
Chapter 6 
Spectral Methods

Part II: Finding planted patterns
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Motivation
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Assume a perfect pattern
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Whoops!

Detail from
The Creation of Adam
Michelangelo c. 1512
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Can we find the original 
pattern?
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To find a pattern  
or 

To find the pattern
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That is the question
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Planted patterns
• Most data mining algorithms promise to find 

some pattern(s) 

• Or exhaustively list all of them 

• Few can promise to find the pattern, even if 
we’re promised there’s one 

• Data mining concentrates on discovery, 
not recovery
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Planted Bicliques 
and Nuclear Norms

8
Ames & Vavasis 2011

http://www.math.uwaterloo.ca/~vavasis/amesvavasisnuclearnorm.pdf
http://www.cc.gatech.edu/~mihail/D.8802readings/mcsherrystoc01.pdf
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Schatten norms
• The Schatten matrix norms for p ≥ 1 are 

defined as 

• σi are the singular values of A = UΣVT   

• p = 2 ⇒ Frobenius norm  

• p = ∞ ⇒ operator norm 

• p = 1 ⇒ nuclear norm ||A||* 

• Also ||A||* = tr(Σ) = tr(√(ATA))
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Maximum clique as rank 
minimization

• Maximum n-vertex clique in graph G = (V, E) 
can be found with the following program
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min r�nk(X)

s.t.
X

�2V

X

j2V
��j � n2

��j = 0 if {�, j} /2 E and � 6= j

X = XT

X 2 [0,1]V⇥V

A clique is a rank-1 submatrix

of size n-by-n

Proper submatrix

Symmetric

No entry larger than 1
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Nuclear norm relaxation
• The rank minimization problem is NP-hard 

• We can relax it to nuclear norm minimization: 
 
 
 

• The maximum clique is a valid solution and the unique 
optimizer under certain conditions 

• When this is the case, we can find the clique
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min kXk�
s.t.
X

�2V

X

j2V
��j � n2

��j = 0 if {�, j} /2 E and � 6= j

← can be replaced with 1
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Adversarial case
• Assume we have a graph that contains only a 

clique of n nodes 

• Adversary adds up to εn2 edges, ε < 1/2 

• The vertices not in the clique are adjacent 
to at most δn vertices in the clique for some 
0 < δ < 1  

• The original clique is still the unique optimizer
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o/w there’s a larger clique

o/w the clique is enlarged
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Randomized case
• Assume the extra edges are added i.i.d. with 

probability p ∈ [0, 1) 

• Thm. There exists an α > 0 s.t. with n ≥ α√N, 
the planted clique is the unique optimizer with 
probability tending exponentially to 1 as N → ∞ 

• α depends on p, n is the size of the clique, 
and N is the size of the graph
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Bipartite graphs and 
bicliques

• A biclique is a binary rank-1 submatrix of 
the binary bi-adjacency matrix  

• Biclique of size n-by-m can be found solving
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min r�nk(X)

s.t.
X

�2V

X

j2V
��j � nm

��j = 0 if {�, j} 2 (U ⇥ V) \ E
X 2 [0,1]V⇥V
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Nuclear norm relaxation

• The maximum biclique is again the (unique) 
minimizer under certain conditions 

• Problem is, when can we show the 
conditions hold
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min kXk�
s.t.
X

�2V

X

j2V
��j � nm

��j = 0 if {�, j} 2 (U ⇥ V) \ E
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Results

• Adversary can add at most O(nm) edges  

• No new vertex can touch too many vertices 
in the biclique 

• We can add edges i.i.d. as long as the 
biclique is α√N for some α depending on p 
and the relation of n and m and |V| and |U| 

16
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Bicliques with 
Destructive Noise

17
Ramon, Miettinen & Vreeken 2013

http://people.mpi-inf.mpg.de/~pmiettin/papers/ramon13detecting.pdf
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Can we find the original 
pattern?

18
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Destructive noise
• So far we’ve only considered the case where new 

edges are added 

• New 1s in to the (bi-)adjacency matrix 

• We observe A’ = A ∪ N  

• But in reality the noise can also destroy existing 
edges 

• Now we have the original biclique matrix A, noise 
matrix N, and observed matrix A’ = A ⊕ N

19



DMM, summer 2017 Pauli Miettinen

Rebuilding the biclique
• We consider the maximum-similarity/

minimum-dissimilarity quasi-biclique 

• I.e. rank-1 binary B minimizing ||A’ – B||F 

• Finding such B is NP-hard 

• 2-approximation algorithms for minimum 
dissimilarity 

• PTAS for maximum similarity

20
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Noise models
• So far we’ve added each edge independently with 

probability p  

• Erdős–Rényi random graph model 

• We can also follow the preferential attachment model 

• Barabási–Albert random graph model 

• Some vertices have big changes on neighbors, others less 

• If the noise follows the B–A model, it can’t have large 
bicliques ⇒ easy

21
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Intimidating Math

22

8X,Y : Pr[q(X,Y ) < q(U 0, V 0
)]  exp{� |(X,Y )� (U 0, V 0

)| c}

T (✏, a, b, c, d) =
exp (✏ (log (a+ 1) + log (b+ 1)�min (c, d)) cp,q)

1� exp ((log(a+ 1) + log(b+ 1)�min(c, d))cp,q)

dist(G, eG) = max{|U � eU |, |V � eV |}

A�B = (A \B) [ (B \A)

8" > 08U 0, V 0(min{|U 0| , |V 0|} � ⇣) : Pr(dist(G,G⇤)  ") � 1� �1 � �2

Let

where

If

then

with

where

�2 = T (✏, |U 0| , |V 0| , |U 0| , |V 0|)T (✏, N,M, |U 0| , |V 0|)
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Results

• Erdős–Rényi: The minimum size of the 
original biclique ζ = log(NM) 

• Barabási–Albert: log N ≪ ζ ≪ √N 

23
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Example results
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Pauli Miettinen

Matrix and Tensor Decompositions 
Over Non-Conventional Algebras

Finding Planted Bicliques
Can we reconstruct a biclique that has been 
corrupted by noise? Yes we can!
  ✽  
  ✽ Erdős–Rényi noise
  ✽ Barabási–Albert noise

The input contains a 
planted biclique obfuscated by noise

We can extract the planted biclique

J. Ramon, P.M. & J. Vreeken: Detecting Bicliques in GF[q]. In ECMLPKDD 2013

Non-Conventional Algebras
Instead of the standard field of real numbers              , we use:
  ✽ Boolean algebra 
  ✽ Max-times or subtropical algebra
  ✽ Max-plus or tropical algebra 
These allow us to find different types of structures that are potentially
more interpretable.

S. Karaev: Matrix factorization over max-times algebra for data mining. M.Sc. thesis, UdS 2013

Tensor Decompositions
A tensor is a multi-way array. Common tensor
decompositions are Tucker3 and CANDECOMP/
PARAFAC (CP)
  ✽ Walk'n'Merge is a fast algorithm for 
      Boolean Tucker3 and CP decompositions
  ✽ Boolean tensor clustering is an 
      alternative way to analyse tensors
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Clustering Boolean Tensors
Saskia Metzler

D. Erdős & P.M.: Walk'n'Merge: A scalable algorithm for Boolean tensor factorization. 
  In ICDM 2013
S. Metzler & P.M.: Clustering Boolean Tensors. arXiv 2015
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MDL and Selecting the Rank
The rank of the decomposition is hard to decide
a priori. We use the MDL principle to select the 
rank
  ✽ We propose encoding schemes for 
      Boolean matrix factorizations 
  ✽ We designed MDL-minimizing algorithm
      called Nassau

P.M. & J. Vreeken: MDL4BMF: Minimum Description Length for Boolean Matrix 
  Factorization. ACM TKDD 8(4) 2014
S. Karaev, P.M. & J. Vreeken: Getting to Know the Unknown Unknowns: Destructive-
  Noise Resistant Boolean Matrix Factorization. In SDM 2015

Destructive Noise Resistant Boolean Matrix Factorization

Sanjar Karaev

Boolean Matrix Factorization

Given: Binary matrix A

Find: Binary factors B and C whose Boolean product

approximates A well

=x

B C A

MinimumDescription Length

MDL is a formalization of the Occam’s razor principle:

given competing models describing the data, choose

the simplest one. Structured data usually compresses

better than noise. Hence, choose models yielding the

shortest description length.

MDL forBMF

Using 0-1 error would imply that we believe in each 0 or

1 in the data. However, real data is noisy!

A*A

= x

B C

~

minimize L(B) + L(C) + L(A|B,C)2

where L(B) + L(C) is the description length of the

factors and L(A|B,C) is the description length of the

input data given the factors.

Nassau1 is anewalgorithmforBMF thatdirectlyop-
timizes thedescription length.
It proved to be highly effective in eliminating destructive

noise in the data.

Evaluation on Synthetic Data

Performance of Nassau vs BMF algorithms Asso3

and Panda+4 for various levels of destructive noie.

Results on Real-WorldData

Data: distribution of European mammals.

Plotted are the f rst four factors found by Nassau.
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Fact and Relation Discovery
We can use the developed techniques e.g. to
  ✽ Extract facts from surface (s, p, o)-triples
  ✽ Discover true relations from surface forms

D. Erdős & P.M.: Discovering Facts with Boolean Tensor Tucker Decomposition. In CIKM 2013
E. Cergani & P.M.: Discovering Relations using Matrix Factorization Methods. In CIKM 2013
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Summary
• We can find planted cliques and bicliques (and 

other patterns) 

• Under certain conditions 

• Spectral methods can be proven to work 

• Nuclear norm relaxes rank 

• Sometimes we might have to solve NP-hard 
problems
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