Chapter 6 **Spectral Methods**

Part II: Finding planted patterns

Motivation

Assume a perfect pattern

Whoops!

 D and D a Detail *The Creatic* Michelang

Can we find the original pattern?

To find *a* **pattern or To find** *the* **pattern**

That is the question

Planted patterns

- Most data mining algorithms promise to find some pattern(s)
	- Or exhaustively list all of them
- Few can promise to find **the** pattern, even if we're promised there's one
	- Data mining concentrates on **discovery**, not **recovery**

Planted Bicliques and Nuclear Norms

Schatten norms

- The **Schatten matrix norms** for *p* ≥ 1 are defined as $\left(\sum_{i=1}^{\min\{n,m\}} \sigma_i^p \right)$ ä1*/p*
	- σ_i are the singular values of $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}'$
- *p* = 2 ⇒ Frobenius norm
- $p = \infty \Rightarrow$ operator norm
- $p = 1 \Rightarrow$ nuclear norm $||A||_*$
	- Also $||A||_* = \text{tr}(\Sigma) = \text{tr}(\sqrt{A^T}A)$

Maximum clique as rank minimization

• Maximum *n*-vertex clique in graph $G = (V, E)$ can be found with the following program

Nuclear norm relaxation

- The rank minimization problem is NP-hard
- We can relax it to nuclear norm minimization:

min
$$
||X||_*
$$

\ns.t. $\sum_{i \in V} \sum_{j \in V} x_{ij} \geq n^2$ \leftarrow can be replaced with 1
\n $x_{ij} = 0$ if $\{i, j\} \notin E$ and $i \neq j$

- The maximum clique is a valid solution and the unique optimizer under certain conditions
	- When this is the case, we can find the clique

Adversarial case

- Assume we have a graph that contains only a clique of *n* nodes
	- Adversary adds up to ϵn^2 edges, $\epsilon < 1/2$

o/w there's a larger clique

- The vertices not in the clique are adjacent to at most δ*n* vertices in the clique for some $0 < \delta < 1$ o/w the clique is enlarged
- The original clique is still the unique optimizer

Randomized case

- Assume the extra edges are added i.i.d. with probability $p \in [0, 1)$
- **Thm**. There exists an $\alpha > 0$ s.t. with $n \ge \alpha \sqrt{N}$, the planted clique is the unique optimizer with probability tending exponentially to 1 as $N \to \infty$
	- α depends on *p*, *n* is the size of the clique, and *N* is the size of the graph

Bipartite graphs and bicliques

- A **biclique** is a binary rank-1 submatrix of the binary **bi-adjacency matrix**
	- Biclique of size *n*-by-*m* can be found solving

Nuclear norm relaxation

min
$$
\|X\|_*
$$

\ns.t. $\sum_{i \in V} \sum_{j \in V} x_{ij} \ge nm$

 $x_{ij} = 0$ if $\{i, j\} \in (U \times V) \setminus E$

- The maximum biclique is again the (unique) minimizer under certain conditions
	- Problem is, when can we show the conditions hold

Results

- Adversary can add at most *O*(*nm*) edges
	- No new vertex can touch too many vertices in the biclique
- We can add edges i.i.d. as long as the biclique is α√*N* for some α depending on *p* and the relation of *n* and *m* and |*V|* and |*U|*

Bicliques with Destructive Noise

DMM, summer 2017 **Pauli Miettinen** [Ramon, Miettinen & Vreeken 2013](http://people.mpi-inf.mpg.de/~pmiettin/papers/ramon13detecting.pdf)

Can we find the original pattern?

Destructive noise

- So far we've only considered the case where new edges are added
	- New 1s in to the (bi-)adjacency matrix
	- We observe $A' = A \cup N$
- But in reality the noise can also destroy existing edges
	- Now we have the original biclique matrix *A*, noise matrix \bf{N} , and observed matrix $\bf{A}' = \bf{A} \oplus \bf{N}$

Rebuilding the biclique

- We consider the **maximum-similarity/ minimum-dissimilarity quasi-biclique**
	- I.e. rank-1 binary *B* minimizing ||*A'* – *B*||*^F*
- Finding such *B* is NP-hard
	- 2-approximation algorithms for minimum dissimilarity
	- PTAS for maximum similarity

Noise models

- So far we've added each edge independently with probability *p*
	- Erdős–Rényi random graph model
- We can also follow the preferential attachment model
	- Barabási–Albert random graph model
	- Some vertices have big changes on neighbors, others less
		- If the noise follows the B–A model, it can't have large bicliques \Rightarrow easy

Intimidating Math

Let
$$
\text{dist}(G, \widetilde{G}) = \max\{|U \oplus \widetilde{U}|, |V \oplus \widetilde{V}|\}
$$

 $A \oplus B = (A \setminus B) \cup (B \setminus A)$ **where**

 $\mathbf{H} \quad \forall X, Y: \Pr[q(X, Y) < q(U', V')] \le \exp\{-\left| (X, Y) - (U', V') \right| c\}$

then

 $\forall \varepsilon > 0 \forall U', V'(\min\{|U'|, |V'|\} \geq \zeta): \Pr(\text{dist}(G, G^*) \leq \varepsilon) \geq 1 - \delta_1 - \delta_2$

with $\delta_2 = T(\epsilon, |U'|, |V'|, |U'|, |V'|)T(\epsilon, N, M, |U'|, |V'|)$

where

$$
T(\epsilon, a, b, c, d) = \frac{\exp (\epsilon (\log (a + 1) + \log (b + 1) - \min (c, d)) c_{p,q})}{1 - \exp ((\log (a + 1) + \log (b + 1) - \min (c, d)) c_{p,q})}
$$

Results

- Erdős–Rényi: The minimum size of the original biclique $\zeta = \log(NM)$
- Barabási–Albert: log *N* ≪ ζ ≪ √*N*

Finding Planted Bicliques Finding Planted Bicliques

 $\frac{1}{2}$ $\frac{1}{2}$ corrupted by noise? Yes we can!

Example results Can we reconstruct a biclique that has been the second that has been the second that has been the second that h Boolean Tucker3 and CP decompositions $\frac{1}{2}$

What is the underlying structure

What the algorithm finds

. .

J. Ramon, P.M. & J. Vreeken: Detecting Bicliques in GF[q]. In ECMLPKDD 2013

24 $\frac{24}{1}$

⇝

Summary

- We can find planted cliques and bicliques (and other patterns)
	- Under certain conditions
- Spectral methods can be proven to work
- Nuclear norm relaxes rank
- Sometimes we might have to solve NP-hard problems

Literature

- McSherry, F., 2001. *Spectral partitioning of random graphs*. In 24th IEEE Symposium on Foundations of Computer Science, pp. 529–537.
- Ames, B.P.W. & Vavasis, S.A., 2011. *Nuclear norm minimization for the planted clique and biclique problems*. Mathematical Programming, Series B, 129(1), pp.69–89.
- Ramon, J., Miettinen, P. & Vreeken, J., 2013. *Detecting Bicliques in GF[q]*. In 2013 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, pp. 509–524.