Chapter 6
Spectral Methods

Part I: Spectral clustering

l l I I I max planck institut
informatik



Roadmap

- |In (partitioning) clustering, we want to partition
the data points in clusters such that the points in
the same cluster are maximally similar and the
points in different clusters are maximally
dissimilar

* In spectral clustering, we express the similarity
structure with a graph, and model the clustering
as a multi-way cut of the similarity graph
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Background.:
Eigendecompositions
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Eigenvectors and values

+ LetA e R"
+ v e R isan eigenvector of A if Av = Av
* If Av = Av, A Is an eigenvalue associated to v

* If there are k eigenvectors vy, v,, ..., Vi S.t. Av; =

Av; for all I, then A has (algebraic) multiplicity of k

* n-by-n matrix has n eigenvectors and n
eigenvalues (counting the multiplicity)

* Some can be complex
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Spectrum of a matrix

* The characteristic polynomial of A € R"™"
IS pa(A) = det(A - Al)

* The roots of pa(A) are the eigenvalues of A
* |l.e. pa(A) = 0 & A Is an eigenvalue of A

* The collection of the eigenvalues of A is

called the spectrum of A
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Eigendecomposition

* The eigendecomposition of symmetric
A € R™is A =QAQ'

* Q is orthogonal and has the eigenvectors as
Iits columns

* A\ Is diagonal with the eigenvalues

- The symmetry of A is sufficient but not
necessary
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Properties of
eigendecomposition

- AA' = ULZV'VEU = Uz°U’
- A'A = vVEU'ULV' = vZVT
- If A = QAQ' then trace(A) = trace(A) = 3, A

* The rank of A Is the number of non-zero
eigenvalues
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Positive semidefinite
matrix

+ Matrix A € R""" is positive semidefinite if

x' Ax = 0 for any x € R”

- A is positive definite if the inequality is strict for

any non-zero x

- If A = BB' for some B € R, A is positive

semidefinite

- If A Is positive semidefinite, all its eigenvalues are
non-negative
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Graphs and
matrices

Skillicorn chapter 4
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Fundamental matrices of
graphs

- Agraph G = (V, E) can be represented by its adjacency

matrix A
*a;=1if{v;, v;} € E,o/wO0
* Or by its incidence matrix P

* pj=1if e € E starts from v;, pj =-1if ¢ € E ends In
v;, and 0 o/w

- Edges in undirected graphs can be oriented arbitrarily

* 3;;, = 0 (no self-loops)
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Similarity matrix

* The similarity matrix S of n elements is
n-by-n symmetric nonnegative matrix

» sj is the similarity between i and
* Os at diagonal

» Can be interpret as a weighted adjacency

matrix of a (complete) similarity graph
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Which similarity?

« Any distance metric (suitable for data) can be used as the
similarity measure

* sim(x, y) = M- ||x-y|| where M is the maximum distance

* Euclidean, Hamming, Jaccard, mutual information,
Hellinger, ...

- Often the similarities are scaled to emphasize high similarity
(and de-emphasize low similarity)

e Gaussian kernel is common:

Ksim(x, y) = exp{—||x—y||2/(202)}
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Sparsifying similarity
graphs
* Similarity graphs are complete

- But often we only need pairwise similarities
of quite similar elements

» To sparsify the similarity graph, we can
remove edges between dissimilar pairs

» This sets the corresponding values in the
matrix to O
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Getting non-complete
graphs

- How to decide when vertices are too dissimilar?

- In e-neighbour graphs we add an edge between two vertices
that are within distance € to each other

« Usually the resulting graph is considered unweighted as all
weights would be roughly similar

* In k-nearest neighbour graphs we connect two vertices if one
Is within the k nearest neighbours of the other

- In mutual k-nearest neighbour graph we only connect two
vertices if they're both in each other’s k nearest neighbours
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Which similarity graph?

With e-graphs choosing the parameter is hard

« No single correct answer if different clusters have different
internal similarities

k-nearest neighbours can connect points with different similarities

- But far-away high density regions become unconnected

The mutual k-nearest neighbours is somewhat in between
- Good for detecting clusters with different densities

General recommendation: start with k-NN

« Others if data supports that
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Even More Matrices

- The (weighted) adjacency matrix A has the weight of edge
(i, j) at position a;

- The degree matrix A of a graph is a diagonal n-by-n matrix
with the (weighted) degree of vertex i at position A;; = d,

* Ay =di =259

- The normalized adjacency matrix M is the adjacency
matrix where in every row / all values are divided by d,

* Every row sums up to 1

. M=A4 A
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Graph Laplacians

- The Laplacian matrix L of a graph is the adjacency matrix
subtracted from the degree matrix

(Zj;él ai,j, —di2 e+ —Qai,n \
—as 1 Z > Az, e —Qo n
L=A—A= J#
\ —0an,1 —0n,?2 e Zj;én an,;j )

* The Laplacian is symmetric and positive semi-definite
- Undirected graphs
- Has n real, non-negative, orthogonal eigenvalues

AMZA=2A3=...2A,20
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The normalized,
symmetric Laplacian

* The normalized, symmetric Laplacian matrix L’ of a
graph is defined as

( 2,j#101, a2 ai,n \
v didr v did>z + didp
az 1 2j#2 02, L az,n
A—l/ZLA—l/Z =I—A_1/2AA_1/2 — d>d1 drd> + d2dp
an,1 an,?2 . ijén An,j
\ 4 dndz 4/ dnd> + dndp )

 Also positive semi-definite

- The normalized, asymmetric Laplacian Lé7 (a.k.a random

-1
walk Laplacian) is L"=A"L
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Spectral clustering

von Luxburg 2007  Skillicorn chapter 4
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http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488%5b0%5d.pdf

Clustering as Graph Cuts

* A cut of a connected graph G = (V, E) divides the set of
vertices into two partitions S and V' \ S and removes the
edges between them

* Cut can be expressed by giving the set S
* Or by giving the cut set F= {(v, u) € E: |{v,u} n S| =1}
* Graph cut clusters graph’s vertices into two clusters

* A k-way cut cuts the graph into k disjoint set of vertices
C., Gy, ..., Cc and removes the edges between them

DMM, summer 2017 Pauli Miettinen 20



What is a good cut?

 Just any cut won't cut it

* In minimum cut the goal is to find any set of vertices
such that cutting them from the rest of the graph
requires removing the least number of edges

* Least sum of weights for weighted graphs
* The minimum cut can be found in polynomial time
 The max-flow min-cut theorem

« But minimum cut isn’t very good for clustering purposes
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What cuts would cut i1t? (1)

- We want a cut that penalizes imbalanced cluster
sizes

* In ratio cut, the goal is to minimize the ratio of the
weight of the edges in the cut set and the size of
the clusters C;

- Let W(A, B) = ZieA,jeB Wij

- w;j is the weight of edge (i, j)

RatioCut = Zi';l W(Clzé\i/l\cl-)
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What cuts would cut i1t? (2)

* The volume of a set of vertices A Is the
weight of all edges connected to A

+ VOI(A) = W(A, V) = Dica jev Wij

* |n normalized cut we measure the size of C;
not by |Ci| but by vol(C;)

NormalizedCut = Zf-;l WS/%I'(VC\zfi)

Finding optimal RatioCut or NormalizedCut is NP-hard
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Clusterings and matrices
redux

- Recall that we can express a clustering using a binary cluster
assignment matrix

* Let the /i-th column of this matrix be c;

.
* Clusters are disjointsoc; ¢; =0

T 2
- Cluster has ¢; ¢, = ||c;|| elements

- We can get the vol(C;) and W(C;, V) using ¢;’s
n n
- vol(Cy) = ZjeCi dj = Zr=1 Zszl(ci)rﬂrs(ci)s = CZ_ACL'
- W(C;, C)) = ZreCi ZseCi Ars = CZ_AC[

W(Ci, V\ C) = W(Ci, V) — W(C;, C) = €] (A— A)c,
= CZ_LC[
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Cuts using matrices

< W(C, V\C)/ -

RatioCut = Z
i=1 ‘Cl‘

L W(C, V\C) /&€

NormalizedCut = Z
= vol(C)
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Finding approximate cuts

- Re-writing the objective functions doesn’t make them any easier
- The complexity comes from the binary clustering assignments
- Relax!
* Let ¢,'s take any real value
- Relaxed RatioCut:

K clle; Koo\
=2, =Z( - ) (

i=1 =1 HClH

)= 2t

- u; = ¢j/||c;|| i.e. the unit vector in the direction of ¢;

el
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Solving the relaxed
version

* We want to minimize the function J,. over u;'s
T
- We have a constraint thatu; u; =1
» To solve, derive w.r.t. u;'s and find the roots

- Add Lagrange multipliers to incorporate the constraints:

.
uLu+ Ai(1— uu =0
au‘; lZ( )

* Hence, Lu; = \u;

* U; Is an eigenvector of L corresponding to the eigenvalue A;
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Which eigenvectors to
choose

* We know that Lu; = A\u;
T
* Hence A, = u; Lu,;

’ . . . . T ’
* As we're minimizing the sum of u; Lu,'s we should choose

the u;'s corresponding to the kK smallest eigenvalues
* They are our relaxed cluster indicators

- Note that we know that A, = 0 and that the corresponding

, _ -1/2 -1/2 -1/2 ,
eigenvectoris(n ,n ,...,n ) (the graph is connected!)

* No help on clustering...
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The Fiedler vector and
value

* The Fiedler value f of graph G = (V, E) is the second-

smallest eigenvalue A,_; of L

* The Fiedler vector is the corresponding eigenvector

 |If we want to remove minimum number of vertices s.t.
we cut the graph, we have to remove at least f vertices

* The edge boundary oU of subset U € V iIs
oU={(u,v) e E:uedlU,veU}

. 13U| = AU||V \ U|/n

\_ WU, V\ U) for unweighted graphs
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Normalized cut and choice
of Laplacians

* For normalized cut similar procedure shows that we should
select the k smallest eigenvectors of L (or L’ ) Instead of L

« Which one we should choose?

» Both ratio and normalized cut aim at minimizing intra-

cluster similarity

* But only normalized cut considers inter-cluster similarity
= Either L or L’

* The asymmetric Laplacian is better

« With symmetric one further normalization is needed
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Spectral clustering

- To do the clustering, we need to move our real-

valued eigenvectors u; to binary cluster indicator
vectors

* First, create a matrix U with u;’'s as its columns

* Optionally, normalize the rows to sum up to 1
(esp. if using L°)

* Cluster the rows of this matrix using k-means (or
any other clustering method)
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Computational complexity

- Solving the eigenvectors is O(n3) in general
or O(n?) if the similarity graph has as many
edges as vertices

- The k-means on the U matrix takes O(tnk?)

* tIs the number of iterations in k-means
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Spectral clustering
pseudo-code

Assume connected graph

Algorithm 16.1: Spectral Clustering Algorithm

SPECTRAL CLUSTERING (D, k):

Compute the similarity matrix A € R™**" N

if ratio cut then B < L

else if normalized cut then B < L?® or L

Solve Bu; = \u; fort =n,...,n—k+ 1, where A\, < Ay 1 < -+ < A1
U «+ (un Up—-1 - un—k—l—l)

Y < normalize rows of U using (16.19)

C «+ {C4,...,Ct} via K-means on Y

NN O Ok N =
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ZM Figures 16.1 and 16.4
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Is spectral clustering
optimal?

- Spectral clustering is not always a good
approximation of the graph cuts

* In cockroach graphs, spectral clustering cuts always
horizontally, when optimal is to cut vertically

* Approximation ratio of O(n)

Optimal

Spectral
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Summary

- Spectral clustering uses the linear algebra to
do a very combinatorial task

* Very deep insights between the combinatorial
structure and the spectrum of the Laplacian

* |Is not just one method, but a family of methods

- Which cut, which Laplacian, how to sparsity,
which clustering algorithm, ...
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Next week

* Last lecture
* More on spectral stuff
* Wrap-up of the course
* Check your (current) homework marks/bonus points
* Ask-me-anything
* (though | don’t promise to answer to all questions)

* Answers are more thought-out if you send them ahead

of time
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