Chapter 6 Spectral Methods

Part II: Finding planted patterns

Motivation

Assume a perfect pattern

Detail *The Creatic* Michelang

Can we find the original pattern?

Pauli Miettinen

To find *a* pattern or To find *the* pattern

That is the question

Planted patterns

- Most data mining algorithms promise to find some pattern(s)
 - Or exhaustively list all of them
- Few can promise to find the pattern, even if we're promised there's one
 - Data mining concentrates on **discovery**, not **recovery**

Planted Bicliques and Nuclear Norms

Ames & Vavasis 2011 DMM, summer 2017

Schatten norms

- The Schatten matrix norms for $p \ge 1$ are defined as $\left(\sum_{i=1}^{\min\{n,m\}} \sigma_i^p\right)^{1/p}$
 - σ_i are the singular values of $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$
- $p = 2 \Rightarrow$ Frobenius norm
- $p = \infty \Rightarrow$ operator norm
- $p = 1 \Rightarrow$ nuclear norm $||\mathbf{A}||_*$
 - Also $||\mathbf{A}||_* = tr(\mathbf{\Sigma}) = tr(\sqrt{(\mathbf{A}^T \mathbf{A})})$

Maximum clique as rank minimization

• Maximum *n*-vertex clique in graph G = (V, E)can be found with the following program

Nuclear norm relaxation

- The rank minimization problem is NP-hard
- We can relax it to nuclear norm minimization:

$$\begin{array}{ll} \min & \|\boldsymbol{X}\|_{*} \\ \text{s.t.} & \sum_{i \in V} \sum_{j \in V} x_{ij} \geq n^{2} & \leftarrow \text{ can be replaced with 1} \\ & x_{ij} = 0 & \text{if } \{i, j\} \notin E \text{ and } i \neq j \end{array}$$

- The maximum clique is a valid solution and the unique optimizer under certain conditions
 - When this is the case, we can find the clique

Adversarial case

- Assume we have a graph that contains only a clique of n nodes
 - Adversary adds up to ϵn^2 edges, $\epsilon < 1/2$

o/w there's a larger clique

- The vertices not in the clique are adjacent to at most δn vertices in the clique for some $0 < \delta < 1$ o/w the clique is enlarged
- The original clique is still the unique optimizer

Randomized case

- Assume the extra edges are added i.i.d. with probability $p \in [0, 1)$
- **Thm**. There exists an $\alpha > 0$ s.t. with $n \ge \alpha \sqrt{N}$, the planted clique is the unique optimizer with probability tending exponentially to 1 as $N \rightarrow \infty$
 - α depends on p, n is the size of the clique,
 and N is the size of the graph

Bipartite graphs and bicliques

- A biclique is a binary rank-1 submatrix of the binary bi-adjacency matrix
 - Biclique of size n-by-m can be found solving

Nuclear norm relaxation

min
$$\|X\|_*$$

s.t. $\sum_{i \in V} \sum_{j \in V} x_{ij} \ge nm$

 $x_{ij} = 0 \quad \text{if } \{i, j\} \in (U \times V) \setminus E$

- The maximum biclique is again the (unique) minimizer under certain conditions
 - Problem is, when can we show the conditions hold

Results

- Adversary can add at most O(nm) edges
 - No new vertex can touch too many vertices in the biclique
- We can add edges i.i.d. as long as the biclique is $\alpha \sqrt{N}$ for some α depending on p and the relation of n and m and |V| and |U|

Bicliques with Destructive Noise

Ramon, Miettinen & Vreeken 2013 DMM, summer 2017

Can we find the original pattern?

Pauli Miettinen

Destructive noise

- So far we've only considered the case where new edges are added
 - New 1s in to the (bi-)adjacency matrix
 - We observe $\mathbf{A}' = \mathbf{A} \cup \mathbf{N}$
- But in reality the noise can also destroy existing edges
 - Now we have the original biclique matrix **A**, noise matrix **N**, and observed matrix $\mathbf{A}' = \mathbf{A} \oplus \mathbf{N}$

Rebuilding the biclique

- We consider the maximum-similarity/ minimum-dissimilarity quasi-biclique
 - I.e. rank-1 binary **B** minimizing $||\mathbf{A}' \mathbf{B}||_F$
- Finding such **B** is NP-hard
 - 2-approximation algorithms for minimum dissimilarity
 - PTAS for maximum similarity

Noise models

- So far we've added each edge independently with probability p
 - Erdős–Rényi random graph model
- We can also follow the preferential attachment model
 - Barabási–Albert random graph model
 - Some vertices have big changes on neighbors, others less
 - If the noise follows the B–A model, it can't have large bicliques ⇒ easy

Intimidating Math

Let
$$\operatorname{dist}(G, \widetilde{G}) = \max\{|U \oplus \widetilde{U}|, |V \oplus \widetilde{V}|\}$$

where $A \oplus B = (A \setminus B) \cup (B \setminus A)$

If $\forall X, Y \colon \Pr[q(X, Y) < q(U', V')] \le \exp\{-|(X, Y) - (U', V')|c\}$

then

 $\forall \varepsilon > 0 \forall U', V'(\min\{|U'|, |V'|\} \ge \zeta) \colon \Pr(\operatorname{dist}(G, G^*) \le \varepsilon) \ge 1 - \delta_1 - \delta_2$

with $\delta_2 = T(\epsilon, |U'|, |V'|, |U'|, |V'|)T(\epsilon, N, M, |U'|, |V'|)$

where

$$T(\epsilon, a, b, c, d) = \frac{\exp(\epsilon (\log(a+1) + \log(b+1) - \min(c, d)) c_{p,q})}{1 - \exp((\log(a+1) + \log(b+1) - \min(c, d)) c_{p,q})}$$

Results

- Erdős–Rényi: The minimum size of the original biclique $\zeta = \log(NM)$
- Barabási–Albert: log $N \ll \zeta \ll \sqrt{N}$

e results

What the algorithm finds

. • •								• •	
	••	• •	•		· · ·	·	•	•	
						:	:	:	
			:			:	:	:	
								:	
								•	
· .								:	
								•	
			.						
. 1						:	:		
			-					:	
. 1 1	••	••	•			•	•	· · :	
	::	::	:	::::	::::	:	:	:	
	••	••	•			•	•	•	
								`	
·.									
	••	• •	•		• • •	•		•	
1									
		::	:			:	:	:	
		••	· ·			•	•	• •	
								•	
	••	••	•		• • •	·	•	• •	
								•	

What is the underlying structure

DMM, summer 2017

Pauli Miett

.

Summary

- We can find planted cliques and bicliques (and other patterns)
 - Under certain conditions
- Spectral methods can be proven to work
- Nuclear norm relaxes rank
- Sometimes we might have to solve NP-hard problems

Literature

- McSherry, F., 2001. Spectral partitioning of random graphs. In 24th IEEE Symposium on Foundations of Computer Science, pp. 529–537.
- Ames, B.P.W. & Vavasis, S.A., 2011. Nuclear norm minimization for the planted clique and biclique problems.
 Mathematical Programming, Series B, 129(1), pp.69–89.
- Ramon, J., Miettinen, P. & Vreeken, J., 2013. *Detecting Bicliques in GF[q]*. In 2013 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, pp. 509–524.