose learning rates δ and δ_{γ}
- Iterate until convergence
 - *y* ← *Bx* and normalize *y* to unit variance
 - $\gamma_i \leftarrow (1 \delta_{\gamma})\gamma_{i-1} + \delta_{\gamma} \mathbb{E}[-\tanh(y_i)y_i + (1 \tanh(y_i)^2)]$
 - if $\gamma_i > 0$, use super-Gaussian g; o/w sub-Gaussian g
 - $\boldsymbol{B} \leftarrow \boldsymbol{B} + \delta(\boldsymbol{I} + \sum_{t} \boldsymbol{g}(\boldsymbol{y}_{t})^{T} \boldsymbol{y}_{t})\boldsymbol{B}$

ICA summary

- ICA can recover independent source signals
 - if they are non-Gaussian
- Does not reduce rank
- Many applications, special case of blind source separation
- Standard algorithmic technique is to maximize non-Gaussianity of the recovered components

ICA literature

- Hyvärinen & Oja (2000): Independent
 Component Analysis: Algorithms and
 Applications. Neural networks 13(4), 411–430
- Hyvärinen (2013): Independent component analysis: recent advances. Phil. Trans. R. Soc. A 371:20110534